
Computations of Multiphase Flows by a
Finite Di�erence/Front Tracking Method.

I. Multi-Fluid Flows

G. Tryggvason,

B. Bunner, O. Ebrat, and W. Tauber

Department of Mechanical Engineering and Applied Mechanics

University of Michigan

Abstract

A numerical method for direct simulations of multiphase
ows is presented. The
method is based on writing one set of governing equations for the whole computa-
tional domain and treating the di�erent phases as one
uid with variable material
properties. Interfacial terms are accounted for by adding the appropriate sources
as �-functions at the interface between the phases. The
ow is taken to be in-
compressible. The unsteady Navier-Stokes equations are solved by a conventional
�nite volume method on a �xed, structured grid and the interface, or front, tracked
explicitly by connected marker points. Interfacial source terms such as surface ten-
sion are computed on the front and transfered to the �xed grid. Advection of
uid
properties such as density is done by following the motion of the front. The method
has been implemented for fully three-dimensional
ow as well as two-dimensional
and axisymmetric ones. This approach has been shown to be reasonably accurate,
versatile, and robust.

In part I of these lecture notes, the method is described for the
ow of two or
more isothermal phases. The representation of the moving interface, and its dynamic
restructuring, as well as the transfer of information between the moving front and
the �xed grid is discussed. Various validation studies are shown and the relation of
the method to other computational techniques discussed. A recent parallelization
of the method is also presented.

In part II, several applications are shown. Those include detailed studies of
drop collisions, motion of single bubbles and drops in shear
ows, and the collective
interaction of many bubbles and drops.

Part III describes extensions of the methodology to problems with more compli-
cated physics such as variable surface tension, solidi�cation, and boiling.

1 Introduction

Although e�orts to compute the
ow of multiphase
ows are as old as computational
uid
dynamics, the di�culty of solving the full Navier-Stokes equations in the presence of a

1

deforming phase boundary has proven to be considerable. Progress was therefore slow
and simulations of �nite Reynolds number
ows were, for a long time, limited to very
simple problems. In the last few years, however, major progress has been achieved. Here,
we describe a method that has been particularly successful for a wide range of multi
uid
and multiphase
ows. Before we start discussing our technique, we will brie
y review
other techniques.

The oldest and still the most popular approach to compute multi
uid and multiphase

ows is to capture the interface directly on a regular, stationary grid. The MAC method,
where marker particles are advected for each
uid, and the VOF method, where a marker
function is advected, are the best known examples. In their original implementation,
stress conditions at the
uid interface were only satis�ed in a very approximate way,
but a number of recent developments, including a technique to include surface tension
developed by Brackbill, Kothe, and Zemach (1992), and the use of "level sets" (see,
e.g. Sussman, Smereka, and Osher, 1994) to mark the
uid interface has increased the
accuracy and therefore the applicability of this approach. A recent application of the VOF
method can be found, for example, in Richards, Lenho�, and Beris (1994) who simulate
the axisymmetric breakup of a jet of one liquid in another liquid and in Lafaurie et al

(1994) who examined the three-dimensional of collision of two drops. An application of
the level set method to the motion of bubbles can be found in Sussman, Smereka, and
Osher (1994). Recent additions to the collection of methods that capture
uid interfaces
on a �xed grid include the CIP method of Yabe (1997) and the phase �eld method of
Jacqmin (1996). Traditionally, the main di�culty in the use of these methods has been
the maintenance of a sharp boundary between the di�erent
uids and the computation
of the surface tension.

The second class, and the one that o�ers potentially highest accuracy, uses separate,
boundary �tted grids for each phase. The steady rise of buoyant, deformable, axisymmet-
ric bubbles were simulated by Ryskin and Leal (1984) using this method in a landmark
paper that had a major impact on subsequent development. Dandy and Leal (1989) sub-
sequently examined the steady motion of deformable axisymmetric drops and Kang and
Leal (1987) extended the methodology to axisymmetric, unsteady motion. Several other
two-dimensional and axisymmetric computations of the unsteady motion of one or two
bubbles or drops have appeared recently. This method is best suited for relatively simple
geometries, and applications to complex fully three-dimensional problems with unsteady
deforming phase boundaries are very rare. The simulation of a single unsteady three-
dimensional bubble by Takagi and Matsumoto (1996) is, perhaps, the most impressive
example.

The third class, is Lagrangian methods where the grid follows the
uid. Recent ex-
amples include two dimensional computations of the breakup of a drop by Oran and
Boris (1987); examination of the initial deformation of a buoyant bubble by Shopov et al
(1990); simulations of the unsteady two-dimensional motion of several particles by Feng,
Hu, and Joseph (1994); and axisymmetric computations of the collision of a single drop
with a wall by Fukai et al. (1994). While this appears to be a fairly complex approach,
Tezduyar (1998) and Hu (1998) have recently produced very impressive results for the
three-dimensional unsteady motion of many spherical particles.

2

The fourth category is front tracking where a separate front marks the interface but
a �xed grid, only modi�ed near the front to make a grid line follow the interface, is
used for the
uid within each phase. This technique has been extensively developed by
Glimm and collaborators (see, e.g. Glimm 1991). In addition to these methods that are,
in principle, applicable to the full Navier Stokes equations, boundary integral methods
have been used for both inviscid and Stokes
ows. For three-dimensional applications see
Kennedy, Posrikidis, and Skalak (1994), Manga and Stone (1993), and Lowenberg and
Hinch (1996) for drops in a Stokes
ow, and Chahine (1994) for inviscid bubbles.

The method described here is properly described as a hybrid between a front capturing
and a front tracking technique. A stationary regular grid is used for the
uid
ow, but the
interface is tracked by a separate grid of lower dimension. This grid is usually called the
front. However, unlike front tracking methods where each phase is treated separately, we
follow front capturing methods and treat all phases by a single set of governing equations
whole
ow �eld. Although the idea of using only one set of equations for many co-
owing
phases is an old one, the method described here is a direct descendant of a Vortex-In-
Cell technique for invisicd multi
uid
ows described in Tryggvason and Aref (1983) and
Tryggvason (1988) and the immersed boundary method of Peskin (1977) developed to put
moving boundary into �nite Reynold's number homogeneous
uids. The original version
of the method and a few sample computations are presented by Unverdi and Tryggvason
(1992). Several modi�cations and improvements are described here.

The technique has been used to examine a number of multiphase
ows problems and
several examples will be shown in part II of theses lecture notes. For drops we have looked
at the collision of two equal sized drops, both by axisymmetric computations for head on
collisions (Nobari, Jan, and Tryggvason, 1996) as well as by fully three-dimensional simu-
lations for o�-axis collisions (Nobari and Tryggvason, 1996). Primary focus was on when
the drops broke up again after initial coalescence. Detailed comparison with experimental
data (Quian, Tryggvason, and Law, 1998) have shown excellent agreement. Recently, we
have examined the breakup of accelerated drops (Han, 1998). The computations show
both \bag" and \shear" breakup and have helped clarify the mechanism when the den-
sity di�erence between the drops and the surrounding
uid is small. Other axisymmetric
computations of relatively simple problems include the coalescence of initially stationary
drops of a di�erent size (Nobari, 1993) and collisions of vortex rings with a
uid interfaces
(Bernal et al, 1994). Two-dimensional simulations have been used to examine the dis-
sipation of free surface waves (Yang and Tryggvason, 1998) and the nonlinear evolution
of the Kelvin-Helmholtz instability of strati�ed
ows (Unverdi, Tauber, and Tryggvason,
1998).

Several of our investigations have focused on dispersed
ows of bubbles and drops
surrounded by another continuous
uid. For bubbles we have done a large number of two
and three-dimensional computations for periodic domains.The simulations have helped
explain how bubbles interact when they move freely, and the importance of accounting
for such interactions when modeling multi bubble
ows. See Jan (1994), Esmaeeli and
Tryggvason (1996,1997, 1998), and Bunner and Tryggvason (1997) for details. Two and
three-dimensional simulations of drops in pressure driven channel
ows show clustering
and shear thinning (Mortazavi, 1995). In addition to simulations of a large number of

3

bubbles and drops, we have examined the motion of a single bubble in a shear
ow (Ervin
and Tryggvason, 1997) and a single drop in a pressure driven channel
ow (Mortazavi,
1995). The results show that a relatively small deformation of a bubble changes not only
the value of the lift coe�cient, but also its sign. While this has been observed in recent
experimental work, our calculations have provided both an explanation and quantitative
data. The results for a single drop have shown that for modest Reynolds numbers the
drops generally move to a position about half way between the center of the channel and
its wall. This results are in excellent agreement with experimental observations.

In addition to these problems where two isothermal
uids have moved together, we
have extended the methodology to handle situations where other physical e�ects must
be accounted for. Real bubbles, particularly in water, are rarely clean, and we have
investigated the e�ect of contaminants on deformable bubbles at �nite Reynolds numbers
(Jan, 1994). While the presence of contaminants usually slows the bubbles down, we have
also found that contamination generally reduces deformations and, for very deformable
bubbles at high Reynolds number, the reduction in pressure drag can o�set the increased
frictional drag. We have also done several computations of the migration of drops and
bubbles due to a temperature dependent surface tension. Those have shown, for example,
that for a fairly wide range of parameters the drops line up in rows perpendicular to
the temperature gradient (Nas, 1995; Nas and Tryggvason, 1993). In Yu, Ceccio, and
Tryggvason (1995) we used a simple model of cavitation, where we ignore all thermal
e�ects and simply enforce a constant pressure inside the bubble, to examine the e�ect
of
uid shear on the growth and collapse of vapor bubbles. A more realistic model of
phase changes is presented in Juric and Tryggvason (1996), where solidi�cation of a pure
material is simulated by writing one energy equation for both phases. Heat release due to
phase change is included as a source term at the phase boundary. For full multiphase
ow
problems, the energy equation must be coupled with the Navier-Stokes equations. Juric
and Tryggvason (1997) present a method to do this and show simulations of the growth
of two-dimensional vapor layer near a hot wall. The extensions of the basic methodology
to problems where additional physics must be accounted for is discussed in part III of
these lecture notes.

2 Description of the Method

The key to our method as well as several other recently proposed methods to simulate
multiphase
ow is the use of a single set of conservation equations for the whole
ow �eld.
The equations must therefore account for both the di�erences in the material properties
of the di�erent phases as well as surface tension at the phase boundary. While this idea
goes back to the early days of CFD at Los Alamos, it has recently been revived very
successfully by a number of researchers. Here we will write down the general equations
for the case when all phases are incompressible and then examine in detail one particular
implementation.

4

2.1 \One-Field" formulation of the Navier-Stokes equations for

multiphase
ows.

The representation of the simultaneous
ow of di�erent immiscible
uids with one set of
conservation laws requires us to account for interfacial phenomena such as surface tension
by adding the appropriate interface terms to the governing equations. Since these terms
are concentrated at the boundary between the di�erent
uids, they are represented by
�-functions and when the equations are discretized, the �-functions must be approximated
along with the rest of the equations. Since the material properties and the
ow �eld are, in
general, discontinuous across the interface, the di�erential form of the governing equations
must be interpreted as a weak form, satis�ed only in an integral sense, or all variables
must be interpreted in terms of generalized functions. We take the latter approach here.

2.1.1 Preliminaries

Before we write down the equations governing multiphase
ow it is useful to discuss a
few elementary aspect of the representation of a discontinuous function by generalized
functions.

The various
uids can be identi�ed by a step (Heaviside) function H which is 1 where
one particular
uid is and 0 elsewhere. The interface itself is marked by a non-zero value
of the gradient of the step function and to relate the gradient to the �-function marking
the interface, it most convenient to express H in terms of an integral over the product of
one-dimensional �-functions:

H(x; y; t) =
Z
A(t)

�(x� x0)�(y � y0)da0: (1)

The integral is over an area A bounded by a contour S. H is obviously 1 if (x; y) is
within S and 0 otherwise. Here, we have assumed a two-dimensional
ow, the extension
to three-dimensions is obvious. To �nd the gradient of H we note �rst that since the
gradient is with respect to the unprimed variables, the gradient operator can be put
under the integral sign. Since the �-functions are anti-symmetric with respect to the
primed and unprimed variables, the gradient with respect to the unprimed variables can
be replaced by the gradient with respect to the primed variables. The resulting area (or
volume in three-dimensions) integral can the be transformed into a line (surface) integral
by a variation of the divergence theorem for gradients. Symbolically:

rH =
Z
A
r [�(x� x0)�(y � y0)] da0 = �

Z
A
r0 [�(x� x0)�(y � y0)]da0 = (2)

�
I
S
�(x� x0)�(y � y0)nds0

where the prime on the gradient symbol denotes the gradient with respect to the primed
variables. Although we have assumed that the area occupied by the marked
uid is �nite
so that S is a closed contour, the contribution of most of the integral is zero so we can
replace it by one over a part of the contour and drop the circle on the integral:

rH = �
Z
S
�(x� x0)�(y � y0)nds0 (3)

5

The density as well as any other material property, can be written in terms of the
constant densities on either side of the interface and the Heaviside function:

�(x; y; t) = �iH(x; y; t) + �o(1�H(x; y; t)): (4)

Here, �i is the density where H = 1 and �o is the density where H = 0. The gradient of
the density is given by

r� = �irH � �orH = (�i � �o)rH = ��
Z
�(x� x0)�(y � y0)nds0 (5)

where we have put �� = �o � �i.
The time derivative of the density is:

@�

@t
= �i

@H

@t
� �o

@H

@t
= (�i � �o)

@H

@t
: (6)

To �nd the time derivative of H, note that since H is either 1 or 0, its evolution is
governed by

@H

@t
+V � rH = 0 (7)

where V is a smooth velocity �eld that matches the interface velocity at the interface (if
there is no expansion at the interface and the
uids are incompressible, V could be the

uid velocity). The velocity �eld is smooth and a function of the unprimed variables, so
we can bring it under the integral sign, resulting in

@H

@t
= �V � rH = �

I
S
�(x� x0)�(y � y0)Vnds

0 (8)

where Vn = V � n. Since the density jump is constant, this leads to:

@�

@t
= ��

I
S
�(x� x0)�(y � y0)Vnds

0: (9)

This equation will be used in Part III of these lecture notes when we introduce a method
for
ows with phase changes.

2.1.2 Conservation equations

The
uid motion is assumed to be governed by the Navier-Stokes equations. For variable
viscosity, the full deformation rate tensor must be included and we will use the conservative
form for the advection terms:

@�u

@t
+r � �uu = �rP + �f +r � �(ru+rTu) +

Z
��0n0��(x� x0)ds0 (10)

This equation is valid for the whole
ow �eld, even if the density �eld, �, and the viscosity
�eld, �, change discontinuously. Here u is the velocity �eld, P is the pressure, and f is
a body force. Surface forces are added at the interface. �� is a two or three-dimensional
�-function constructed by repeated multiplication of one-dimensional �-functions. The

6

dimension is denoted by � = 2 or 3. � is the curvature for two-dimensional
ow and twice
the mean curvature for three-dimensional
ows. n is a unit vector normal to the front. x
is the point at which the equation is evaluated and x0 is a point on the front. Formally,
the integral is over the entire front, thereby adding the delta functions together to create
a force that is concentrated at the interface, but smooth along the interface. Since the
�-function has a �nite support, integrating over the entire front for every point in the
ow
is neither practical nor necessary. Just as the advection terms can be written in many
di�erent forms, it is possible to rewrite the surface tension term in other ways. In the
numerical implementation we use a di�erent, but equivalent expression for the surface
tension as discussed shortly.

Mass conservation is given by

@�

@t
+r � �u = 0: (11)

In almost all the problems that we have considered so far, the
uids are taken to be
incompressible so that the density of a
uid particle remains constant:

D�

Dt
= 0: (12)

This reduces the mass conservation equation to

r � u = 0: (13)

Usually, we also take the viscosity in each
uid to be constant as well:

D�

Dt
= 0: (14)

2.1.3 Interfacial conditions

While the formulation of the Navier-Stokes equation presented in the last section has
been around for a long time, it is not as familiar as writing down separate equations and
matching them at the phase boundary. It is therefore useful to demonstrate explicitly
that this formulation implicitly contains the same conditions at the interface as found in
standard references. To do so, we move to a frame moving with the interface and integrate
the equations over a small volume enclosing the interface. As we shrink the volume to
zero, most of the terms go to zero and only gradient terms survive. Integrating the normal
component yields h

�P + �(ru+rTu)
i
n = ��n (15)

where the brackets denote the jump across the interface. This is, of course, the usual
statement of continuity of stresses at a
uid boundary, showing that the normal stresses
are balanced by surface tension. Integrating the tangential component shows that the
tangential stresses are continuous and integrating the mass conservation equation (13)
across the interface shows that the normal velocities are also continuous.

If the governing equations are solved separately in the region occupied by the di�erent
phases, those conditions along with the continuity of the velocities must be used to match
the velocities and the pressures at the interface.

7

2.2 Numerical Implementation

The formulation described above allows multiphase
ow to be treated along the lines
usually used for homogeneous
ows. Any standard algorithm based on �xed grids can,
in general, be used to integrate the Navier-Stokes equations in time. If the density dif-
ferences are small so the Boussinesq approximation can be used and the viscosities of all
the
uids are the same it is even possible to use the streamfunction vorticity formula-
tion (Tryggvason and Unverdi, 1990). In general, however, it is easier to work with the
primitive form of the Navier-Stokes equations.

To carry out the actual computation it is necessary to determine:

� how the density (and viscosity) is advected,

� how surface tension is computed,

� how the velocity �eld is integrated in time,

� how the boundary between the
uids is advected,

� how the advection and the viscous terms are discretized,

� how the pressure equation is solved.

The �rst two items are what distinguish the various multiphase
ow methods based
on the weak formulation from each other. In the Volume-Of-Fluid (VOF), the level set,
and the Cubic Interpolation (CIP) methods a marker function is used to mark the regions
occupied by the various phases. In our method, we explicitly track the phase boundary
by connected marker points, forming a \front." Knowing the location of the front allows
us to set the density (and other material properties) and to compute the surface tension.
Using a front does, however, bring in a number of additional issues. Those are:

� how the front is represented (data structure),

� how information is transferred between the front and the �xed grid,

� how the front is advanced in time,

� how front resolution is maintained as the front deforms,

� how the density and other material properties are determined from the location of
the front,

� how surface tension is computed,

� how topology changes are accomplished.

In this section, we will describe how these various tasks can be accomplished. While
we focus on one particular implementation we will give references to alternate possibilities
(many of which we have also explored). Figure 1 summarizes the approach: A �xed grid
is used for the conservation equations but a moving grid of lower dimension marks the
boundary between the various phases.

8

Fluid 2

S
n

Fluid 1

Fluid 3

Figure 1: A
ow �eld containing more than one phase. The governing equations are
solved on a �xed grid but the phase boundary is represented by a moving \front."

2.2.1 A Projection method for the integration of the Navier-Stokes equations

The equations presented in the last section are usually solved by some form of projection
method. Although most of our studies employ a second order time integration technique,
we will outline here a very conventional �rst order scheme: First the density can be
updated using the velocity at the current time. We will denote that by:

�n+1 = f(�n;un;�t): (16)

This is accomplished by �rst moving the front and then constructing a grid-density �eld to
match the location of the front. Both these operations will be described in later sections
and this equation is merely a symbolic way of expressing what is done. The advection of
the density �eld is one of the critical steps in simulations of multiphase
ows. Here, n
denotes the old time level and n+1 the new one. Once the density has been updated, the
velocity �eld can be computed. The standard way is to split the update into two parts:
The �rst is a projection step where the e�ects of pressure are ignored:

�n+1u� � �nun

�t
= �rh � �

nunun +rh � �
n(rhu

n +rT
hu

n) + Fs (17)

and then a correction step, where the pressure gradient is added:

�n+1un+1 � �n+1u�

�t
= �rhP: (18)

The pressure is determined such that the velocity at the new time step is divergence free:

rh � u
n+1 = 0: (19)

Here we integrate the momentum equations in the conservative form. If the non-
conservative form is used, all densities are evaluated at time n and the density can be

9

P

i,j+1/2

i,j ui+1/2,j Pi+1,j

vi+1,j+1/2

Pi+1,j+1ui+1/2,j+1Pi,j+1

v

Figure 2: The notation used for a standard staggered MAC mesh.

advected at the end of the step. That is presumably also possible by replacing �n+1u� by
�nu�. To �nd the pressure, we use equation (19) to eliminate un+1 from equation (18),
resulting in

rh
1

�n+1
� rhP =

1

�t
rh � u

� (20)

Since the density is variable, this equation can not be solved by traditional fast Poisson
solvers designed for separable elliptic equations. The solution of the pressure equation
will be discussed in a separate section.

Since we advect the interface at the beginning of the time step, we have the option of
computing the surface tension term, Fs, either at the old con�guration or the new one.
While most investigators using VOF and similar methods appear to have opted to use a
completely explicit treatment of the surface tension, we generally �nd that the implicit
treatment is more robust. In actual computations it is, of course, also possible to �nd
those forces using both the new and the old position of the interface in which case the
resulting approximation is second order in time.

To compute the momentum advection, the pressure term, and the viscous forces, any
number of standard discretization schemes can be used. In most of our computations we
use a �xed, regular, staggered MAC grid and discretize the momentum equations using
a conservative, second order centered di�erence scheme for the spatial variables and an
explicit second order time integration method. Since we will be making a reference to
the layout of the grid, we show the standard notation for the MAC mesh in Figure 2. In
the original MAC method, centered di�erencing was used for all spatial variables, using
simple averaging for points where the variables are not de�ned, and the time integration
was done by the simple explicit �rst order projection method described above. Later
implementations, including the VOF method, used �rst order upwind or the so-called
donor-cell method for the advection terms. Recent authors have taken advantage of the
various high order upwind schemes developed for compressible
ows. Sussman et al (1994)
used the ENO upwind scheme in their level set method and Pilliod and Puckett (1997)
used an unsplit Godunov method, for example. We have used central di�erences in most
of our work to obtain the highest possible accuracy. We have been looking at problems
where we are interested in fully resolving the
ow and central di�erences are generally

10

u

u

u
1/2

1

0
µ

j=1/2

j=1

j=0

1
µ

1/2
µ

0

Figure 3: Continuity of the viscous
uxes on a staggered grid

more accurate than upwind methods. For
ows where we are more interested in robustness
and where we are willing to accept poorly resolved boundary layers, upwind schemes are,
of course, preferable.

For the viscous terms we use standard second order centered di�erences with simple
averages for viscosity at points where it is not de�ned. This is not, however, the only
possibility and we have also experimented with using the geometric average as suggested
by Patankar several years ago (see Patankar, 1980, for an accessible discussion). Since
the use of this method is not as common as one might expect, we discuss it brie
y here.
Assume that the boundary between a viscous fuid and a less viscous one falls exactly
between two grid points (Figure 3). The velocity gradient there will generally be di�erent
at j = 0 and j = 1 since the viscosities are di�erent. The viscous
ux, F� = �(@u=@y)
is constant, however. The viscosity at node j = 0 is di�erent than at node j = 1 and we
take the viscosity to be �0 for j < 1=2 and �1 for j > 1=2. If we knew the velocity at
j = 1=2, call it u1=2, then we must have �0(u1=2 � u0) = �1(u1 � u1=2) since the viscous

ux is constant. This should also be equal to �1=2(u1 � u0) if �1=2 is correctly de�ned.
Obviously, taking

1

�1=2
=

1

�0
+

1

�1

!
(21)

satis�es this requirement. In higher dimensions the formula is extended in an obvious
way. While we have experimented with this expression, we have conducted most of our
calculations using a simple average. The reason is that the error, when the simple aver-
aging is used, is mostly on the less viscous side of the interface and if we are simulating

ows where the less viscous
uid is expected to have a small e�ect, such as for bubbles
or drops in free motion, this is exactly where we prefer the error to be. In other cases,
such as when viscous drops are suspended in an other liquid, the accurate resolution of
the motion in the less viscous
uid is critical. For a recent use of Patankar's formula, see
Coward et al (1997).

To achieve a second order accuracy in time, we have used either an Adams-Bashford
integration scheme or a simple predictor-corrector scheme where the �rst order solution
at n+1 serves as a predictor that is then correct by a trapezoidal rule. The latter method
is particularly simple to implement since we can simply take two �rst order Euler steps

11

1

2

elements

pointers to end points

element i

1

2 3
3 2

21

1

element i

pointers to corner points

(a) (b)

pointers to adjacent

pointers to adjacent
elements

Figure 4: Structure of the front. (a) Two-dimension. (b) Three-dimension

and then average the �nal solution and the one at the beginning of the time step.

2.2.2 The structure of the front

For most of our simulations we use a front structure that consists of points connected by
elements. Both the points and the elements (the front objects) are stored in linked lists
that contain a pointer to the previous object and the next object in the list. The order in
the list is completely arbitrary and has no connection to the actual order on the interface.
The use of a linked list makes the addition and removal of objects particularly simple.
For each point, the only information stored is its coordinates. The elements, on the other
hand, contain most of the front information. Each element knows about the points that
it is connected to; the elements that are connected to the same endpoints; the surface
tension coe�cient; the jump in density across the element; and any other quantities that
are needed for a particular simulation. The elements are given a direction and for a given
front all elements must have the same direction. Figure 4(a) shows the key variables that
are stored for a two-dimensional front.

Three-dimensional fronts are build in the same way, except that three points are now
connected by a triangular element. The points, again, only know about their coordinates
but the elements know about their corner points and the elements that share their edges.
Each element has an \outside" and an \inside" and all elements on a given front must
be oriented in the same way. The corners of each element and the edges are numbered
counter-clockwise when viewing the element from the \outside." Figure 4(b) shows the
key variables that are stored for a three-dimensional front.

Since our implementation of the method is in FORTRAN, linked lists are constucted
by using several arrays. For each front, an array is set aside for each variable and one
object is denoted as the �rst object in the front. The total number of objects in the front
is stored and any operation involving the front is done by starting with the �rst object
and then using its pointer to the next object in the linked list to move to the next object
and so on, until all objects have been visited. The unused objects in the array are linked
and a pointer to the �rst unused object is also stored. This makes it relatively simple to
add and delete objects.

12

When information is transferred between the front and the �xed grid it is important
to always go from the front to the grid and not the other way around. Since the �xed grid
is structured and regular, it is very simple to determine the point on the �xed grid that
is closest to a given front position. If we denote the total number of grid points in one
direction by nx, the total length by Lx, and we assume that i = 0 corresponds to x = 0,
then the grid point to the left is given by:

i = int(x � nx=Lx) (22)

in FORTRAN. If the left hand side of the grid is denoted by i = 1, instead of 0, or if
the grids are staggered, small modi�cations are obviously needed. Finding the front point
closest to a given grid point is a much more complex operation and we can easily avoid
it completely.

In many cases we wish to simulate periodic domains where the front can move out of
the domain on one side and reappear in through the other side. This can be done in a very
simple way by recognizing that there is no need for the front to occupy the same period as
the �xed grid. All that is needed is to correctly identify the grid point that corresponds
to a given front position. A slight modi�cation of the operation above accomplishes this:

i = int (amod(x;Lx) � nx=Lx) (23)

For closed fronts, such as those representing the surface of a bubble or a drop, nothing
else needs to be changed. For periodic fronts the end point in one period is connected
to the �rst point in the next period, but only one period is actually computed. When
computing the length of such elements, or a line is �tted through the end points, it is
therefore necessary correct for the positions of the points.

If a front intersects a boundary, we usually put a point at the wall and a ghost point
outside the wall. The ghost point is connected to the point on the wall by a ghost element.
These ghost objects are not included in the front that describes the phase boundary, but
the front element connected to the wall point treats the ghost element as its neighbor.
The ghost objects form a (usually small) linked list that allows us to access them in the
same way as the regular front elements. The position of the ghost point is adjusted in
such a way that the front tangent at the wall point has the desired value. For a full slip
wall or symmetry boundary we usually assume that the front tangent is normal to the
boundary. We have not simulated any problems that involve a moving contact line, but
in that case the angle between the front and the wall would usually be a function of the
velocity of that point.

The strategy for identifying the �xed grid point closest to a given front point works
also on irregular grids, as long as they are logically rectangular and can be mapped into a
rectangle. In those cases we simply store the mapped coordinate of each front point and
use those when we need to communicate between the �xed grid and the moving front.

2.2.3 Restructuring the front

As the front moves, it deforms and usually some parts become crowded with front elements
while the resolution of other parts becomes inadequate. To maintain accuracy, additional

13

u=2
u=2

u=1

element i

u=0.5

u=0

u=-1

(a)

u=3

element iu=0

u=-1

(b) u=1

Figure 5: Adding and deleting front elements in two-dimensions.

elements must either be added when the separation of the points becomes too large or the
points must be redistributed to maintain adequate resolution. It is generally also desirable
to remove small elements. In addition to reducing the total number of elements used to
represent the front, element removal usually also prevents the formation of \wiggles" much
smaller than the grid size.

While the restructuring of the front makes codes that use explicit tracking more com-
plex than front capturing codes, many of the necessary operations can be made relatively
straight forward by the use of a suitable data structure. This is, in particular, true for
two-dimensional
ows. In some of our early computations, we adjusted the position of all
the interface points either at every time step or at every few time step to maintain nearly
uniform spacing. Currently we do not do this but add and remove points where needed.

Figure 5 shows the restructuring operations schematically for a two-dimensional front.
In (a) we split a large element by insert a point and in (b) we delete an element. Although
we sometimes put a new point simply at the mid point between the old end-points of an
element, using linear interpolation, we usually account for the curvature of the front by
using a higher order interpolation. This is particularly important when surface tension
is large and non-smooth parts of the front lead to large pressure
uctuations. We have
found that simple Legendre interpolation works well. By numbering the points as shown
in the �gure, any point is given by:

p(u) =
1

3
(1 + u)

�
1

2
u[(2� u)p1 + (u� 1)p2] +

1

2
(2 � u)[(1� u)p0 + up1]

�
+ (24)

1

3
(2� u)

�
1

2
(1 + u)[(1� u)p0 + up�1] +

1

2
(1� u)[(1 + u)p0 � up�1]

�

where p is either the x or the y coordinate and u is an interpolation parameter that takes
the values shown in the �gure. When an element is split by adding a new point, it is
simply inserted at u = 0:5, resulting in

pnew =
1

16
(�p�1 + 9(p0 + p1)� p2) (25)

When an element is deleted, we delete one of its end points and usually move the other
end point to the position given by equation (25). The connectivity of the elements and
the points is adjusted and the deleted points and elements removed from the list.

14

For three-dimensional
ows, these operations are more complicated. Not only are there
several di�erent ways to add and delete points, but other aspects of the front, such as the
shape and the connectivity of the elements must also be considered. The restructuring
of the surface grid can be accomplished by adding points and removing points. In some
cases, reconnecting the points to de�ne \better shaped" elements is also necessary.

Adding and deleting elements can be done in a variety of ways. Figure 6 shows the
strategy that we usually adopt. If an element is too large, we add elements by splitting
its longest edge into two and creating two new elements. Similarly, elements are deleted
two at a time by collapsing the shortest edge into a point. Sometimes we also reconnect
the points by swapping edges to make the elements better shaped.

To interpolate new points, we use barycentric coordinates (u; v; w) de�ned in �gure 7.
Notice that the coordinates are not independent and we must have

u+ v + w = 1 (26)

Any interpolated quantity is given by:

p(u; v; w) =
1

2
(1� u)[�up5 + (1 � v)p3 + (1 �w)p2] (27)

+
1

2
(1� v)[(1� u)p3 � vp6 + (1 � w)p1]

+
1

2
(1 �w)[(1 � u)p2 + (1 � v)p1 � wp4]

The centroid is at approximately u = v = w = 1=3, and the point half way between
corner points 1 and 2 is given by u = v = 1=2 and w = 0 or

p(
1

2
;
1

2
; 0) =

1

2
(p1 + p2) +

1

4
p3 �

1

8
(p5 + p6) (28)

To determine when it is necessary to add or delete an element, we usually de�ne a
minimum and a maximum element size and take action if the size of an element exceeds
these limits. These limits are selected such that the resolution of the front is comparable
to the �xed grid. In two-dimension we have found that 2-4 elements per grid mesh is a
good rule of thumb. For three-dimensional elements we usually examine the lengths of
the edges of each element as well as its \aspect" ratio. The aspect ratio is de�ned as
the length of the perimeter squared divided by the area of the element, normalized by
the corresponding ratio for an equilateral triangle. If the length of the longest edge is
longer than a preset value we split it and add two new elements and if the shortest edge
is shorter than a minimum value, we collapse it and eliminate two elements. Elements
are also added if the aspect ratio of an element is larger than a minimum value and its
shortest edge is larger than the minimum size. We have found that a minimum edge
length of h=3, a maximum length of h, and a maximum aspect ratio of 1:5 usually works
well. Additional checks, such as making sure that a deletion or addition does not result
in poorly shaped or connected elements, are usually also necessary. We do, for example,
not allow restructuring that results in elements adjacent to a given element having more
than one common point (the one shared by the original element). In many simulations we

15

Element Addition

Element Deletion

Element Reshaping

e1
e2

new 1
new 2

e1
e2

e1
e2

e3
e4

e1
e2

e5
e6

e5

e6

e7 e7

e1 e2

e1

e2

Figure 6: The restructuring of a three-dimensional front.

16

W=1

element i

(-1,1,1)(0,0,1)

(1,0,0) (0,1,0)

(1,-1,1)

(1,1,-1)

6
3

1 2

5

4

V=1

U=1

Figure 7: Barycentric coordinates for a three-dimensional element

do not carry out edge swapping since it is possible to show that a combination of element
insertion and deletion will have approximately the same e�ect. In other cases we swap
edges if that improves the aspect ratio of the elements.

2.2.4 Smoothing the front properties onto the �xed grid

Since the Navier-Stokes equations are solved on a �xed grid but surface tension is found
on the front, it is necessary to convert a quantity that exists at the front to a grid
value. When the density gradient is used to reconstruct the property �elds on the �xed
grid, it must also be transferred to the grid. Since the front represents a �-function,
the transfer corresponds to the construction of an approximation to this �-function on
the �xed grid. This \smoothing\ can be done in several di�erent ways, but it is always
necessary to ensure that the quantity transferred is conserved. The interface quantities,
�f , are usually expressed in units per unit area (or length in two-dimensions), but the
grid value, �g, should be given in terms of units per unit volume. To ensure that total
value is conserved in the smoothing, we must therefore require that:

Z
�s
�f (s)ds =

Z
�v

�g(x)dv: (29)

This is accomplished by writing

�ijk =
X
l

�lwijk
�sl
h3

(30)

17

for a three-dimensional interpolation. Here �l is is a discrete approximation to the front
value and �ijk is an approximation to the grid value. �sl is the area of element l. The
weights must satisfy X

ijk

wijk = 1; (31)

but can be selected in di�erent ways. The number of grid points used in the interpolation
depends on the particular weighting function selected. Since the weights have a �nite
support, there is a relatively small number of front elements that contribute to the value
at each point of the �xed grid. In the actual implementation of the transfer of quantities
from the front to the grid, we loop over the interface elements and add the quantity to
the grid points that are near the front.

We usually write the weighting functions as a product of one-dimensional functions.
In three-dimension, for example, the weight for the grid point (i; j; k) for interpolation to
xp = (xp; yp; zp) is written as

wijk (xp) = d(xp � ih) d(yp � jh) d(zp � kh) (32)

where h is the grid spacing. For two-dimensional interpolation, the third term is set to
unity. d(r) can be constructed in di�erent ways. The simplest interpolation is the area
(volume) weighting:

d(r) =

8><
>:

(r � ih)=h; 0 < r < h;
(h� (r � ih))=h; �h < r < 0;
0; jrj � h ;

(33)

Peskin (1977) suggested:

d(r) =

(
(1=4h)(1 + cos(�r=2h)); jrj < 2h;
0; jrj � 2h:

(34)

A newer version of this function was used by Juric and Tryggvason (1997).
While it is, in principle, desirable to have a grid approximation that is as compact

as possible, a very narrow support, obtained by using only a few grid points close to
the front, usually results in increased grid e�ect. Nevertheless, we have found the area
weighting to work very well in most cases although the functions proposed by Peskin are
obviously smoother. Since area weighting involves only two grid points in each direction
it is much more e�cient in three-dimensions where it requires values from 8 grid points
versus 27 for the Peskin interpolation functions. It also allows for simpler treatment of
boundaries.

2.2.5 Updating the material properties

The
uid properties, such as the density, are not advected directly; instead the boundary
between the di�erent
uids is moved. It is therefore necessary to reset these quantities at
every time step. The simplest methods is, of course, to loop over the interface points and
set the density on the �xed grid as a function of the shortest normal distance from the

18

interface. Since the interface is usually restricted to move less than the size of one �xed
grid mesh, this update can be limited to the grid points in the immediate neighborhood
of the interface. This straight forward approach (used, for example by Udaykumar et

al), 1997) does have one major draw back: When two interfaces are very close to each
other, or when an interface folds back on itself, such that two front segments are between
the same two �xed grid points, then the property value on the �xed grid depends on
which interface segment is being considered. Since this situation is fairly common, a more
general method is necessary.

To construct a method that sets the density correctly even when two interfaces lay
close to each other, we use the fact that the front marks the jump in the density and that
this jump is translated into a steep gradient on the �xed grid. If two interfaces are close
to each other, the grid gradients simply cancel. The gradient can be expressed as:

r� =
Z
��n�(x� xf)ds: (35)

and the discrete version is:
rh�ijk =

X
l

��wl
ijkne�le (36)

where �le is the area (length in two-dimension) of the element and wl
ijk is the weight of

grid point ijk with respect to element l.
Once the grid-gradient �eld has been constructed, the density �eld must be recovered.

Again, this can be done in several ways. The simplest approach is to integrate the density
gradient directly from a point where the density is known. If we distribute the gradient on
a staggered grid (in two-dimension the x-gradient goes to the u-velocity points (i+1=2; j)
and so on, see Figure 2), and the density at (i; j) is known, then

�i+1;j = �i;j + hr�i+1=2;j (37)

for example. Obviously, this operation only has to be performed at points near the front,
since the density away from the front has not changed. This approach can, however,
produce a density �eld that depends slightly on the direction in which the integration is
done and also allows errors in the density gradient to propagate away from the interface. In
most implementation of the method we use the following procedure: Taking the numerical
divergence of the grid-density results in a numerical approximation to the Laplacian which
should be equal to the Laplacian of the density �eld.

r2� = rh � r�ij: (38)

The left hand side is approximated by the standard centered di�erence approximation for
the Laplacian and solving the resulting Poisson equation with the appropriate boundary
conditions yields the density �eld everywhere. Specifying the boundary density, when
possible, usually results in higher accuracy. For intermediate density ratios this is a
fairly robust procedure. Two types of error are possible. The density away from the
interface may not be exactly equal to what it should be and small over and under shoots
are occasionally found near the interface. To solve the �rst problem we often solve the
Poisson equation by iterating only on points around the interface and thus leaving points

19

away from the interface unchanged. The second problem can be dealt with by simple
�ltering. Small variations in density away from the interface can lead to unphysical
buoyancy currents and undershoots can lead to negative densities that cause problems in
the pressure solver.

Figure 8 shows the construction of the density �eld in a domain containing a circular
drop. In the top row we show �rst the x and then the y-component of the grid density
smoothed on a 322 grid by the Peskin distribution function (Equation 34). The grid
density is then recovered by solving a Poisson equation (top row, on the right). The
bottom row shows the density constructed by using area weighting on a 322 grid; by
integrating the density gradient in the top row directly, �rst in the x and then the y
direction and then averaging; and �nally by solving a Poisson equation on a 642 grid.
Obviously, the distribution function and the grid control how steep the transition zone is.

2.2.6 Computing surface tension

The accurate computation of the surface tension is perhaps one of the most critical ele-
ments of any method designed to follow the motion of the boundary between immiscible

uids for a long time. In our approach the front is explicitly represented by discrete points
and elements and while this makes the surface tension computations much more straight
forward than reconstructing it from a marker function, there are several alternative ways
to proceed, some which are much better than others. In most of our simulations, we need
the force on a front element but not the curvature directly. This simpli�es the computa-
tions considerably. We will �rst describe the two-dimensional case and then the extension
to three-dimension.

The force on a short segment of the front is given by:

�Fe =
Z
�s
��nds (39)

Using the de�nition of the curvature of a two-dimensional line, �n = @s=@s, we can write
this as

�Fe = �
Z
�s

@s

@s
ds = �(s2 � s1): (40)

Therefore, instead of having to �nd the curvature, we only need to �nd the tangents of the
end points. In addition to simplifying the computation, this ensures that the total force
on any closed surface is zero, since the force on the end of one front element is exactly
the same as the force on the end of the adjacent element. This conservation property is
particularly important for long time computation where even a small error in the surface
tension computation can lead to an unphysical net force on a front that can accumulate
over time. This formulation also makes the extension to variable surface tension almost
trivial. A simple expansion of the partial derivative shows that

@�s

@s
= �

@s

@s
+
@�

@s
s = ��n+

@�

@s
s (41)

20

0

0.5

1

0

0.5

1
−200

−100

0

100

200

x

Density gradient in x−direction
distributed by Peskin function.

y

dρ
/d

x

0

0.5

1

0

0.5

1
−200

−100

0

100

200

x

Density gradient in y−direction
distributed by Peskin function.

y

dρ
/d

y

0

0.5

1

0

0.5

1
0

5

10

15

x

Density field constructed by
solving Poisson equation.

y

ρ

0

0.5

1

0

0.5

1
0

5

10

15

x

Density field constructed by solving Poisson
equation and using area weighting.

y

ρ

0

0.5

1

0

0.5

1
0

5

10

15

x

Density field constructed from direct
integration (average in x and y directions).

y

ρ

0

0.5

1

0

0.5

1
0

5

10

15

x

Density field constructed by solving Poisson
equation and using Peskin function (64x64).

y

ρ

F
igu

re
8:

T
h
e
gen

eration
of

th
e
d
en
sity

�
eld

from
th
e
d
en
sity

grad
ien

t.

21

which is the usual expression accounting for both the normal and the tangential force.
Since

�Fe =
Z
�s

@�s

@s
ds = (�s)2 � (�s)1 (42)

the force on each element is computed by simply subtracting the product of the surface
tension coe�cients and the tangents at the end points of each elements for both constant
and variable surface tension.

The accuracy and e�ciency of the computations depends on how we �nd the tangent
vectors. In most of our two-dimensional computations we compute the tangents directly
from a Legendre polynomial �t through the end points of the elements and the end points
of the adjacent elements. Since this four point �t is not the same for two elements that
share a common end point, we average the tangents computed for each element. The
tangent to the curve is given by

t =
@x

@u
=jj

@x

@u
jj (43)

and using the polynomial written down in section (2.2.3), we �nd that the derivatives at
point u = 0 is given by

@p

@u
=

1

6
[�2p�1 � 3p0 + p1 � p2] (44)

for u = 0 and
@p

@u
=

1

6
[p�1 � 6p0 + 3p1 + 2p2] (45)

for u = 1. In the actual code, we compute the tangents at the end points for each element
and then average them when we compute the force. To test the accuracy of this approach,
we have computed the curvature of a circle using unevenly spaced points. Since it is the
integral of the curvature over each element that is actually computed, we divide by the
exact arclength to obtain the curvature. To test the accuracy, we have put fourty points
unevenly on a circle and computed the curvature in this way. Figure 9 shows the results.
The points are shown on the left and the curvature as a function of arclength is shown on
the right. Results for 80 points, distributed in the same manner, are shown by a dashed
line. Obviously, the results are already quite accurate for 40 points and increasing the
number of points improves the results even further.

For three-dimensional problems, we use the fact that the mean curvature of a surface
can be written as

� = (n�r)� n: (46)

The force on a surface element is therefore,

�Fe = �
Z
�A
�ndA = �

Z
�A
(n�r)� ndA = �

I
s
t� nds (47)

where we have used the Stokes theorem to convert the area integral into a line integral
along the edges of the element. Here, t is a vector tangent to the edge of the element and
n is a normal vector to the surface. The cross product is a vector that is in the surface
and is normal to the edge of the element. The surface tension coe�cient times this vector
gives the \pull" on the edge and the net \pull" is obtained by integrating around the
edges. If the element is
at, the net force is zero but if the element is curved, the net force

22

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

X−Axis

Y
−

A
xi

s

0 2 4 6
0.99

0.995

1

1.005

1.01

Theta

R
ad

iu
s

of
 C

ur
va

tu
re

Figure 9: The accuracy of two-dimensional curvature calculations.

is normal to it when the surface tension coe�cient is constant. As in two-dimensions, this
formulation ensures that the net force on a closed surface is zero, as long as the force on
the common edge of two elements is the same. This formulation also extends to variable
surface tension in an obvious way:

�Fe =
Z
�s
�t� nds (48)

For three-dimensional surfaces the computations are more involved than the two-
dimensional version and although our current procedure works, it is not nearly as elegant
as the two-dimensional one. At the moment, we explicitly �t a quadratic surface to the
corner points of each element and the points of the elements that have a common edge to
the element that we are working with. After transforming an element into a coordinate
system where its corner points are in the x0 � y0 plane with one point at (0; 0), we �nd
the coe�cients a; b; c; d; e such that the surface

z = ax+ by + cxy + dx2 + ey2 (49)

goes through the corner points of the elements that share a common edge with the element
that we are working with. Once this surface is found, we compute the normal by

n = (�
@z

@x
;�

@z

@y
;�1)=H (50)

where

H =

@z

@x

!2

+

@z

@y

!2
+ 1 (51)

and the tangent is simply computed by subtracting the end points of the edge. The edge is
then divided into four segments and the integral evaluated by the midpoint rule. To ensure

23

that the surface tension is conserved, this integral is averaged between two elements that
share an edge when we �nd the force on each element (as is done in two dimensions). For
the �t to work, it is important that the points are all distinct and this is the reason that
we do not allow the elements adjacent to a particular element to share any other corner
points. The approximation is obviously of a lower order than used in the two-dimensional
simulations. Nevertheless, we have found the results to be quite accurate. For a sphere
resolved by 200 elements, the maximum and the minimum curvature are within 3% of
this value and when the sphere is resolved by 400 elements, the variations are about 1%.

Although we have not done so, it should be possible to write the vectors directly in
terms of the barycentric coordinates and to evaluate the force without going through the
explicit �tting of a continuous surface to the surface points.

We note that for closed surfaces it is possible to explicitly account for the pressure
increase due to the average curvature and to work only with the perturbation curvature
(Jan, 1994). The pressure and the curvature term are written as:

�rP +
Z
��nds = �rPo �rP 0 +

Z
�(�o + �0)nds (52)

and since we assume that
rPo =

Z
��onds (53)

we are only left with the perturbation pressure and the perturbation curvature in equation
(10). Since this is limited to closed surfaces, we usually do not do this.

2.2.7 Solving the pressure equation

For any incompressible
ow, it is necessary to solve an elliptic equation re
ecting the
fact that pressure is always in equilibrium. For the velocity-pressure formulation this
is a Poisson equation (Equation 20) for the pressure. If the density is constant, this
equation can be solved by a large number of specialized techniques, such as those found
in FISHPACK, but when the density depends on the spatial coordinates and the equation
is non-separable, the choice of method is more limited. We use iterative techniques in all
cases. During code development and for preliminary runs, we usually solve the pressure
equation by a simple Successive Over Relaxation (SOR) iteration method. For production
runs we use multigrid methods. We have used several packages, including MUDPACK
Adams (1989), but most recently we have used a code written in-house (Bunner and
Tryggvason, 1997). The reason for doing so was primarily the need to generate a parallel
version of the solver. The solution of the pressure equation is usually the most time
consuming part of the computation and must therefore be done e�ciently.

In addition to changes in the pressure due to the
ow, the pressure changes across a
curved
uid interface when the surface tension coe�cient is not zero. The pressure rise
due to this e�ect can often be considerable. In Figure 10 we plot the pressure in a two-
dimensional domain containing a single rising bubble. The various parameters are noted
in the caption and we show the results for two di�erent resolutions. The lower resolution
result on the left are computed on a 32 � 64 grid and the higher resolution result on the
right on a 64� 128 grid. The transition between the outside and the inside of the bubble

24

0

0.5

1

0

0.5

1

1.5

2
0

0.5

1

1.5

2

X

Pressure Field for Rising Bubble (32X64)

Y

P
re

ss
ur

e

0

0.5

1

0

0.5

1

1.5

2
0

0.5

1

1.5

2

X

Pressure Field for Rising Bubble (64X128)

Y

P
re

ss
ur

e

Figure 10: The pressure �eld for a bubble rising in a channel. The pressure rises due to
hydrostatics toward the bottom. Results for a 32 � 64 grid are shown on the left and
results for a 64 � 128 grid are shown on the right.

takes place over 2-3 grid points in both cases. It is important to note that the pressure is
a computed quantity and the pressure jump results from a surface tension smoothed onto
the grid using a Peskin distribution function.

The ease by which the pressure equation is solved depends generally on the density
ratio. For large density ratios, small errors can lead to negative densities that usually
cause convergence di�culties. These problems are, however, eliminated relatively easily
by minor �ltering. The more serious di�culty is that while SOR with a low overrelaxation
parameter always allows us to solve the pressure equation, more e�cient methods can fail
to converge. For most practical purposes, this makes long computations with large density
ratios impractical. In many cases we simply use density ratios that are relatively modest.

In addition to the convergence di�culties sometimes encountered at high density ra-
tios, the pressure solution can cause other di�culties. If the surface tension coe�cient
is high, and if the representation of the surface forces on the grid has any signi�cant
anisotropy, unphysical velocities can be generated. These velocities, sometimes called
\parasitic currents," are usually small. In Figure 11 we show the stream function for an
initially cylindrical two-dimensional drop. The drop should remain exactly stationary and
the velocity of the
uid should be exactly zero. Because of small pressure
uctuations in
the surrounding
uid near the drop, slight recirculation is seen. These currents depends
strongly on the grid resolution, smoothing function used,
uid viscosity, and surface ten-
sion coe�cient. We have done a number of test and generally �nd that these currents are

25

Surface Tension = 5.0

Figure 11: The parasitic current generated by a cylindrical drop with high surface tension.
The computational domain is resolved by a 502 grid and the nondimensional velocities
(de�ned in the text) are O(10�5).

insigni�cant for well resolved problems with reasonably large surface tension. In particu-
lar, if the surface tension coe�cient is such that a bubble or drop is slightly deformable,
the parasitic currents do not appear to in
uence the solution. We have made an attempt
to compare the magnitude of these currents with those observed by Lafaurie et al (1994)
in VOF simulations. They concluded that because of this e�ect they were limited to drops
smaller than about 10R� , where R� is a capillary-viscous length de�ned by R� = ��2=�,
and that the maximum velocity due to parasitic currents where about 0:01�=�. Here, �
is the kinematic viscosity. For a drop of diameter R = 0:25 in a 1� 1 domain resolved by
a 252 grid with R=R� = 125 we �nd that the maximum velocity is O(10�4). Increasing
the viscosity or the resolution signi�cantly decreases the current. Using area weighting
increases the parasitic current by nearly an order of magnitude but not to the levels seen
by Lafaurie et al (1994).

While the pressure gradient on a staggered grid is usually approximated simply by
subtracting the pressure at point i; j � 1=2 from the pressure at i; j +1=2, Zaleski (1997)
has pointed out that if a curved sharp interface crosses a cell boundary and there is a
signi�cant di�erence in pressure across the interface, then the net pressure force may be
poorly represented by the pressure at the midpoints. To approximate the pressure force
more accurately, Zaleski has proposed to account for the contributions on either side of the
interface explicitly. For two-dimensional situations this appears to be relatively straight
forward, but in three-dimensions the complexities are likely to be considerably greater.

2.2.8 Advancing the front

Since the
uid velocities are computed on the �xed grid and the front moves with the

uid velocities, the velocity of the interface points must be found by interpolating from
the �xed grid. The interpolation starts by identifying the closest grid point to the left

26

and below the front point in the way described in section 2.2.2. The grid value is then
interpolated by:

�f =
X
ijk

wijk�ijk (54)

where the summation is over the points on the �xed grid that are close to the front
point and � stands for one of the velocity components. It is generally desirable that the
interpolated front value be bounded by the grid values and that the front value be the
same as the grid value if a front point coincides with a grid point. Although it is not
necessary to do so, we usually use the same weighting functions to interpolate values to
the front from the �xed grid as to smooth front values onto the �xed grid.

Once the velocity of each front point has been found, its new position can be found
by integration. We usually use the same integration rule used for the integration of the
momentum equation to advance the points, although that is not necessary. Thus, if a
simple �rst order explicit Euler integration is used:

xn+1
f = xn

f + vn
f�t (55)

where xf is the front position, vf is the front velocity, and �t is the time step.
While the momentum equations are usually solved in the conservative form, the ad-

vection of the front is not conservative. Unlike the VOF method, for example, errors are
likely to results in changes in the total mass. Accurate advection of the front points min-
imizes this error and we have done a large number of simulations of bubbles, for example,
where the change in mass remains within 1-2% during a time when the bubbles move
about 100 diameters. In some cases, particularly for very long runs with many bubbles or
drops where the resolution of each particle is relatively low, we have encountered changes
in mass that are unacceptably high. In these case we correct the size of the particles every
few time steps. Since the correction is very small at each time, the e�ect on the result
is negligible. The inaccuracy in the advection of the front is due to errors coming from
the interpolation of the velocities and the integration scheme. Increasing the accuracy
of the front advection by using a higher order time stepping method is straight forward.
The error due to the interpolation comes from the fact that although the discrete velocity
�eld may be divergence free (for incompressible
ows), the interpolated velocity �eld is
not necessarily divergence free. An interpolation scheme that produces a divergence free
velocity at the front points has been developed by Peskin and Printz (1993). The result is,
however, a more complex pressure equation and we have not implemented this technique.
Interpolation errors appear primarily to be due to poor resolution and should therefore
generally be small. A test of the accuracy of the time integration has been done by Juric
(1997) who advected an initially circular blob of
uid by a prescribed velocity �eld that
deformed the blob into a long ligament. Mass was conserved very well during the simu-
lation and when the velocity was reversed, the circle was recovered nearly perfectly. This
test has been used for several other methods that either track or capture interfaces and
it is generally found that tracking produces superior results.

For the basic method, the velocities of the front are found in this way, but it is
sometimes also necessary to obtain front values for other quantities, such as temperature,

27

that are available on the �xed grid. Those values are interpolated in exactly the same
way.

2.2.9 Changes in the Front Topology

In general, numerical simulations of multiphase
ow must account for topology changes
of the phase boundary when, for example, drops or bubbles coalesce. When the interface
is explicitly tracked by connected marker points, such changes must be accounted for by
modifying the front in the appropriate way. The complexity of this operation is often cited
as the greatest disadvantages of front tracking methods. In methods that follow the phase
boundary by a marker function, topology changes take place whenever two interfaces, or
di�erent parts of the same interface, come closer than about one grid spacing. While
automatic coalescence can be very convenient in some cases, particularly if the topology
change does not need to be treated accurately, this is also a serious weakness of such
methods. Coalescence is usually strongly dependent on how quickly the
uid between the
coalescing parts drains and simply connecting parts of the interface that are close may
give the incorrect solution.

Topology changes in multi
uid
ows can be divided into two broad classes:

� Films that rupture. If a large drop approaches an other drop or a
at surface, the

uid in between must be \squeezed" out before the drops are su�ciently close so
that the �lm becomes unstable to attractive forces that can rupture it.

� Threads that break. A long and thin cylinder of one
uid will generally break by
Rayleigh instability where one part of the the cylinder becomes su�ciently thin so
that surface tension \pinches" it in two.

We note that exact mechanism of how threads snap and �lms break is still an active
area of investigation. There are, however, good reasons to believe that threads can become
in�nitely thin in a �nite time and that their breaking is \almost" described by the Navier-
Stokes equations. Films, on the other hand, are generally believed to rupture due to short
range attractive forces once they are a few hundred Angstrom thick. These forces are
usually not included in the continuum description. To account for the draining of �lms
prior to rupture requires the resolution of very small length scales and this is unlikely to
be practical in most cases. It may also be unnecessary. We have examined the collision
of two drops in detail (Nobari, Jan, and Tryggvason, 1996; Nobari and Tryggvason, 1996;
Qian, Tryggvason, and Law, 1998) and generally �nd that the details of the collision is not
sensitive to the resolution of the �lm between the drops. Indeed, a series of simulations
where we examined the evolution of the �lm by using nonevenly spaced grids to resolve
the �lm showed that the shape of the �lm was well predicted even when it was very
poorly resolved. Drops with high surface tension, for example, produce a �lm of a small
area that drains quickly whereas more deformable drops trap a large amount of
uid in
a �lm with large area. Although the actual thickness was not predicted as well, this
suggests that useful results can be obtained even on grids that are much coarser than
the �lm. The reason is|most likely|that the
ow in the �lm is essentially a plug
ow
of the same magnitude as the
ow outside the �lm. It is therefore likely that the same

28

(a) (b)

(c) (d)

Figure 12: A simulation of the draining of a layer of
uid from the top of the computational
domain. Here the topology of the front is changed if two fronts come close together. The
front and a few streamlines are shown in each frame

29

conclusion will not hold for more complex interfacial conditions such as when surfactants
or thermocapillary e�ects are present. The simplicity of the
ow does, however, suggest
that more detailed predictions could be accomplished by combining simple lubrication
models for the draining with numerical simulations of the motion of the drop. In our
simulations, so far, we have used very simple criteria for coalescence based either on a
given time or a speci�ed thickness of the �lm. Specifying the time of rupture is obviously
the less general approach since it requires a previous knowledge of what the solution looks
like, but results based on a given rupture time usually show little dependency on the grid
resolution whereas results based on specifying the minimum thickness do. We note that
while we would generally expect �lms to rupture due to attractive forces not included
in the usual continuum description, there are recent evidence that �lms may become
in�nitely thin in a �nite time under certain circumstances (Hou et al, 1996; Unverdi,
Tauber, and Tryggvason, 1998)

Accomplishing topology changes in a front tracking code is a two step process. First,
the part of the front that should undergo topology change must be identi�ed and then
the actual change must be done. For simple problems, the region where a change should
take place is often obvious and no special search technique is needed. In general, however,
rupture or coalescence can take place anywhere and it is necessary to search the whole
front to �nd where two fronts or two parts of the same front are close to each other.
The simplest, but least e�cient, way to conduct this search is to compute the distance
between the centroids of every front element. This is an O(N2) operation, but by dividing
the computational domain into small subregions and looking only at the elements within
each region, the e�ciency of the search can be increased considerably.

In two-dimensional simulations, topology changes are rather simple. Figure 12 shows a
simulation of the motion of an initially layered
uid. The
uid on the top and the bottom
is heavier than the
uid in the middle and the top layer falls down and merges with the
bottom layer. The computation was done on a 642 grid and the density ratio was 10. Two
interfaces are merged if their separation is less than one grid spacing. In three-dimensions
we have used a similar technique for colliding drops in Nobari and Tryggvason (1996) but
the algorithm has not been generalized to the same degree as the two-dimensional one.

2.3 Parallelization

For large problems, it is necessary to use parallel computers. For most practical pur-
poses, this means grids that are larger than about 643. The method described in the
previous sections has been implemented for distributed memory parallel computers using
the Message-Passing Interface, or MPI, library (Gropp et al., 1995). The rectangular,
three-dimensional domain is partitioned into even-sized subdomains by a simple domain
decomposition and each subdomain is computed on a di�erent processor. For the front,
we take advantage of the physics of our problem, i.e., the presence of a large number
of rather small bubbles. Each bubble is represented by its own data structure, which
is communicated to the neighboring subdomains, or processes, as the bubble crosses the
boundaries between the subdomains. Data coherence is maintained by a master-slave
type approach. Each bubble has a master process which centralizes the advected front
point positions from the slave processes, performs front restructuring and curvature cal-

30

8 10 12 14 16 18 20
1

1.5

2

2.5

p

T
(8

)/
T

(p
)

test case: 128^3, 64 bubbles

2 4 6 8 10 12 14 16 18 20

5

10

15

20

p

T
(1

)/
T

(p
)

test case: 64^3, 8 bubbles

Figure 13: test of parellelization

culation, and then redistributes the data to the slave processes. A more general, and more
complex, parallelization technique for the front is described by Glimm et al. (1998) who
use domain depomposition to distribute the front to di�erent processors.

An important criterion of the performance of a parallel code is its scalability. Scalabil-
ity describes the ability of the code to achieve performance proportional to the number of
processors (Kumar et al., 1994) and one measure of the scalability is the speedup, usually
de�ned as the time spent to solve a problem on one processor divided by the time spent
to solve the same problem on p processors. The speedup of our code is plotted in the
top half of Figure 13 for a test case with a 643 domain containing 8 bubbles. The code
runs on a 48-node IBM-SP2 and this test case represents about the largest resolution
that can be supported on a single node of that platform. For an ideal algorithm, the
speedup is linear. For the 643 grid the speedup is less. The speedup for a larger test
case, with a 1283 domain and 64 bubbles, is represented in the bottom half of Figure
13. The �rst value is at p = 8 because it is the minimum number of processors that this
problem requires. In this case the speedup is closer to the linear, ideal case. This indi-
cates that the algorithm is better suited to a coarse-grain than to a �ne-grain architecture
and that optimum performance is achieved by using as few processors as possible. The
main reason is the parallel multigrid solver for the elliptic equations for the density and
pressure. When using simple SOR solvers, the code achieves nearly linear and in some
cases superlinear speedups, but at the cost of prohibitively long runtimes. For 643 grid

31

Figure 14: Adaptive grid re�nement. From Agresar et al.

test case with 8 bubbles, a comparison between the serial code and the parallel code on
one processor indicates a penalty of about 20% due to the parallelization. We have also
examined the performance of the code when the number of bubbles is changed. For a 1283

resolution and 8 processors, the time needed to solve for the
ow around 8, 16, 32, 48,
and 64 bubbles shows that doubling the number of bubbles increases the run time by less
than 30%. This shows that the method is relatively insensitive to the number of bubbles,
and that the total time required is mostly a function of the size of the �xed grid, not the
front.

2.4 Adaptive Grid Re�nement

With relatively few exceptions,
uid systems consist of "active" regions of concentrated
vorticity (boundary and shear layers) and more "passive" regions where the
ow is more
uniform (often potential
ow). Frequently, the "active" regions are only a small part of
the whole
ow �eld and using the �ne grid required for the "active" regions everywhere
results in excessive and unnecessarily �ne grid in the passive regions. For large scale
simulations, considerable savings can be realized using adaptive grids. Indeed, adaptive
grids allow simulations of large systems that could not be simulated by a uniform grid.

Although nearly all of our simulations have been done on uniform grids, we have
experimented with two types of adaptive gridding: one-dimensional stretching and locally
re�ned Cartesian grids. The �rst approach is the simplest one. All grid lines are straight,
but are allowed to be unevenly spaced. While this approach is very useful for simple
problems where it is clear what the solution will look like and where high resolution is
needed, it is not very general. The locally re�ned Cartesian grid re�nement strategy is,
however, more versatile. In this approach, the grid cells are rectangular but each cell can
be re�ned by splitting it up into four (two-dimension) or eight (three-dimension) cells.
The various levels of re�nement are organized in a tree structure that allows each level
to be accessed e�ciently. This technique has been developed by several groups. See,

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity

Y

Low viscosity

High viscosity

exact solution

16 grid points

32 grid points

64 grid points

10
1

10
2

10
−2

10
−1

10
0

log(1/h)

lo
g(

er
ro

r)

Figure 15: Strati�ed shear
ow in a periodic channel. The viscosity of the
uid on the
top is ten times the viscosity on the bottom. The velocity pro�le is shown on the left and
the error in the total through
ow on the right.

for example, Berger and Colella (1987), and Powell (1997). Sussman et al (1997) has
used it for computations with the level set method. In Agresar et al (1998), our front
tracking approach was combined with the grid re�nement strategy to simulate the motion
of two-dimensional and axisymmetric biological cells. Figure 14 shows one frame from an
axisymmetric simulation of a cell being sucked up into a pipette.

3 Validation

While the \one
uid" formulation is a completely rigourous rewrite of the Navier-Stokes
equations, the accuracy of a numerical scheme based on this reformulation must be es-
tablished. It is indeed fair to say that accuracy is perhaps the concern most often raised
by critics of the one
uid approach. While we will show later in this section that the
method described here is capable of producing accurate results, it has to be admitted
that the critisism is not completely without merit. Early implementations of the \one

uid" idea often lacked detailed convergence studies or relied on demonstrations that were
not entirely convincing. Some of the early simulations using MAC and VOF by the Los
Alamos group were done on very coarse grids by todays standards but nevertheless were
very demanding on the computational resources available at the time. The resolution
used in these computations was generally near the minimum needed for reasonable re-
sults and doubling the resolution was simply out of the question. Although both Daly and
Pracht (1968) and Daly (1969), for example, examined the in
uence of several physical
parameters on their results, no grid re�nement appears to have been done.

Some aspects of methods for multiphase
ows can be tested by very simple one dimen-
sional model problems. Figure 15 shows one such test where we compute the steady state
velocity pro�le in a simple shear
ow. The top wall is moving to the right and the bottom
wall is moving to the left. The bottom half of the channel contains one
uid and the top
half another one. If the viscosity of both
uids is the same, a simple linear velocity pro�le

33

would be obtained at steady state. If, however, the top
uid has much higher viscosity
than the bottom one, then the shear in the more viscous
uid is smaller than in the less
viscous one and it will move with the top wall, resulting in a �nite velocity at the center
line and a net
ow to the right. An analytic expression for the centerline velocity and the
net volume
ux is easily found:

Uc =
�t � �b

�t + �b
; Q = 0:5

�t � �b

�t + �b
(56)

In Figure 15(a) we show the velocity pro�le at steady state computed using several
di�erent resolutions. The thick straight lines are the exact solution. Two conclusions can
be drawn from the �gure. The �rst is that even on coarse grids the results are reasonably
good (and excellent on the �ner grids) and the second is that most of the error is in the
less viscous
uid. The second observations provides some guidelines for the resolution
needed for a given problem. If the motion is determined by the more viscous
uid, we
expect more rapid convergence than if it is the less viscous
uid that matters most. Thus,
for example, we see more rapid convergence for the motion of bubbles in a more viscous

uid than drops in a less viscous
uid. Similarly, we need fewer grid points to simulate the
deformations of colliding drops (where the outer
uid has small e�ect) than their breakup
(where the ambient
uid matters). By using Patankar's formulation for the viscous
uxes,
the error is more evenly distributed. We emphasize, however, that in all cases it is possible
to obtain accurate solutions on �ne enough grids. The rate of convergence is examined in
Figure 15(b) where we plot the error in the total
ow rate as a function of the resolution
used on a log-log graph. The dashed line indicates linear convergence. Although the
method used here employs second order di�erence formulas for the spatial derivatives, we
can not hope for more than a linear convergence since the sharp discontinuity is resolved
on a �xed grid. The objective, however, is accuracy|and not order|and we note that
this behavior is also found in modern highly accurate shock capturing schemes used in
aeronautical computations of
ows with shocks (Roe, 1986). Although Figure 15 only
shows results for the steady state, we have examined the transient response and �nd very
comparable errors.

The next level of complexity is to use simple analytical solutions for multidimensional
problems as test cases. Such solutions are nearly all limited to linear oscillations around
simple steady state solutions, usually assuming viscous e�ects to be negligible. The
oscillation frequency of an inviscid drop can be found in most standard references, see
Lamb (1932), for example:

!2
n =

n(n+ 1)(n� 1)(n + 2)�

[(n+ 1)�d + n�o]R3
(57)

and n is the mode number. n = 1 corresponds to volume oscillations so the n = 2 is the
lowest one for an incompressible drop. Assuming viscous e�ects to be small, Lamb also
found that the amplitude would decay as

an(t) = aoe
�t=� where � =

R

(n� 1)(2n + 1)�
(58)

34

Figure 16: The amplitude of an oscillating drop

if the e�ect of the surrounding
uid is neglected. Here � is the kinematic viscosity of the
drop. Figure 16 shows the amplitude versus time for a drop with an initial amplitude
perturbation equal to 2:5% of its radius. The drop radius is 1, the size of the computed
domain is 5 and a 64 � 128 uniform grid is used to resolve the domain. The drop has
a density equal to 100 times the density of the the surrounding
uid and the kinematic
viscosity is 350 times higher. The time is nondimensionalized by the theoretical period
for the lowest (n = 2) mode. The theoretical prediction for the amplitude versus time
is also shown. Obviously, both the oscillation frequency as well as the amplitude are in
good agreement with the theoretical prediction.

In addition to examining the oscillations of an axisymmetric drop, we have also com-
puted the oscillation frequency of two-dimensional drops (Esmaeeli and Tryggvason, 1997)
and compared it with an analytical expression for the frequency (See Lamb, 1932, for the
single
uid case and Fyfe, Oran, and Fritts, 1988, for the two
uid case):

!2
n =

(b3 � n)�

(�d + �o)R3
(59)

For a two-dimensional drop of diameter 0:4 in a 1 by 1 computational domain, with its
density 20 times larger than the ambient
uid, we �nd that the oscillation period is 9.3%
longer than the theoretical value on a 322 grid, 3.4% longer on a 642 grid, and 1.9% longer
on a 1282 grid, when the initial amplitude is 5% of the drop radius. Comparisons of the
growth rate of a nearly
at interface subject to a shear (Unverdi, Tauber, and Tryggva-
son, 1998) and the propagation of a linear waves (Yang and Tryggvason, 1998) result in
a similar agreement. In addition to comparisons with linear perturbation solutions in the
inviscid limits, we have made comparisons between high Reynolds number transient mo-
tions and inviscid solutions computed by a vortex method. For short times, the agreement
is excellent (Han, 1998).

Analytical solutions also exists for several problems in the zero Reynolds number
limit (Stokes Flow). We have compared the rise velocity of regular arrays of low Reynolds

35

 8x24 16x48 32x96 64x192

Figure 17: Grid re�nement test

number viscous drops with the result of Sangani (1988) for drops in a Stokes
ow (Esmaeeli
and Tryggvason, 1998). For density and viscosity ratios of 1=10 and a void fraction of
� = 0:0335, Sangani's Reynolds number is 0:0599 and our Reynolds number is 0:051 for
a grid resolution of 343 and 0:06158 for a 663 grid. This gives a relative error of 8:9%
and 2:57%, respectively. At � = 0:1256, Sangani's Reynolds number is 0:0394 and our
Reynolds number is 0:037 at grid resolution of 343 and 0:0395 at grid resolution of 663.
This gives a relative error of 4:99% and 0:445%, respectively.

To test for the fully nonlinear aspect of the method at �nite Reynolds numbers, we
must resort to grid resolution studies, other numerical solutions, and experiments. While
all are subject to considerable uncertainty, we have done a number of such tests. For a
comparison between computational results and experimental data see Qian, Tryggvason,
and Law (1998), where binary collisions of equal size hydrocarbon drops are studied in
high pressure environments. Using an axisymmetric version of our code we have compared
our results with one case computed by Ryskin and Leal (1984). For Re = 20 andWe = 12,
they found Cd = 0:33 on the grid that they used for most of their computations. We found
Eo and M from these values and followed the motion of a bubble, using a very large
domain and about 25 grid points per bubble radius, until it reached steady state velocity.
This velocity was within 2% of Ryskin and Leal's prediction (see Jan and Tryggvason,
1995). Comparison with other cases computed by Dandy and Leal (1989) show similar

36

agreement.
In Figure 17, we show a grid re�nement test for the Rayleigh-Taylor instability. This is

a common test problem for methods intended to simulate multi
uid
ows. A heavy
uid
is initially placed above a lighter one and the boundary given a small perturbation. The
heavy
uid falls down in a relatively narrow \spike" while the lighter
uid rises upward
as a large \bubble." For �nite density ratios, the spike forms a mushroom shaped end. In
Figure 17 the large amplitude stage is shown for four di�erent resolutions, noted at the
top of each frame. The density and viscosity of the lower
uid are 1 and 0.01, respectively.
the top
uid is 5 times heavier and 10 times more viscous. The surface tension coe�cient
is 0:015 and the wavelength is 1. Even when there are only 8 grid points per wave, the
results show the general behaviour of the solution, although the details are far from being
converged. As the resolution is increased, the bubble shape converges quickly, but since
the surface tension coe�cient here is low, so the solution can generate relatively small
features, slight di�erences are seen in the \spike" between the �nest two grids. Other
grid re�nement studies can be found in Unverdi and Tryggvason (1992), Esmaeeli and
Tryggvason (1997), and Han (1998).

We end this section by two examples that while not being validation studies, show
the capability of the method. Figure 18 contains two frames from a simulation of four
bubbles on a 5122 grid. The governing parameters correspond to an air bubble in water
except the density ratio is 20. In addition to the front marking the bubble surface, a few
vorticity contours are also plotted. The average rise Reynolds number is plotted in Figure
19, showing that the bubble rise Reynolds number reaches a value of about 800 which is
roughly what one would expect from experimental studies (where the bubbles are fully
three-dimensional).

As discussed in the section on the solution of the pressure equation, multigrid methods
sometime fail when the density di�erence between the
uid are large. A SOR iteration
will, however, always converge as long as the density �eld is well behaved. In Figure 20
we show one frame from a simulation of the rise of two bubbles with a density ratio of a
100 (left) and another frame from a simulation with a density ratio of a 1000 (right). The
density of the continuous
uid is 1, its viscosity is 0:001, the surface tension coe�cient is
0:25, and gravity acceleration is 2. The kinematic viscosity in both
uids is the same and
the bubble radius is 0:2. The computational domain is a periodic unit square resolved
by a 642 grid. The bubble surface and a few streamlines with respect to a stationary
frame of reference are plotted at the same time for both runs. The bubbles have risen
about six diameters and we can see that the bubbles on the right are very slightly ahead,
as we expect. The average Reynolds number is about 28. Both simulations were run
using a simple SOR iteration method to solve the pressure equation. For the high density
case, the solver sometimes required more than 10; 000 iterations with an over relaxation
parameter of 1:2. A detailed comparison of the �gure shows that the
uid motion inside
the bubble is not as smooth for the high density ratio, suggesting that better resolution
may be needed.

37

Figure 18: High Reynolds number bubbles at two times. The bubble surface and a few
vorticity contours are plotted in each frame.

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7

Re

t*

Figure 19: Reynolds number versus time for the bubbles in Figure 18.

38

Figure 20: Simulation of the motion of two, two-dimensional bubbles with a high density
ratio. Left: �o=�b = 100. Right: �o=�b = 1000.

4 Conclusion

Attempts to simulate multiphase
ows go back to early days of computational
uid dy-
namics at Los Alamos. While a few successful simulations can be found in the literature,
major progress has been made in the last few years. The \one �eld" formulation is the
key to much of this progress. While the method described here is one of the most success-
ful implementation of the \one �eld" formulation, impressive results have been obtained
by improved VOF methods, Level Set methods, phase �eld methods, and the new CIP
method. The key di�erence between these methods and the technique described here is
our use of a separate \front" to mark the phase boundary, instead of a marker function.
While explicit front tracking is generally more complex that the advection of a marker
function, we believe that the increased accuracy and robustness is well worth the e�ort.
The explicit tracking of the interface not only eliminates errors associated with the ad-
vection of a marker function and surface tension computations but we believe also that
the
exibility inherent in the explicit tracking approach is important for the application
of the method to problems where complex interface physics must be accounted for. In
addition to several di�erent implementations of the method described here in our group,
it has been implemented independently by several other investigators such as Sheth and
Pozrikidis (1995) who used it to examine the deformation of a two-dimensional drop in a
shear
ow, and Udaykumar et al (1997) who studied the motion of two-dimensional drops
in pipes with variable cross section.

The method could be improved on in many ways. We mention only two issues here, one

39

numerical and another physical: The development of e�cient methods for the solution of
the pressure equation for very large density ratios would increase the e�ciency not only of
our method, but of all other methods based on the \one �eld" formulation. The draining
of thin �lms and their eventual rupture is unlikely to be fully resolved by computations
where the goal is, for example, to follow accurately the motion of many bubbles or drops.
Such computations would greatly bene�t from subgrid models that would determine the
minimum �lm thickness and the probable time of coalescence.
Acknowledgment. The developement of the method described here has been supported
by the National Science Foundation.

References

[1] J. Adams, \MUDPACK: Multigrid FORTRAN Software for the E�cient Solution of Linear
Elliptic Partial Di�erential Equations," Applied Math. and Comput. 34, p. 113, (1989).

[2] G. Agresar, J. J. Linderman, G. Tryggvason and K.G. Powell. \An Adaptive, Cartesian,
Front-Tracking Method for the Motion, Deformation and Adhesion of Circulating Cells,"
J. Comput. Phys., to appear.

[3] M. J. Berger and P. Colella, \Local Adaptive Mesh Re�nement for Shock Hydrodynamics,"
Technical Report UCRL-97196, Lawrence Livermore National Laboratory, (1987).

[4] L.P. Bernal, P. Maksimovic, F. Tounsi and G. Tryggvason, \An Experimental and Numer-
ical Investigation of Drop Formation by Vortical Flows in Microgravity," AIAA 94-0244.
Presented at the 32th AIAA Aerospace Sciences Meeting, Reno, NV, Jan. 10-13, (1994).

[5] J. U. Brackbill, D. B. Kothe and C. Zemach, \A Continuum Method for Modeling Surface
Tension," J. Comput. Phys. 100, p. 335-354, (1992).

[6] B. Bunner and G. Tryggvason, \Simulations of Large Bubble Systems," ASME Fluids
Engineering Division Summer Meeting, Vancouver, Canada, June 22-26, (1997).

[7] G. L. Chahine, \Strong Interactions Bubble/Bubble and Bubble/Flow," In: J.R. Blake (ed-
itor), Proc. IUTAM Conference on Bubble Dynamics and Interfacial Phenomena. Kluwer,
(1994).

[8] A. V. Coward, Y. Y. Renardy, M. Renardy and J. R. Richards, J. Comp. Phys., 132, p.
346-361, (1997).

[9] B. J. Daly, \Numerical Study of the E�ect of Surface Tension on Interface Instability,"
Phys. Fluids, 12, p. 1340-1354, (1969).

[10] B. J. Daly, and W. E. Pracht, \Numerical Study of Density-Current Surges," Phys. Fluids,
11, p. 15-30, (1968).

[11] D.S. Dandy and G.L. Leal, \Buoyancy-Driven Motion of a Deformable Drop Through a
Quiescent Liquid at Intermediate Reynolds Numbers," J. Fluid Mech., 208, p. 161-192,
(1989).

[12] E.A. Ervin and G. Tryggvason, \The Rise of Bubbles in a Vertical Shear Flow." ASME J.
Fluid Engineering 119, p. 443-449, (1997).

[13] A. Esmaeeli, \Numerical Simulations of Bubbly Flows," Ph.D. Dissertation, The University
of Michigan, (1995).

40

[14] A. Esmaeeli and G. Tryggvason, \An Inverse Energy Cascade in Two-Dimensional, Low
Reynolds Number Bubbly Flows," J. Fluid Mech., 314, p. 315-330, (1996).

[15] A. Esmaeeli and G. Tryggvason, \Direct Numerical Simulations of Bubbly Flows. Part
I-Low Reynolds Number Arrays," (1997), submitted for publication.

[16] A. Esmaeeli and G. Tryggvason, \Direct Numerical Simulations of Bubbly Flows. Part
II-Moderate Reynolds Number Arrays," (1998), submitted for publication.

[17] J. Feng, H. H. Hu and D. D. Joseph, \Direct Simulation of Initial Value Problems for the
Motion of Solid Bodies in a Newtonian Fluid, Part 1. Sedimation," J. Fluid Mech. 261, p.
95-134, (1994).

[18] J. Feng, H. H. Hu and D. D. Joseph, \Direct Simulation of Initial Value Problems for the
Motion of Solid Bodies in a Newtonian Fluid, Part 2. Couette and Poiseuilli Flows," J.

Fluid Mech. 277, p. 271-301, (1995).

[19] J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C. M. Megaridis and Z.
Zhao, \Wetting E�ects on the Spreading of a Liquid Droplet Colliding with a Flat Surface:
Experiment and Modeling," Phys. Fluids 7(2), p. 236-247, (1995).

[20] D. E. Fyfe, E. S. Oran and M. J. Fritts, \Surface tension and viscosity with Lagrangian
Hydrodynamics on a Triangular Mesh," J. Comput. Phys. 76, p. 349-384, (1988).

[21] J. Glimm, \Nonlinear and Stochastic Phenomena: The Grand Challenge for Partial Dif-
ferential Equations," SIAM Review 33, p. 625-643, (1991).

[22] W. Gropp, E. Lusk and A. Skjellum, \Using MPI: Portable Parallel Programming with the
Message-Passing Interface," The MIT Press (1995).

[23] J. Han, \Numerical Studies of Drop and Motion in Axisymmetric Geometry," Ph.D. Dis-

sertation, The University of Michigan, (1998).

[24] H. H. Hu, \Direct Simulation of Flows of Solid-Liquid Mixtures," Int. J. Multiphase Flow,
22, p. 335-352, (1996).

[25] H. H. Hu, http://www.lrsm.upenn.edu/ howard/homepage.html.

[26] T. Y. Hou, J. S. Lowengrub and M. J. Shelley, \The Long-Time Motion of Vortex Sheets
with Surface Tension," Phys. Fluids 9(7), p. 1933, (1997).

[27] D. Jacqmin, \An Energy Approach to the Continuum Surface Tension Method," Technical
Report AIAA 96-0858, (1996).

[28] Y. J. Jan, \Computational Studies of Bubble Dynamics," Ph.D. Dissertation, The Univer-
sity of Michigan, (1994).

[29] D. Juric, http://www.lanl.gov/home/djuric.

[30] D. Juric, \Computations of Phase Change," Ph.D. Dissertation, The University of Michi-
gan, (1996).

[31] D. Juric and G. Tryggvason, \A Front Tracking Method for Dentritic Solidi�cation," J.
Comput. Phys. 123, p. 127-148, (1996).

[32] D. Juric and G. Tryggvason. \Computations of Boiling Flows," to appear in Int'l. J. Mul-

tiphase Flow.

41

[33] I. S. Kang and L. G. Leal, \Numerical Solution of Axisymmetric, Unsteady Free-Boundary
Problems at Finite Reynolds Number. I. Finite-Di�erence Scheme and its Applications to
the Deformation of a Bubble in a Uniaxial Straining Flow," Phys. Fluids, 30, p. 1929-1940,
(1987).

[34] M. R. Kennedy, C. Pozrikidis and R. Skalak, \Motion and Deformation of Liquid Drops,
and the Rheology of Dilute Emulsions in Simple Shear Flows," Computers Fluids 23, p.
251-278, (1994).

[35] V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Parallel Computing,
Benjamin/Cummings, (1994).

[36] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski and G. Zanetti, \Modelling Merging
and Fragmentation in Multiphase Flows with SURFER," J. Comp. Phys. 113, p. 134-147,
(1994).

[37] H. Lamb, Hydrodynamics, Dover, New York, (1932).

[38] M. Lowenberg and E. J. Hinch, \Numerical Simulation of a Concentrated Emulsion in
Shear Flow," J. Fluid Mech., In press, (1996).

[39] M. Manga and H. A. Stone, \Buoyancy-Driven Interactions between Deformable Drops at
Low Reynolds Numbers," J. Fluid Mech. 256, p. 647-683, (1993).

[40] S. Mortazavi, \Computational Investigation of Particulate Two-Phase Flows," Ph.D. Dis-
sertation, The University of Michigan, (1995).

[41] S. Nas, \Computational Investigation of Thermocapillary Migration of Bubbles and Drops
in Zero Gravity," Ph.D. Dissertation, The University of Michigan, (1995).

[42] S. Nas and G. Tryggvason, \Computational Investigation of the Thermal Migration of
Bubbles and Drops," in AMD 174/FED 175 Fluid Mechanics Phenomena in Microgravity,
Ed. Siginer, Thompson and Trefethen. p. 71-83, Presented at the ASME 1993 Winter
Annual Meeting, ASME (1993).

[43] M. R. H. Nobari, \Numerical Simulations of Drop Collisions and Coalescence," Ph.D.
Thesis, The University of Michigan, (1993).

[44] M. R. Nobari, Y.-J. Jan and G. Tryggvason. \Head-on Collision of Drops{A Numerical
Investigation," Phys. Fluids 8, p. 29-42, (1996).

[45] M. R. Nobari, and G. Tryggvason, \Numerical Simulations of Three-Dimensional Drop
Collisions," AIAA Journal 34, p. 750-755, (1996).

[46] E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Elsevier, New York,
(1987).

[47] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, (1980).

[48] C. S. Peskin, \Numerical Analysis of Blood Flow in the Heart," J. Comput. Phys. 25, p.
220, (1977).

[49] C. S. Peskin and B. F. Printz, \Improved Volume Conservation in the Computation of
Flows with Immersed Boundaries," J. Comput. Phys. 105, p. 33-46, (1993).

[50] J. E. Pilliod and E. G. Puckett, \Second-Order Accurate Volume-of-Fluid Algorithms for
Tracking Material Interfaces," Preprint, (1997).

42

[51] K. Powell, \Solution of the Euler Equations on Solution-Adaptive Cartesian Grids," to
appear in Annual Reviews in Computational Fluid Dynamics, M. Hafez, editor, (1997).

[52] J. Quian, G. Tryggvason and C.K. Law, \An Experimental and Computational Study of
Bounching and Deforming Droplet Collision," submitted to Phys. Fluids.

[53] J. R. Richards, A. M. Lenho� and A. N. Beris, \Dynamic Breakup of Liquid-Liquid Jets,"
Phys. Fluids 6, p. 2640-2655, (1994).

[54] P. L. Roe, \Characteristic-Based Schemes for the Euler Equations," Ann. Rev. Fluid Mech.,
p. 337-365, (1986).

[55] G. Ryskin and L. G. Leal, \Numerical Solution of Free-Boundary Problems in Fluid Me-
chanics, Part 2. Buoyancy-Driven Motion of a Gas Bubble Through a Quiescent Liquid,"
J. Fluid Mech. 148, p. 19-35, (1984).

[56] A. S. Sangani, \Sedimentation in Ordered Emulsions of Drops at Low Renolds Number,"
J. of Appl. Math. and Physics, ZAMP 38, p. 542-555, (1988).

[57] K. S. Sheth and C. Pozrikidis, \E�ects of Inertia on the Deformation of Liquid Drops in
Simple Shear Flow," Computers and Fluids 24, p. 101-119, (1995).

[58] P. J. Shopov, P. D. Minev, I. B. Bazhekov and Z. D. Zapryanov, \Interaction of a De-
formable Bubble with a Rigid Wall at Moderate Reynolds Numbers," J. Fluid Mech. 219,
p. 241-271, (1990).

[59] M. Sussman, P. Smereka and S. Osher, \A Level Set Approach for Computing Solutions to
Incompressible Two-Phase Flows," J. Comput. Phys. 114, p. 146-159, (1994).

[60] M. Sussman, Private Communication.

[61] S. Takagi and Y. Matsumoto, \Force Acting on a Rising Bubble in a Quiescent Liquid,"
ASME Fluids Engineering Division Conference. FED-126, p. 575-580, (1996).

[62] T. Tezduyar, \Large-Scale Fluid-Particle Interactions," http://www.arc.umn.edu/research
/tezduyar/101sphere.html, (1996).

[63] G. Tryggvason and H. Aref, \Numerical Experiments on Hele Shaw Flow with a Sharp
Interface," J. Fluid Mech. 136, p. 1-30, (1983).

[64] G. Tryggvason, \Numerical Simulation of the Rayleigh-Taylor Instability," J. Comput Phys.
75, p. 253-282, (1988).

[65] G. Tryggvason and S. O. Unverdi, \Computations of Three-Dimensional Rayleigh-Taylor
Instability," Phys. Fluids A 2, p. 656-659, (1990).

[66] S. O. Unverdi and G. Tryggvason, \A Front-Tracking Method for Viscous, Incompressible,
Multi-Fluid Flows," J. Comput Phys. 100, p. 25-37, (1992).

[67] S. O. Unverdi and G. Tryggvason, \Computations of Multi-Fluid Flows," Physica D 60, p.
70-83, (1992).

[68] S. O. Unverdi, W. Tauber and G. Tryggvason, In Preparation.

[69] H. S. Udaykumar, H. C. Kan, W. Shyy and R. Tran-Son-Tay, \Multiphase Dynamics in
Arbitrary Geometries on Fixed Cartesian Grids," J. Comput. Phys. 137, p. 366-405, (1997).

[70] T. Yabe, \Uni�ed Solver CIP for Solid, Liquid and Gas," Computational Fluid Dynamics

Review, (1997), to appear.

43

[71] Y. Yang and G. Tryggvason, \Dissipation of Energy by Finite Amplitude Surface Waves,"
Computers and Fluids, to appear.

[72] P.-W. Yu, S.L. Ceccio and G. Tryggvason, \The Collapse of a Cavitation Bubble in Shear
Flows-A Numerical Study," Phys. Fluids 7, p. 2608-2616, (1995).

[73] S. Zaleski, Personal Communication.

44

