Quiz-4-SOLUTION

Problem: Determine the height d of cable $A B$ so that the force in cables $A D$ and $A C$ is one-half as great as the force in cable $A B$. What is the force in each cable for this case? The flower pot has a mass of 50 kg .

Solution:

The point A is chosen as a particle. Eqs. of equilibrium can be written as follows:
$\sum F_{y}=-\frac{2}{7} T_{C}+\frac{2}{7} T_{D}=0$
$\sum F_{x}=-\frac{6}{7} T_{C}-\frac{6}{7} T_{D}+T_{B_{x}}=0$
$\sum F_{z}=\frac{3}{7} T_{C}+\frac{3}{7} T_{D}+T_{B_{z}}=W$
Additional expressions are needed to solve this set of equations because the number of unknowns (four) is greater then the number of equations (three). [this is also true when T_{B} and θ (angle of T_{B} with the x-axis) or T_{B} and d are chosen to express the force in cable AB]
$\frac{T_{B_{Z}}}{T_{B_{\chi}}}=\frac{d}{6}, \quad \frac{|A B|}{6}=\frac{T_{B}}{T_{B_{\chi}}}, T_{C}=T_{D}=T_{B} / 2$

The results for the unknowns become:
$d=\sqrt{13} \mathrm{~m}, \quad T_{C}=T_{D}=260 \mathrm{~N}, T_{B}=520 \mathrm{~N}$

