Sample Problems - 1

Problem 1: Determine the angle θ at which a particle in Jupiter's circular orbit experiences equal attractions from the sun and from Jupiter.

Problem 2: The motion of pin P is controlled by the two moving slots A and B in which the pin slides.
(a) If B has a velocity $v_{B}=3 \mathrm{~m} / \mathrm{s}$ to the right while A has an upward velocity $v_{A}=2 \mathrm{~m} / \mathrm{s}$, determine the magnitude of the velocity of the pin.
(b) If A has a downward velocity $v_{A}=1 \mathrm{~m} / \mathrm{s}$ and the velocity of the pin P is also $1 \mathrm{~m} / \mathrm{s}$ downwards determine v_{B}.

Problem 3: In a design test of the actuating mechanism for a telescoping antenna on a spacecraft, the supporting shaft rotates about the fixed z-axis with an angular rate. Determine the R-, θ-, and ϕ-components of the acceleration \vec{a} of the end of the antenna at the instant when $L=1.2 \mathrm{~m}$, and $\beta=45^{\circ}$, if the rates $\dot{\theta}=2$ $\mathrm{rad} / \mathrm{s}, \dot{\beta}=\frac{3}{2} \mathrm{rad} / \mathrm{s}$, and $\dot{L}=0.9 \mathrm{~m} / \mathrm{s}$ are constant during the motion.

Problem 4:

The slotted arm $O A$ forces the small pin to move in the fixed spiral guide defined by $r=K \theta$. Arm $O A$ starts from rest at $\theta=\pi / 4$ and has a constant counterclockwise angular acceleration $\ddot{\theta}=\alpha$. Determine the magnitude of the acceleration of the $\operatorname{pin} P$ when $\theta=3 \pi / 4$.

Problem 5: In the design of an amusement-park ride, the cars are attached to arms of length R which are hinged to a central rotating collar which drives the assembly about the vertical axis with a constant angular rate $\omega=\dot{\theta}$. The cars rise and fall with the track according to the relation $z=(h / 2)(1-2 \cos 2 \theta)$. Find the R-, θ-, and ϕ-components of the velocity \vec{v} of each car as it passes the position $\theta=\frac{\pi}{4} \mathrm{rad}$.

Problem 6: The object of the pinball-type game is to project the particle so that it enters the hole at E. When the spring is compressed and suddenly released, the particle is projected along the track, which is smooth except for the rough portion between points B and C, where the coefficient of kinetic friction is μ_{k} The particle becomes a projectile at oint D. Determine the correct spring
 compression δ so that the particle enters the hole at E. State any necessary conditions relating the lengths d and ρ.

Problem 7:

The inclined block A is given a constant rightward acceleration a. Determine the range of values of θ for which block B will not slip relative to block A, regardless of how large the acceleration a is. The coefficient of static friction between the blocks is μ_{s}.

Problem 8:

The $10-\mathrm{kg}$ steel sphere is suspended from the $15-\mathrm{kg}$ frame which slides down the 20° incline. If the coefficient of kinetic friction between the frame and incline is 0.15 , compute the tension in each of the supporting wires A and B.

Problem 9:

The bowl-shaped device rotates about a vertical axis with a constant angular velocity ω. If the particle is observed to approach a steady-state position $\theta=40^{\circ}$ in the presence of a very small amount of friction, determine ω. The value of r is 0.2 m .

Problem 10: The chain of length L and mass ρ per unit length is released from rest on the smooth horizontal surface with a negligibly small overhang x to initiate motion. Determine

(a) the acceleration a as a function of x,
(b) the tension T in the chain at the smooth corner as a function of x, and
(c) the velocity v of the last link A as it reaches the corner.

Problem 11: The system is released from rest while in the position shown. If $m_{1}=0.5 \mathrm{~kg}, m_{2}=4 \mathrm{~kg}, d=0.5 \mathrm{~m}$, and $\theta=20^{\circ}$, determine the speeds of both bodies just after the block leaves incline (before striking the horizontal surface). Neglect all friction.

Problem 12: The two bodies have the masses and initial velocities shown in the figure. The coefficient of restitution for the collision is $e=0.3$, and friction is negligible. If the time duration of the collision is 0.025 s , determine the average impact force which is exerted on the $3-\mathrm{kg}$ body. Also determine loss of total kinetic energy of the system during the collision.

Problem 13: If the system is released from rest, determine the speeds of both masses after B has moved 1 m . Neglect friction and the masses of the pulleys.

Problem 14: The disk rotates about a fixed axis through O with angular velocity $\omega=5 \mathrm{rad} / \mathrm{s}$ and angular acceleration $a=3 \mathrm{rad} / \mathrm{s}^{2}$ in the directions shown at a certain instant. The small sphere A moves in the circular slot, and at the same instant, $\beta=30^{\circ}$ and $\dot{\beta}=-4 \mathrm{rad} / \mathrm{s}^{2}$. Determine the absolute velocity and acceleration of A at this instant.

Problem 15:

A slender rod bent into the shape shown rotates about the fixed line $C D$ at a constant angular rate ω. Determine the velocity and acceleration of point A.

Problem 16:

The robot shown has five degrees of rotational freedom. The $x-y-z$ axes are attached to the base ring, which rotates about the z-axis at the rate ω_{1}. The $\operatorname{arm} O_{1} O_{2}$ rotates about the x-axis at the rate $\omega_{2}=\dot{\theta}$. The control arm $O_{2} \mathrm{~A}$ rotates about axis $\mathrm{O}_{1}-\mathrm{O}_{2}$ at the rate ω_{3} and about a perpendicular axis through O_{2} which is momentarily parallel to the x-axis at the rate $\omega_{4}=\dot{\beta}$. Finally, the jaws rotate about axis $O_{2}-A$ at the rate ω_{5}. The magnitudes of all angular rates are constant. For the configuration shown, determine the magnitude ω of the total angular velocity of the jaws for $\theta=60^{\circ}$ and $\beta=45^{\circ}$ if $\omega_{1}=2 \mathrm{rad} / \mathrm{s}, \dot{\theta}=1.5 \mathrm{rad} / \mathrm{s}$, and $\omega_{3}=\omega_{4}=\omega_{5}=0$. Also express the angular acceleration $\boldsymbol{\alpha}$ of arm $O_{1} O_{2}$ as a vector.

