
Computers & Industrial Engineering 53 (2007) 123–136

www.elsevier.com/locate/dsw
A two-level search algorithm for 2D rectangular
packing problem

Mao Chen *, Wenqi Huang

School of Computer Science, Huazhong University of Science and Technology, 430074 Wuhan, People’s Republic of China

Received 19 August 2006; received in revised form 21 December 2006; accepted 11 April 2007
Available online 18 April 2007
Abstract

In this paper, we propose a two-level search algorithm to solve the two-dimensional rectangle packing problem. In our
algorithm, the rectangles are placed into the container one by one and each rectangle should be packed at a position by a
corner-occupying action so that it touches two items without overlapping other already packed rectangles. At the first level
of our algorithm, a simple algorithm called A0 selects and packs one rectangle according to the highest degree first rule at
every iteration of packing. At the second level, A0 is itself used to evaluate the benefit of a CCOA more globally. Computa-
tional results show that the resulted packing algorithm called A1 produces high-density solutions within short running times.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Rectangle packing problem; Heuristic; Greedy algorithm
1. Introduction

The two-dimensional (2D) rectangular packing problem is an optimization problem of allocating a set of
rectangular items to larger containers with the objective of minimizing the waste. The 2D rectangular packing
problem has been widely studied in recent decades, as it has numerous applications in the cutting and packing
industry, e.g. wood, glass and cloth industries, newspapers paging, VLSI floor planning and so on, with dif-
ferent applications incorporating different constraints and objectives (Chan & Markov, 2004; Hifi & Ouafi,
1998; Lee & Sewell, 1999; Lesh, Marks, & Mcmahon, 2004; Lodi, Martello, & Monaci, 2002). The 2D rect-
angular packing problem belongs to a subset of classical cutting and packing problems and has been shown to
be an NP hard problem (Hochbaum & Maass, 1985). Therefore, various approximation or heuristic algo-
rithms have been proposed for approaching the problem.

In rectangle packing, one of the earliest approaches is the so-called bottom-left (BL) heuristic (Baker, Coff-
man, & Rivest, 1980). In BL, the rectangles to be placed are, starting from the top-right corner of the con-
tainer, first slide vertically downward as far as possible, followed by sliding horizontally as far as possible
to the left, so as to reduce the number of possible packing patterns. One improved variant of BL is the
0360-8352/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cie.2007.04.007

* Corresponding author.
E-mail address: mchen_1@163.com (M. Chen).

mailto:mchen_1@163.com

124 M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136
bottom-left-fill (BLF) heuristic, in which the rectangles are placed directly into the lowest positions available
and then left justified. Both BL and BLF are later used in meta-heuristic based algorithms. Hybrid algorithms
combining genetic algorithm (GA) and deterministic methods were proposed by Jakobs (1996), Liu and Teng
(1999), and Dagli and Poshyanonda (1997). An empirical investigation of the result of different combinations
of simulated annealing (SA) and GA with various heuristics such as BL or BLF was given by Hopper and
Turton (2001).

Inspired by enhancing some working experience of professional masons in their everyday work, a Less
Flexibility First (LFF) packing principle was proposed in Tam et al. (1998); Wu, Huang, and Lau (2002)
for solving the rectangular packing problem. Recently, by introducing a tightness measure to represent the
degree of fitting between rectangles and placement locations, an enhanced version of LFF, called LFFT,
was proposed in Wu, Chan, and SAGA (2005). More recently, a fast heuristic recursive (HR) algorithm based
on divide-and-conquer and greedy strategies was proposed in Zhang, Kang, and Deng (2006), and an effective
GA, called SPGAL, was proposed in Bortfeldt (2006) for the four subtypes of the 2D strip packing problem.

Based on the previous studies (Huang, Li, Akeb, & Li, 2005; Tam et al., 1998; Wu et al., 2002), we will
propose a quite different class of efficient heuristic for the 2D rectangular packing problem in this paper. Dif-
ferent from the stochastic search methods where the researches are mainly focused on finding the efficient data
structures for presenting packing results so that the search space and the processing time of the underling
search engine can be minimized, our algorithm is a deterministic algorithm and no data structure is needed.
Similar to LFF, our algorithm packs the rectangles into the container one by one and each rectangle should be
packed at a position occupying an empty corner in the container. The computational results of our proposed
algorithm is very encouraging in terms of both packing density and running time.

The rest of this paper is organized as follows: Section 2 gives the problem definition. Section 3 describes the
details of the algorithm. Section 4 presents our experimental results for two sets of test instances. We draw our
conclusions in Section 5.
2. Problem definition

We consider the following rectangular packing problem: given a rectangular empty container with fixed
width and infinite height and a set of rectangles with various sizes, the rectangle packing problem is to pack
each rectangle into the container such that no two rectangles overlap and the used height of the container is
minimized. From this optimization problem, an associated decision problem can be formally stated as follows:

Given a rectangular board with given width W and given height H, and n rectangles with length li and width
wi, 1 6 i 6 n, take the origin of the two-dimensional Cartesian coordinate system at the bottom-left corner of
the container (see Fig. 1). The aim of this problem is to determine if there exist a solution composed of n sets of
Fig. 1. Cartesian coordinate system.

M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136 125
quadruples {x11, y11, x12, y12}, . . . , {xn1, yn1, xn2, yn2}, where (xi1, yi1) denotes the bottom-left corner coordi-
nates of rectangle i, and (xi2, yi2) denotes the top-right corner coordinates of rectangle i. For all 1 6 i 6 n, the
coordinates of rectangle i satisfy the following conditions:

(1) xi2 � xi1 = li ^ yi2 � yi1 = wi or xi2 � xi1 = wi ^ yi2 � yi1 = li;
(2) For all 1 6 i, j 6 n, j5i, rectangle i and j cannot overlap, i.e., one of the following conditions should be

met: xi1 P xj2 or xj1 P xi2 or yi1 P yj2 or yj1 P yi2;
(3) 0 6 xi1, xi2 6W and 0 6 yi1, yi2 6 H.

In our packing process, each rectangle is free to rotate and its orientation h can be 0 (for ‘‘not rotated’’) or 1
(for ‘‘rotated by p/2’’). It is noted that the orthogonal rectangular packing problems denote that the packing
process has to ensure the edges of each rectangle are parallel to the x- and y-axis, respectively.

Obviously, if we can find an efficient algorithm to solve this decision problem, we can then solve the original
optimization problem by using some search strategies. For example, we first apply dichotomous search to rap-
idly get a ‘‘good enough’’ upper bound for the height, then from this upper bound we gradually reduce it until
the algorithm no longer finds a successful solution. The final upper bound is then taken as the minimal height
of the container obtained by the algorithm. In the following discussion, we will only concentrate on the deci-
sion problem of fixed container.

3. Proposed algorithm

3.1. Corner-occupying action and degree

Definition (Configuration). A configuration C is a pattern (layout) where m (0 6 m < n) rectangles have been
already packed inside the container without overlap, and n � m rectangles remain to be packed into the
container.

A configuration is said to be successful if m = n, i.e., all the rectangles have been placed inside the container
without overlapping. A configuration is said to be failure if m < n and none of the rectangles outside the con-
tainer can be packed into the container without overlapping. A configuration is said to be final if it is either a
successful configuration or a failure configuration.

Definition (Candidate corner-occupying action). Given a configuration with m rectangles packed, there may be
many empty corners formed by the previously packed rectangles and the four sides of the container. Let
rectangle i be the current rectangle to be packed, a candidate corner-occupying action (CCOA) is the
placement of rectangle i at an empty corner in the container so that rectangle i touches the two items forming
Fig. 2. Candidate corner-occupying action for rectangle R4.

126 M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136
the corner and does not overlap other previously packed rectangles (an item may be a rectangle or one of the
four sides of the container). Note that the two items are not necessarily touching each other.

Obviously, the rectangle to be packed has two possible orientation choices at each empty corner, that is, the
rectangle can be placed with its longer side laid horizontally or vertically. A CCOA can be represented by a
quadri-tuple (i, x, y, h), where (x, y) is the coordinate of the bottom-left corner of the suggested location of
rectangle i and h is the corresponding orientation.

Under current configuration, there may be several candidate packing positions for the current rectangle to
be packed. At the configuration in Fig. 2, three rectangles R1, R2 and R3 are already placed in the container. In
total, there are five empty corners to pack rectangle R4, and R4 can be packed at any one of them with two
possible orientations. As a result, there are 10 CCOAs for R4.

In order to prioritize the candidate packing choices, we need a concept that expresses the fitness value of a
CCOA. Here, we introduce the quantified measure k, called degree to evaluate the fitness value of a CCOA.
Before presenting the definition of degree, we first introduce the definition of minimal distance between rect-
angles as follows:

Definition (Minimal distance between rectangles). Let i and j be two rectangles already placed in the container,
and (xi, yi), (xj, yj) are the coordinates of an arbitrary point on rectangle i and j, respectively. The minimal
distance dij between i and j is:
dij ¼ min
ffi
ðxi � xjÞ2 þ ðyi � yjÞ

2
q� �

ð1Þ
In Fig. 3, R3 is packed on the position occupying the corner formed by the upper side and the right side of
the container. As shown in Fig. 3, the minimal distance between R3 and R1, and the minimal distance between
R3 and R2 are illustrated, respectively.

Definition (Degree of CCOA). Let M be the set of rectangles already placed in the container. Rectangle i is the
current rectangle to be packed, (i, x, y, h) is one of the CCOAs for rectangle i. If corner-occupying action (i, x,
y, h) places rectangle i at a corner formed by two items (rectangle or side of the container) u and v, the degree k
of the corner-occupying action (i, x, y, h) is defined as:
k ¼ 1� dmin r
wi þ li

2

�� �
ð2Þ
where wi and li are the width and the length of rectangle i, and dmin is the minimal distance from rectangle i to
other rectangles in M and sides of the container (excluding u and v), that is,
Fig. 3. Illustration of distance.

M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136 127
dmin ¼ min dijjj 2 M [fs1; s2; s3; s4g; j 6¼ u; v
� 	

ð3Þ
where s1, s2, s3 and s4 are the four sides of the container.
It is clear that if a corner-occupying action places rectangle i at a position very close to the previously

packed rectangles, the corresponding degree will be very high. Note that, if rectangle i can be packed by a
CCOA at a corner in the container and touches more than two items, then dmin = 0 and k = 1; otherwise
k < 1. The degree of a corner-occupying action describes how the placed rectangle is close to the already exist-
ing pattern. Thus, we use it as the benefit of a packing step.

Intuitively, since one should place a rectangle as close as possible to the already existing pattern, it seems
quite natural that the CCOA with the highest degree will be selected first to pack the rectangle into the con-
tainer. We call this principle the highest degree first (HDF) rule.
3.2. The first level algorithm: A0

Based on the HDF rule, our basic greedy packing algorithm called A0 can be obtained directly. Algorithm
A0 is described as follows:

Procedure A0 (C, L)
Begin
While(L is not empty)
For each CCOA in L

Calculate the degree;
Select the CCOA (i, x, y, h) with the highest degree;
Modify C by placing rectangle i at (x, y) with orientation h;
Modify L according to the new configuration C;

Return C;
End.

At each iteration, a set of CCOAs for each of the unpacked rectangles is generated under current
configuration C. Then the CCOAs for all the unpacked rectangles outside the container are gathered
as a list L. A0 calculates the degree of each CCOA in L and selects the CCOA (i, x, y, h) with the
highest degree k, and place rectangle i at (x, y) with orientation h. After placing rectangle i, the list
L is modified as follows:

(1) Remove all the CCOAs involving rectangle i;
(2) Remove all infeasible CCOAs. A CCOA becomes infeasible because the involved rectangle would over-

lap rectangle i if it was placed;
(3) Re-calculate the degree k of the remaining CCOAs;
(4) If a rectangle outside the container can be placed inside the container without overlap so that it touches

rectangle i and a rectangle inside the container or the side of the container, create a new CCOA and put
it into L, and compute the degree k of the new CCOA.

If none of the rectangles outside the container can be packed into the container without overlap (L is
empty) at certain iteration, A0 stops with failure (returns a failure configuration). If all rectangles are packed
in the container without overlap, A0 stops with success (returns a successful configuration).

It should be pointed out that if there are several CCOAs with the same highest degree, we will select one
that packs the corresponding rectangle closest to the bottom left corner of the container. For example, if
CCOA1 (i1, x1, y1, h1) and CCOA2 (i2, x2, y2, h2) are of the same highest degree, we will select CCOA1 if
(x1 * x1 + y1 * y1) < (x2 * x2 + y2 * y2). If there is still a tie, i.e., (x1 * x1 + y1 * y1) = (x2 * x2 + y2 * y2), we will
select CCOA1 if CCOA1 is before CCOA2 in list L.

A0 is a fast algorithm. However, given a configuration, A0 only considers the relation between the rectangles
already inside the container and the rectangle to be packed. It does not examine the relation between the

128 M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136
rectangles outside the container. In order to more globally evaluate the benefit of a CCOA and to overcome
the limit of A0, we compute the benefit of a CCOA using A0 itself in the procedure BenefitA1 to obtain our
main packing algorithm called A1.

3.3. The second level algorithm: A1

Based on current configuration C, CCOAs for all unpacked rectangles are gathered as a list L. For
each CCOA (i, x, y, h) in L, the procedure BenefitA1 is designed to evaluate its benefit more
globally.

Procedure BenefitA1 (i, x, y, h, C, L)
Begin
Let C 0 and L 0 be copies of C and L;
Modify C 0 by placing rectangle i at (x, y) with orientation h, and modify L 0;
C 0 = A0 (C 0, L 0);
If (C 0 is a successful configuration)
Return C 0;

Else

Return density (C 0);
End.

Given a copy C 0 of the current configuration C and a CCOA (i, x, y, h) in L, BenefitA1 begins by
packing rectangle i in the container at (x, y) with orientation h and call A0 to reach a final config-
uration. If A0 stops with success then BenefitA1 returns a successful configuration, otherwise BenefitA1

returns the density (the ratio of the total area of the rectangles inside the container to the area of the
container) of a failure configuration as the benefit of the CCOA (i, x, y, h). In this manner, BenefitA1

evaluates all existing CCOAs in L.
Now, using the procedure BenefitA1, the benefit of a CCOA is measured by the density of a failure config-

uration. The main algorithm A1 is presented as follow:

Procedure A1 ()
Begin
Generate the initial configuration C;
Generate the initial CCOA list L;
While (L is not empty)

maximum benefit 0
For each CCOA (i, x, y, h) in L

d = BenefitA1 (i, x, y, h, C, L);
If (d is a successful configuration)

Stop with success;

Else

Update the maximum benefit with d;
Select the CCOA (i*, x*, y*, h*) with the maximum benefit;
Modify C by placing rectangle i* at (x*, y*) with orientation h*;
Modify L according to the new configuration C;

Stop with failure
End.

Similarly, A1 selects the CCOA with the maximum benefit and packs the corresponding rectangle
into the container by this CCOA at each iteration. If there are several CCOAs with the maximum
benefit, we select one that packs the corresponding rectangle closest to the bottom left corner of
the container.

M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136 129
3.4. Computational complexity

We analyze the complexity of A1 in the worst case, that is, when it cannot find a successful configuration,
and discuss the real computational cost to find a successful configuration.

A0 is clearly polynomial. Since every pair of rectangles or sides in the container can give a possible CCOA
for a rectangle outside the container, the length of L is bounded by O(m2(n � m)), if m rectangles are already
placed in the container. For each CCOA in L, dmin is calculated using the dmin in the last iteration in O(1) time.
The creation of new CCOAs and the calculation of their degree is also bounded by O(m2(n � m)) since there
are at most O(m(n � m)) new CCOAs (a rectangle might form a corner position with each rectangle in the
container and each side of the container). So the time complexity of A0 is bounded by O(n4).

A1 uses a powerful search strategy in which the consequence of each CCOA is evaluated by applying Benef-

itA1 in full, which allows us to examine the relation between all rectangles (inside and outside the container).
Note that the benefit of a CCOA is measured by the density of a final configuration, which means that we
should apply BenefitA1 though to the end each time. At every iteration of A1, BenefitA1 uses a O(n4) procedure
to evaluate all O(m2(n � m)) CCOAs, therefore, the complexity of A1 is bounded by O(n8).

It should be pointed out that the above upper bounds of the time complexity of A0 and A1 are just rough
estimations, because most corner positions are infeasible to place any rectangle outside the container, and the
real number of CCOAs in a configuration is thus much smaller than the theoretical upper bound
O(m2(n � m)).

The real computational cost of A0 and A1 to find a successful configuration is much smaller than the above
upper bound. When a successful configuration is found, BenefitA1 does not continue to try other CCOAs, nor
A1 to exhaust the search space. In fact, every call to A0 in BenefitA1 may lead to a successful configuration and
then stops the execution at once. Then, the real computational cost of A1 essentially depends on the real num-
ber of CCOAs in a configuration and the distribution of successful configurations. If the container height is
not close to the optimal one, there exists many successful configurations, and A1 can quickly find one. How-
ever, if the container height is very close to the optimal one, few successful configurations exist in the search
space, and then A1 may need to spend more time to find a successful configuration in this case.

4. Computational results

4.1. Computational results on rectangle packing problems

The first set of tests is done using the Hopper and Turton instances Hopper and Turton, 2001. There
are 21 different sized test instances ranging from 16 to 197 items, and the optimal packing solutions of
these test instances are all known (see Table 1). We implemented A1 in C on a 2.4 GHz PC with
512 MB memory.

In order to find the minimal height, the experiments started with the height of the container set to be the
optimal height. If A1 could not find a successful configuration, the height of the container is increased by one
unit at a time and the experiments are repeated until a successful configuration is obtained. As shown in Table
1, A1 generates optimal solutions for 8 of the 21 instances; for the remaining 13 instances, the optimum is
missed in each case by a single length unit.

To evaluate the performance of the algorithm, we compare A1 with two of the best meta-heuristic
(GA + BLF and SA + BLF) in Hopper and Turton (2001), HR Zhang et al. (2006), LFFT Wu et al.
(2005) and SPGAL Bortfeldt (2006). In comparing different algorithms for solving rectangle packing prob-
lems, quality of solution and speed are the two most important measures of their performance. The quality
of a solution is measured by the percentage gap, i.e., the relative distance of the solution lU to the optimum
length lOpt. The gap is computed as (lU � lOpt)/lOpt. The indicated gaps for the seven classes are averaged
over the respective three instances. As shown in Table 2, the gaps of A1 ranges form 0.0% to 1.64% with the
average gap 0.72, whereas the average gap of the two meta-heuristics and HR are 4.6%, 4.0% and 3.97%,
respectively. Obviously, A1 considerably outperforms these algorithms in terms of packing density. Compared
with two other methods, the average gap of A1 is lower than that of LFFT, however, the average gap of A1 is
slightly higher than that of SPGAL.

Table 1
Computational results of our algorithm for the test instances from Hopper and Turton instances Hopper and Turton, 2001

Test instance class/
subclass

No. of pieces Object
dimensions

Optimal
height

Minimum
height by A1

% of unpacked
area

CPU
time (s)

C1 C11 16 20 · 20 20 20 0.00 0.37
C12 17 20 · 20 20 20 0.00 0.50
C13 16 20 · 20 20 20 0.00 0.23

C2 C21 25 15 · 40 15 15 0.00 0.59
C22 25 15 · 40 15 15 0.00 0.44
C23 25 15 · 40 15 15 0.00 0.79

C3 C31 28 30 · 60 30 30 0.00 3.67
C32 29 30 · 60 30 30 0.00 1.44
C33 28 30 · 60 30 31 3.23 0.03

C4 C41 49 60 · 60 60 61 1.64 0.22
C42 49 60 · 60 60 61 1.64 0.13
C43 49 60 · 60 60 61 1.64 0.11

C5 C51 73 90 · 60 90 91 1.09 0.34
C52 73 90 · 60 90 91 1.09 0.33
C53 73 90 · 60 90 91 1.09 0.52

C6 C61 97 120 · 80 120 121 0.83 8.73
C62 97 120 · 80 120 121 0.83 0.73
C63 97 120 · 80 120 121 0.83 2.49

C7 C71 196 240 · 160 240 241 0.41 51.73
C72 197 240 · 160 240 241 0.41 37.53
C73 196 240 · 160 240 241 0.41 45.81

Table 2
The gaps (%) and the running time (seconds) for meta-heuristics, HR, LFFT, SPGAL and A1

Class GA + BLFa SA + BLFa HRb LFFTc SPGALd A1
e

Gap Time Gap Time Gap Time Gap Time Gap Time (s) Gap Time

C1 4.0 60 4.0 42 8.33 0 0.0 1 1.7 – 0.00 0.37
C2 7.0 120 6.0 144 4.45 0 0.0 1 0.0 – 0.00 0.61
C3 5.0 180 5.0 240 6.67 0.03 1.0 2 2.2 – 1.07 1.71
C4 3.0 780 3.0 1980 2.22 0.14 2.0 15 0.0 – 1.64 0.15
C5 4.0 2160 3.0 6900 1.85 0.69 1.0 31 0.0 – 1.09 0.40
C6 4.0 5160 3.0 22,920 2.5 2.21 1.0 92 0.3 – 0.83 3.98
C7 5.0 46,620 4.0 250,800 1.8 36.07 1.0 2150 0.3 – 0.41 45.02

Average gap (%) 4.6 4.0 3.97 0.86 0.64 0.72

a PC with a Pentium Pro 200 MHz processor and 65 MB memory (Hopper and Turton, 2001).
b Dell GX260 with a 2.4 GHz CPU (Zhang et al., 2006).
c PC with a Pentium 4 1.8 GHz processor and 256 MB memory (Wu et al., 2005).
d The machine is 2 GHz Pentium (Bortfeldt, 2006).
e 2.4 GHz PC with 512 MB memory.

130 M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136
In order to compare the speed of the algorithms as fairly as possible, we first consulted the SPEC web page
(http://www.specbench.org) for the speed of related CPUs, then we converted the running time of the algorithms
according to the relative speed of their CPUs. The machines for the five algorithms are listed in Table 2. Our PC
with a 2.4 GHz CPU is about 13 times faster than PC with a Pentium Pro 200 MHz CPU for the two meta-heu-
ristics (GA + BLF, SA + BLF), therefore, we can convert the running time of the two meta-heuristics by dividing
by 13. After converting all running times of the other four algorithms based on the relative speed of the CPUs, we
can have a fair comparison of the speed. Obviously, the speed of A1 is faster than that of GA + BLF, SA + BLF
and LFFT. HR is a fast algorithm, whose time complexity is only O(n3) Zhang et al., 2006. For each class of
instance, Table 2 shows that the average running time of A1 is very similar to that of HR. Note that HR was tested

http://www.specbench.org

Fig. 4. Packing result of C31.

Fig. 5. Packing result of C42.

M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136 131
on Dell GX260 with a 2.4 GHz CPU, while A1 was tested on a PC with 2.4 GHz CPU too. Unfortunately, the
running time of each instance for SPGAL is not reported in the literature.

Table 2 shows that the running time of A1 does not consistently correlate with its theoretical time complex-
ity. For example, the average time of C3 is 1.71 s, while the average time of C4 and C5 are both within 0.5 s.
As pointed out in the time complexity analysis, once A0 finds a successful solution, the calculation of A1 will
terminate. Actually, the average time complexity is much smaller than the theoretical upper bound.

In addition, we give the packing results on test instances C31, C42 and C73 for A1 in Figs. 4–6. Here, the
packing result of C31 is of optimal height, and the heights for C42 and C73 are only one length unit higher
than the optimal height, respectively.

4.2. Computational results on VLSI benchmark problems

To examine the efficiency of the proposed algorithm, we also apply A1 to the MCNC benchmarks (apte,
xerox, hp, ami33, ami49) and GSRC benchmarks (n100, n100b, n200, n200b, n300) Chan and Markov,

Fig. 6. Packing result of C73.

132 M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136
2004. These two sets of benchmarks were developed specially for building block layout (BBL) design and have
been widely used for floorplanning and placement algorithm testing.

In our experiment, we consider the packed blocks as rigid rectangles whose shapes are not changeable. The
goal is to find the minimum bounding rectangular container to pack in all the rectangles. The experiments
started with the bounding square set to be the value close to the total area of the rectangles to be packed.
If A1 cannot produce a successful solution, we continue our experiments with the height or width of the con-
tainer increased by one length unit at a time. The experiments were repeated until a successful solution was
obtained.

The experimental results are presented in Table 3, compared with the results of BLOBB Chan and Markov
(2004) and LFFT Wu et al. (2005). Based on multi-level branch-and-bound, BloBB is competitive with anneal-
ing-based algorithms in terms of runtime and solution quality.

It can be noted that A1 can obtain results with area usage over 98% for all the test instances except for
instance xerox, with the average packing density over 98.5%. For the five GSRC benchmarks with large
size, the area usage is 98.57%, 98.45%, 98.64%, 98.65% and 98.75%, respectively. Obviously, compared with
BloBB and LFFT, A1 achieves higher area usage for most cases (only lower for instance n100 than LFFT).
After considering the difference of the computational environment, the speeds of the three algorithms are
similar.

Table 3
Packing results for MCNC and GSRC problem instances

Test case No. of pieces BloBBa LFFT A1

Area Density (%) Time (s) Area Density (%) Time (s) Area Density (%) Time (s)

apte 9 47.30 98.44 0.04 – – – 46.92 99.23 0.01
xerox 10 20.31 95.27 0.08 – – – 19.81 97.69 0.01
hp 11 9.26 95.37 0.03 – – – 8.95 98.67 0.02
ami33 33 1.25 92.52 1.73 1.177 98.26 10 1.17 98.63 2.01
ami49 49 38.18 92.84 3.01 36.24 97.81 77 36.07 98.26 56.61
n100 100 192,234 93.38 5.62 179,776 99.84 1 182,104 98.57 8.22
n100b 100 175,263 91.36 34.7 – – – 162,328 98.45 6.16
n200 200 191,040 93.96 7.09 183,184 95.91 6 178,120 98.64 9.70
n200b 200 187,824 92.96 13.34 – – – 176,985 98.65 4.78
n300 300 297,018 91.97 11.04 283,024 96.52 17 276,640 98.75 37.23

Average packing density (%) 93.81 97.51 98.55

a Best result from 10 runs, and the machine is a 1.2 GHz Linux Athlon workstation.

M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136 133
Figs. 7 and 8 illustrate the packing results of ami33 and ami49, and the area usage is 98.72% and 98.26%,
respectively. Figs. 9 and 10 illustrate the packing a result of the two large GSRC benchmarks, n200 and n300,
and the area usage is 98.64% and 98.75%, respectively.
5. Conclusions

Two-dimensional rectangle packing problems have applications in many industries and have been studied
extensively. Many pure meta-heuristic algorithms (GA, SA, etc.) and mixed meta-heuristic algorithms
(GA + SA, GA + BLF, etc.) have been proposed in past decades. Although some of them can obtain good
results for test instances with small to medium size, they might not be practical for large problems since
the running time is rather long.

A two-level search algorithm for the two-dimensional packing problem is presented in this paper. This
algorithm is simple and intuitive, and the computational results have shown that our proposed algorithm
Fig. 7. Packing result of ami33.

Fig. 8. Packing result of ami49.

Fig. 9. Packing result of n200.

134 M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136
is quite effective: In Hopper and Turton stock cutting problems, our algorithm achieved over 99% average
packing density in short running time, which is significantly better than the 96% packing density obtained
by the known meta-heuristic algorithms; whereas in rectangle packing applying the well-known MCNC
and GSRC benchmarks, we achieved much better packing density (over 98.5%) than two other effective
algorithms and their running speeds are comparable. The encouraging results seem to be suggesting that
our algorithm may be of great practical value to the rational layout of the rectangular objects in industrial
fields.

Fig. 10. Packing result of n300.

M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136 135
Acknowledgements

The authors to thank the referees for their helpful comments and suggestions that help to improve this pa-
per. This work is supported by the National Grand Fundamental Research 973 Program of China (No.
2004CB318000) and the National Natural Science Foundation of China (No. 10471051).

References

Baker, B. S., Coffman, E. G., Jr., & Rivest, R. L. (1980). Orthogonal packing in two dimensions. SIAM Journal on Computing, 9, 846–855.
Bortfeldt, A. (2006). A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. European Journal of

Operational Research, 172, 814–837.
Chan, H. H., Markov, I. L. Practical slicing and non-slicing block-packing without simulated annealing. In: Proceedings of the great lakes

symposium on VLSI (GLSVLSI), 2004, pp. 282–287.
Dagli, C. H., & Poshyanonda, P. (1997). New approaches to nesting rectangular patterns. Journal of Intelligent Manufacturing, 8, 177–190.
Hifi, M., & Ouafi, R. (1998). A best-first branch-and-bound algorithm for orthogonal rectangular packing problems. International

Transactions on Operational Research, 5(5), 345–356.
Hochbaum, D. S., & Maass, W. (1985). Approximation schemes for covering and packing problems in image processing and VLSI.

Journal of the Association for Computing Machinery, 32(1), 130–136.
Hopper, E., & Turton, B. (2001). An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem.

European Journal of Operational Research, 128, 34–57.
Huang, W. Q., Li, Y., Akeb, H., & Li, C. M. (2005). Greedy algorithms for packing unequal circles into a rectangular container. Journal of

the Operational Research Society, 56, 539–548.
Jakobs, S. (1996). On genetic algorithms for the packing of polygons. European Journal of Operational Research, 88, 165–181.
Lee, H. F., & Sewell, E. C. (1999). The strip-packing problem for a boat manufacturing firm. IIE Transactions, 31, 639–651.
Lesh, N., Marks, J., Mcmahon, A., et al. (2004). Exhaustive approaches to 2D rectangular perfect packing. Information Processing

Letters, 90, 7–14.
Liu, D., & Teng, H. (1999). An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles. European Journal of

Operational Research, 112, 413–419.
Lodi, A., Martello, S., & Monaci, M. (2002). Two-dimensional packing problems: A survey. European Journal of Operational Research,

141, 241–252.
Tam, Y. O., Wu, Y. L., Huang, W. Q., Wong, C. K. An effective quasi-human based heuristic for solving rectangle packing problems, In:

Proceedings of IEEE APCCAS: Microelectronics and integration system, Thailand, 1998, pp. 137–140.

136 M. Chen, W. Huang / Computers & Industrial Engineering 53 (2007) 123–136
Wu, Y. L., Chan, C. K. On improved least flexibility first heuristics superior for packing and stock cutting problems. In: Proceedings for
stochastic algorithms: foundations and applications, SAGA 2005, Moscow, 2005, pp. 70–81.

Wu, Y. L., Huang, W. Q., Lau, S. C., et al. (2002). An effective quasi-human based heuristic for solving the rectangle packing problem.
European Journal of Operational Research, 141, 341–358.

Zhang, D. F., Kang, Y., & Deng, A. S. (2006). A new heuristic recursive algorithm for the strip rectangular packing problem. Computers &

Operational Research, 33, 2209–2217.

	A two-level search algorithm for 2D rectangular packing problem
	Introduction
	Problem definition
	Proposed algorithm
	Corner-occupying action and degree
	The first level algorithm: A0
	The second level algorithm: A1
	Computational complexity

	Computational results
	Computational results on rectangle packing problems
	Computational results on VLSI benchmark problems

	Conclusions
	Acknowledgements
	References

