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In this paper, a simulation optimization method for scheduling loading operations in container terminals
is developed. The method integrates the intelligent decision mechanism of optimization algorithm and
evaluation function of simulation model, its procedures are: initializing container sequence according
to certain dispatching rule, then improving the sequence through genetic algorithm, using simulation
model to evaluate objective function of a given scheduling scheme. Meanwhile, a surrogate model based
on neural network is designed to predict objective function and filter out potentially bad solutions, thus
to decrease the times of running simulation model. Numerical tests show that simulation optimization
method can solve the scheduling problem of container terminals efficiently. And the surrogate model can
improve the computation efficiency of simulation optimization.
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1. Introduction

With the rapid development of container transport, container
terminals have become the important nodes of transport network,
which serve as hubs for the transshipment of containerized goods
from ship to ship or from ship to other transport modes. As the con-
tainer transport system is capital intensive, the turnaround time of
ships at container terminals is an important factor for liner ship-
ping companies to decrease their cost. The turnaround time includes
berthing, unloading, loading and departure, therefore, the reason-
able scheduling of loading and unloading operations is critical to the
efficiency of container transport system. In addition, the rising com-
petition among ports has compelled them to improve their service,
which makes the efficiency of port operation an important factor to
succeed in the fierce competition.

For most container terminals, there are mainly three types of
equipments involved in the loading and unloading, i.e., quay cranes
(QCs), yard trailers (YTs) and yard cranes (YCs). Upon a ship's arrival,
QCs unload containers from or load containers onto the ship, and
YTs move containers from quayside to storage yard and vice versa.
At the storage yard, YCs perform the loading and unloading for YTs.

Scheduling the operation order of QCs, dispatching YTs to con-
tainers, allocating the optimal storage location for each container,
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and dispatching YCs to YTs in storage yard aremajor problems for the
optimization of loading or unloading process in the container termi-
nals. These problems are interrelated, and the efficiency of container
terminal operations depends on the coordination of different types
of equipments. However, most of the existing researches mainly
focus on a special sub-process. In addition, operation of con-
tainer terminal has the feature of uncertainty, multi-objectives and
complexity, therefore, the optimization of the operation is too
complex to be solved by mathematical programming model alone.

This paper will develop a simulation optimization method to
schedule loading or unloading containers in container terminals. The
optimization algorithm is used to search the solution space; and
the simulation model is used to evaluate the solutions generated by
the optimization module. Thus the intelligent decision mechanism
of optimization algorithm and the evaluation function of simulation
method are integrated.

This paper is organized as follows. In Section 2, a brief review
of previous works is given. An optimization model based on hybrid
flow shop problem is formulated in Section 3. The framework and
procedure of simulation optimizationmethod is developed in Section
4. A procedure for calculating makespan lower bounds is developed
in Section 5. Numerical examples are used to test the performance
of the proposed method in Section 6. And conclusions are given in
Section 7.

2. Literature review

Issues related to container terminal operations have gained
attention and have been extensively studied recently due to the
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increased importance of marine transport systems. Here, we provide
a brief review of existing studies related to the operation scheduling
problem in container terminals.

The first kind of studies are mathematical programming mod-
els, researchers developed optimization models and algorithms for
different sub-processes of the container terminal operation system,
such as QCs scheduling, YCs allocation and scheduling model, stor-
age optimization, and YTs routing model, etc.

QCs are the main bottleneck of the efficiency of the container ter-
minals, and their operation plan determines the turnaround time of a
ship in the terminals. Daganzo [1], suggested an algorithm for deter-
mining the number of QCs assigned to ship-bays of multiple vessels.
Kim [2] developed a mixed-integer programming model considering
various constraints related to the operation of QCs, and proposed
a heuristic search algorithm to solve the problem. Lee et al. [3,4]
provided a mixed integer programming model for the considered
QC scheduling problem, and developed a genetic-based algorithm
to solve the model Goodchild and Daganzo [5] studied the double
cycling method of QCs, and the performance of the double cycling
method was evaluated.

Yard vehicles are used to transfer containers between the quay
and the yard. Most of studies about routing problem in container ter-
minals are focused on automated guided vehicle (AGV) and straddle
carrier. Evers and Koppers [6] developed a hierarchical AGV control
system by using semaphores. Liu and Ioannou [7] compared differ-
ent AGV dispatching rules in container terminals. Vis [8] develop a
heuristic based on themaximum flow problem to determine the fleet
size of AGVs. Kim et al. [9,10] developed models and algorithms to
optimize the routing of straddle carrier. Considering YTs, Nishimura
et al. [11] proposed dynamic routing trailer assignment method, and
developed a heuristic algorithm to solve the problem.

The scheduling of YCs determines the terminal efficiency to
a great extent. Research focused on scheduling of YCs has been
conducted widely. Zhang et al. [12] formulated the dynamic crane
deployment problem as a mixed integer programming model and
solved it by Lagrangean relaxation. Linna et al. [13] proposed an
algorithm and a mathematical model for the optimal YC deploy-
ment problem. Kim et al. [14] developed a dynamic programming
model to optimize the receiving and delivery operations of outside
trucks, and derived the decision rule by learning-based method. Ng
[15] examined the problem of scheduling multiple YCs to perform
a given set of jobs with different ready times in a yard zone with
only one bi-directional traveling lane.

The operations in terminals have the features of multi-objectives,
uncertainty and complexity. Most of the existing researches focus
on a special sub-process. Very little of the existing literature focuses
on the integrated scheduling problem of various types of handling
equipment used in container terminals. Bish [16] provided models
and algorithms to integrate several sub-processes; the problem is (1)
to determine a storage location for each unloaded container, (2) to
dispatch vehicles to containers, and (3) to schedule the loading and
unloading operations on the cranes, so as to minimize the maximum
time it takes to serve a given set of ships. Chen et al. [17] proposed an
integrated model to schedule different equipments in container ter-
minals, and tabu search algorithm was designed to solve the model.
These models and algorithms improve the coordination and integra-
tion of the operation scheduling in container terminals. However,
how to tackle the complex constraints and interrelation, how to
improve the computation efficiency, and how to realize coordination
among different sub-processes are the problems that have not been
solved well.

The scheduling problem of container terminals involves numer-
ous variables and constraints. Therefore, when tackling complexion
of model and computation, especially, considering the uncertain and
stochastic factors, analytic models often confront either the problem

that model is too simplify, or the problem that the computation is too
complex. Therefore, simulation is wildly used in scheduling problem
of container terminals recently.

Shabayek and Yeung [18] developed an application of a simu-
lation model using Witness software to simulate Kwai Chung con-
tainer terminals. Won et al. [19] proposed a simulation model for
container terminal system analysis. The simulation model was de-
veloped using an object-oriented approach, and using SIMPLE + +,
object-oriented simulation software. Maurizio et al. [20] outlined a
container terminal simulation model and gave component architec-
ture that was implemented with Java.

Simulation model can be used to evaluate the scheduling scheme;
however, as a test and validation tool, it can only evaluate a given de-
sign, not provide more assistant decision making function. Recently,
simulation optimization method is proposed to overcome these lim-
itations, e.g., April et al. [21], Allaoui and Artiba [22], Guo et al.
[23], Julian [24]. Combining the simulation analysis and the optimal
decision-making mechanism, the simulation optimization method
cannot only enhance intelligent decision making of the simulation,
but also build the complex system model easily that is more diffi-
cult by traditional optimization methods. In this paper, simulation
optimization method for scheduling problem in container terminals
is proposed. Meanwhile, methods to improve the computation effi-
ciency of simulation optimization are designed.

3. Integrating scheduling model for containers terminals

In this section, an integrating model is developed in order to (1)
coordinate the scheduling of various types of equipments simulta-
neously to achieve a high level integrated optimization and (2) mini-
mize the makespan or time being taken to load or unload a given set
of outbound containers. Firstly, we make a brief description of the
hybrid flow shop scheduling (HFSS) problem; then the scheduling
model for loading outbound containers is formulated based on HFSS.

3.1. Hybrid flow shop scheduling problem

The HFSS problem can be stated as follows. Consider a set J =
{1, 2, . . . ,n} of n jobs, each is to be processed in S consecutive stages.
Stage s has a set of M(s) identical machines, with ms = |M(s)|, s =
1, 2, . . . , S. In each stage s, there arems�1 parallel identical machines,
with ms�2 for at least one stage, s = 1, 2, . . . , S.

Let pis be the processing time of job i at stage s. Each machine
can process only one job once. Since all machines at each stage are
identical and preemptions are not allowed, to define a schedule, it
suffices to specify the completion times for all tasks. Let Cis be the
ending time of the sth stage of job i. Therefore, the HFSS is to find
a schedule to minimize the maximum completion time Cmax, with
Cmax = maxCis.

The HFSS has recently received attention because of its impor-
tance from both theoretical and practical point of views. Lin and Liao
[25] presented a case study in a two-stage hybrid flow shop with
sequence-dependent setup time and dedicated machines. Kurz and
Askin [26] explored three kinds of heuristics for flexible flow lines
with sequence-dependent setup times. Jin et al. [27] discussed the
three stages of HFSS; and proposed two metaheuristic algorithms
first sequence and then allocate jobs to machines based on a particu-
lar partition of the shop. Chen [17] developed an integrated model to
schedule different equipments in container terminals based on HFSS.
In his model, the loading and unloading operations are considered si-
multaneously. However, at present, most of the container terminals
used the method “scheduling loading and unloading, respectively”.
In this method, when a ship berths terminal, loading is processed
when all the unloading operation is finished. If loading and unload-
ing operations are processed simultaneously in the same ship bay, it
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is denoted “crane double cycling problem” (Goodchild and Daganzo
[5]). The scheduling model for “crane double cycling problem” is dif-
ferent from models for current “scheduling loading and unloading
simultaneously” problem. And the “crane double cycling” method is
only in experiment. The model developed by Chen is for “scheduling
loading and unloading, respectively” problem, and it is difficult to
be used to realize loading and unloading simultaneously in present
scheduling practice.

The objective of our paper is to develop a new method (simula-
tion optimization method) to obtain the optimal scheme for opera-
tion scheduling in container terminals. And considering the loading
operation or unloading operations, respectively, is in accord with
present scheduling practice. Although we focus on the loading oper-
ation; the proposed method can also be used to unloading operation.
And further study is to use the proposed method to “crane double
cycling problem” which considers loading and unloading operations.

3.2. Scheduling problem for loading outbound containers

Container terminal operations can be divided into two parts: load-
ing outbound containers and unloading inbound ones. E.g., the pro-
cess of loading outbound containers involves three stages: YCs pick
up the desired containers from yard blocks and load them onto the
yard trailers, then YTs transport the containers to QCs, finally the
QCs load the containers onto the vessels.

The loading process in container terminals is similar to HFSS prob-
lem. For loading outbound containers, each container must undergo
three handling operations: a transfer operation within storage yard,
a transfer operation of a container onto the ship and a transfer op-
eration between QCs and YCs. And there are three different sets of
machines: QCs, YCs and YTs. Thus, a job can be defined as a complete
loading process for a container. While, comparing with the classi-
cal HFSS problem, our problem has several unique characteristics as
follows.

3.2.1. Job precedence constraints
E.g. for loading, containers in the hold must precede the contain-

ers on the deck of the same vessel.

3.2.2. Blocking
There is limited or no buffer between two successive machines,

therefore, blocking happens when the buffer is full. E.g. when the YT
carries a container to a QC that is handling another container, the
YT has to wait for the QC.

3.2.3. Setup times
In container terminals, there is empty movement when a crane

or YT moves between two jobs. For example, once a YT carries an
outbound container to a QC, it has to make an empty trip to the
storage yard in order to proceed next container. We denote it as
setup time.

Based on above analysis, the scheduling problem for loading
outbound containers can be formulated as HFSS problem. The
objective is (1) to assign each operation to a machine and (2) to
sequence the assigned operations on each machine, thus to mini-
mize the makespan of the loading operations.

3.3. Model formulation

In order to formulate the scheduling problem for loading contain-
ers, the following parameters and decision variables are defined:

Problem parameters:

N the set of all containers (jobs)
n the number of containers

i, j container index
s stage index, s = 1, 2, 3
m machine index
ms the number of machines at stage s
Mis the set of machines to process container i at stage s
Em the set of containers that might be processed on machine

m
B the set of pairs of containers between which there is prece-

dence relationship, when container imust precedence con-
tainer j

pis processing time of container i at stage s
wijs setup time between container i and j at stage s
G a sufficiently large constant

Decision variables:
xism=1, if operation of container i at stage s is assigned tomachine
m; 0, otherwise;
yijsm = 1, if operation of container i and j at stage s are assigned
to the same machine m; 0, otherwise;
zijsm = 1, if operation of container i immediately precedes j on
machine m at stage s;
tis is the starting time of container i at stage s;
Cmax is the completion time of the last container.

The scheduling model can be formulated as follows:

Min Cmax = max
i,s

(tis + pis) (1)

s.t.
∑

m∈Mis

xism = 1, ∀i ∈ N, ∀s ∈ {1, 2, 3} (2)

tis�0, ∀i ∈ N, ∀s ∈ {1, 2, 3} (3)

tis + pis� ti(s+1), ∀i ∈ N, ∀s ∈ {1, 2, 3} (4)

yijsm = yjism, ∀i, j ∈ Em, ∀s ∈ {1, 2, 3}, ∀m ∈ Mis (5)

yijsm�0.5(xism + xjsm)�yijsm + 0.5, ∀i, j ∈ Em,

∀s ∈ {1, 2, 3}, ∀m ∈ Mij (6)
∑

j∈Em
zijsm�1, ∀i ∈ Em, ∀s ∈ {1, 2, 3}, ∀m ∈ Mis (7)

∑

j∈Em
zjism�1, ∀i ∈ Em, ∀s ∈ {1, 2, 3}, ∀m ∈ Mis (8)

zijsm + zjism�1, ∀i, j ∈ Em, ∀s ∈ {1, 2, 3}, ∀m ∈ Mis (9)

xism − 0.5�0.5(zijsm + zjism)�xism, ∀i, j ∈ Em,

∀s ∈ {1, 2, 3}, ∀m ∈ Mis (10)

ti(s+1) + wijs� tjs + H(1 − zijsm), ∀i, j ∈ Em, ∀s ∈ {1, 2, 3},
∀m ∈ Mis (11)

tis� tjs, ∀i, j ∈ B, ∀s ∈ {1, 2, 3} (12)

xism, yijsm, zijsm=0 or 1, ∀i, j∈N, ∀s∈{1, 2, 3}, ∀m ∈ Mis (13)

The objective function (1) is to minimize the makespan. Con-
straints (2) guarantee that each operation must be processed by ex-
actly one machine. Constraints (3) ensure that each operation begins
after time zero. Constraints (4) ensure that the order of operation
for each container is respected. Constraints (5) and (6) ensure that
yijsm = yjism = 1 when xism = xjsm = 1. Constraints (7) and (8) en-
sure that each operation has at most one predecessor and succes-
sor on machine m. Constraints (9) ensure that zijsm and zjism cannot
equal to 1 simultaneously. Constraints (10) ensure that xism=1 when
zijsm + zjism = 1. Constraints (11) determine the starting time of the
operation and define the blocking constraints. Constraints (12) de-
termine the set of pairs of jobs between which there is precedence
relationship. Constraints (13) are binary constraints.

It is well known that the HFSS problem is NP-hard, thus, schedul-
ing problem for loading or unloading containers is also NP-hard. It is
doomed unable to obtain optimal solutions for large-scale problems.
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Hence, heuristic algorithms are wildly used to obtain near-optimal
solutions efficiently. However, because of the numerous constraints,
it is difficult to evaluate a scheduling scheme in the process of heuris-
tic algorithms. In addition, because of the blocking factor, it is es-
sential to calculate the waiting and delay time for QCs, YTs and YCs,
which is time consuming.

Meanwhile, although many constraints are considered in above
scheduling model, it is too complex to model all the constraints
analytically. Also uncertainty is difficult to tackle by analytical model
alone. Therefore, this paper handled these problems through the
integration of simulation and optimization.

4. Simulation optimization

4.1. Framework of simulation optimization

Many complex systems such as manufacturing, supply chain, and
container terminals are too complex to be modeled analytically. Dis-
crete event simulation has been a useful tool for evaluating the per-
formance of such systems. However, simulation can only evaluate a
given design, not provide more optimization function. Therefore, the
integration of simulation and optimization is needed. Simulation op-
timization is the process of finding the best values of some decision
variables for a system where the performance is evaluated based on
the output of a simulation model of this system (Olafsson [28]).

As shown in Fig. 1, the simulation optimization for schedul-
ing loading containers consists of two relative unattached modules,
namely, optimization module and simulation module. This integrat-
ing method realizes the separation of optimization algorithm from
model, which cannot only improve the universalization of optimiza-
tion algorithm, but also help for the software integration.

When the loading operations need to be optimized, simulation
module must be built first, and then the optimization module is
created to optimize the parameters of simulation module. The setup
of input and output variables, such as initial solution, constraints of

Initialization operation order 

Optimization algorithm

Input variables
and parameters 

Run
simulation

Output evaluation 
results

Simulation module

Better than 
last time?

Output current 
best solution 

Y

N

Stop criterion 
satisfied ?

Output best solution of  
simulation optimization 

Y

N

Simulation module 

Fig. 1. Framework of simulation optimization.

decision variables, objective function, and repetition time of simu-
lation in simulation module is done in optimization module. As op-
timization module running, optimization algorithm would create a
set of feasible design variables, and transfer them to the simulation
module by data interface; then the simulation module applies these
variables to reconfigure the simulation parameters in real time, and
run the simulation, then simulation results are returned to the op-
timization module; according to the results, the algorithm adjusts
the direction of optimal solution searching and creates a new set of
feasible solutions. The process would repeat until the stop criterion
is satisfied. Finally, optimized design variables and best scheduling
scheme are output.

4.2. Integration environment

An integration environment is needed to integrate simulation
module and optimization module. In this paper, Visual Basic is used
as integration environment and Arena7.0 is used as simulation plat-
form. Arena combines the simplification of high layer simulator and
flexibility of simulation language. Also, it can integrate with Visual
Basic and Visual C++, which enhances the modeling capability. The
optimization algorithm is coded with Visual Basic 6.0. The control-
ling of Arena simulation module is realized by Visual Basic, which
can modify simulation parameter when Arena is operating, and con-
trol the running of Arena module. The process is shown in Fig. 2.

Step 1: Define an Arena application and activate it.
Step 2: Open an Arena project file, instantiate it in Visual Basic

program.
Step 3: Find the required control module, instantiate and operate

them in program, and return the results to Arena model.
Step 4: Run the Arena model.
Step 5: Deal with the results in Visual Basic program.

4.3. Simulation module

Simulation module is used to (1) evaluate the schedule obtained
by the optimization module and (2) or to construct a schedule con-
sidering all the constraints.

In simulation, parts of the parameters of simulation model are
controlled by VB program, e.g., the attributes of each container
(storage location, transport time, container types), the loading or
unloading sequence of each containers, and the running and stop-
ping criterion of simulation model. Other attributes such as the
operation efficiency of QCs, YCs, and YTs are pre-determined by
defining attributes of each module when developing simulation
model.

Arena7.0 is used to develop simulation model. To facilitate the
modeling process, the modeling tools of Arena provide abundant
panel for users, and many modules are incorporated in the panels.
Modules are the basic components of Arena model, which can be
classified into flowchart module and data module. We use flowchart
module to describe the dynamic process of an entity from start-point
to end-point; and use data module to define the attribute of each
entity, variables and expressions of the simulation model.

Two-dimension simulation model is developed by Arena. To im-
prove the running speed of simulation, the entities in model are
not endowed with pictures; and the simulation interface is not dis-
played when running simulation model. Meanwhile, the logic rela-
tions among module are simplified as possible.

In simulation module, three rules, namely FAM (first available
machine), LFM (last available machine), and FCFS (first come first
served) can be used. According to the FAM rule, the container is as-
signed to the first available machine, i.e., the machine that finishes
the previous job first. According to the LFM rule, the container is as-
signed to the last available machine, i.e., the machine with the small-
est idle time among all available machines. The rationality of LFM
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Fig. 2. Integration of Arena simulation model and optimization algorithm by VB.

rule is to improve the future assignment of the currently unsched-
uled jobs when two or more machines provide the same length of
partial schedules. Because our scheduling problem has no interme-
diate storage, those containers whose handling operations finished
earlier will be delivered to the next stage as soon as possible. The
FCFS rule is applied when building the container sequences in the
stages other than the first stage. Therefore, the two strategies to se-
lect dispatching rules for different stages are: (1) FAM–FCFS–FCFS
and (2) LFM–FCFS–FCFS. After comparison by simulation tests we
find that LFM–FCFS–FCFS is better. Therefore, the dispatching of the
three stages are LFM, FCFS and FCFS, respectively.

4.4. Simulation optimization algorithm

Five available approaches are being used to simulation op-
timization, namely, gradient-based approach, response surface
methodology, random search, statistical selection and metaheuristic
algorithms. Among them, metaheuristic algorithms develop rapidly.
Various metaheuristic algorithms have been used to simulation
optimization, such as genetic algorithms (GAs), simulated annealing,
tabu search and neural networks (NNs). Although these methods are
generally designed for combinatorial optimization in deterministic
context and may not guarantee convergence, they have been quite
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successful when applied to simulation optimization, especially in
some commercial simulation software.

GA searches the solution space by building and evolving a pop-
ulation of solutions. The evolution is achieved by means of creating
new solutions from two or more solutions in current population. The
main advantage of genetic algorithm over those based on sampling
the neighborhood of a single solution (e.g., simulated annealing and
tabu search) is that it can explore a larger area of solution space with
smaller number of objective function evaluations. In simulation op-
timization method, evaluating the objective function needs running
the simulation model, thus finding good solutions early in the search
is important. Therefore, in this paper, the simulation optimization
is implemented based on GA. And to improve the computation
efficiency, a hybrid algorithm based on GA and NN is designed in
Section 5.

5. A hybrid algorithm for simulation optimization

5.1. Outline of solution procedure

To improve the computation efficiency of simulation optimiza-
tion, we design surrogate model based on NN to filter out obvious
potential bad solutions. Running simulation module is computation-
ally expensive in simulation optimization method, therefore, by sur-
rogate model, the running time of simulation model may decrease,
thus the computation efficiency of simulation optimization will be
improved. E.g., container vessels are typically divided longitudinally
into holds that open to the deck through a hatch. In practice, to im-
prove the operation efficiency of QCs, a QC can move to another hold
until it completes the current one. Therefore, if two containers in
different holds are continuous in QC operation sequence, it is a po-
tential bad solution. The potential bad solution can be filtered out
by trained NN.

The process is shown as Fig. 3. At the beginning of the simulation
optimization, there are no data available to train the NN; however,
with the search processing, data become available because new trial
solutions are evaluated by running the simulation model. If the NN
is trained enough, the prediction function of NN is triggered.

Let f (x) be the objective function associated with solution x. Also
let f ′(x) be the predicted objective function value for a solution x.
x∗ is the best solution found so far in the search. If f ′(x) − f (x∗) > d,
discard x; else, run simulation model to obtain objective function
f (x). d is a parameter to trade off speed and accuracy of the search.
With the increase of d, the convergence of the algorithm accelerates,
but the accuracy decreases.

5.2. NN design

NNs are powerful tools for approximation of unknown nonlinear
functions and have gained wide applications in a variety of fields
(Lawrence [29]). It is able to learn underlying relationship from a
collection of training samples. In this paper, error backpropagation
(BP) NN is used (Fig. 4), which includes input layer, hidden layer and
output layer. The learning process includes forward and backward
propagation. Training the BP network is to minimize the error func-
tion by determining the weights and neuron thresholds. Once the
NN has been trained, it can be used to predict the unknown output
of some input.

To determine input neurons, we first define the process time and
setup time first. Let P denote the total process time of all containers;
wijs denote setup time between container i and j at stage s; SETs
denote the total setup time at stage s

P =
N∑

i=1

3∑
s=1

pis (14)

Population initialization 
(Loading or unloading sequence) 

NN training 

Stopping criterion
satisfied?

Fitness (objective function, f ’(x))
prediction by NN 

No

f ’(x) - f ’(x*)>d

Yes
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Run simulation module

Yes
Discard x 
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Running simulation module, calculate
the fitness of each chromosome  

Output best solution 

Evaluation results of 
scheduling schemes

Fig. 3. Simulation optimization method of NN-based surrogate model.
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Fig. 4. Structure of BP neural network.

SETs =
∑

i,j∈N
wijs, i < j, s = 1, 2, 3 (15)

In loading and unloading process, the total operation time is
mainly influenced by total process time of different equipment and
setup time. Therefore, the setup time at each stage and the process
time are treated as input neuron, namely, SET1, SET2, SET3 and P.

The output neuron is Cmax; the number of neuron in hidden layer
is seven; the learning rate parameter is 0.1, and the accuracy param-
eter is 0.02; Levenberg–Marquardt backward propagation function
is used to train the NN. After 2000 iterations training by 60 sets data,
the prediction and filtering function of NN is triggered.

5.3. Encoding and initialization of GA

Instead of using the classical binary bit string representation, the
chromosomes are represented as character strings. In this represen-
tation the chromosomes are a string, length equal to the number of
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containers, of integers with each number occurring only once, i.e.,
each chromosome contains all integers from one to the number of
containers exactly once. If a string is 3–5–6–1–7–9–2–8–10–4, this
means that the loading sequence is 3, 5, 6, 1, 7, 9, 2, 8, 10, 4.

Initial solution could be a solution obtained from a heuristic or
generated randomly. Since a random solution may not satisfy good
performances, two heuristic algorithms are used to generate the ini-
tial solutions for the genetic algorithm. These heuristics are: LPT and
SPT. SPT rule sequences the jobs in non-decreasing order of the to-
tal processing times. And LPT rule sequences the jobs in decreasing
order of the total processing times. Firstly, an initial solution is ob-
tained by LPT or SPT rule, then, select two containers randomly and
swap their position in chromosome strings. By this method, an ini-
tial population with M individuals is obtained.

5.4. Calculation of fitness value

In the simulation optimization process, GA is used to create load-
ing order of outbound containers first. And then the order is inputted
in simulation model. In simulation model YCs, YTs and QCs are dis-
patched to container according to certain rules (the dispatching of
the three stages are LFM, FCFS and FCFS, respectively). Finally, the
loading time can be obtained by running simulation model. There-
fore, simulation cannot only be used to evaluate the loading order
obtained by GA, but also be used to construct a schedule considering
all the constraints.

The container loading problem is a minimization problem, thus
the smaller the objective function value, the higher the fitness value
must be. To maintain the variety of chromosome by crossover, the
exponential and sigmoid functions can be used. We define the fitness
function as

f (x) = 1/(1 + exp(y(x)/1000)) (16)

5.5. Genetic algorithm operators

The underlying fundamental mechanism of GA consists of three
main operators: reproduction, crossover and mutation.

5.5.1. Reproduction
Reproduction is a process in which individual chromosomes are

copied according to their scaled fitness function values. Chromo-
somes with higher fitness value would be selected with higher prob-
abilities. The selection probability is as following formulation:

p(xi) = f (xi)∑M
i=1f (xi)

, i = 1, 2, . . . ,M (17)

5.5.2. Crossover operator
A crossover operator called single point with repairs is designed.

This operator first chooses a point of one parent and inserting the
segment to the left of this into the first offspring in the same order.
The remaining positions are filled from the other parent, select the
gene from left to right of the chromosome following the rule that
gene cannot be identical. Fig. 5 shows an example where new chil-
dren are created by crossover. The crossover point is chosen at 5.
The first five genes of offstring 1 are inherited from parent 1; and
remaining genes are inherited from parent 2.

5.5.3. Mutation
Mutation introduces random changes to the chromosomes by

alter the value to a gene with a user-specified probability pm called
mutation rate. In our application, we generate two random numbers
between 1 and the string length. The values of a gene at these two
positions are interchanged.

Parent1 4 9 1 12 3

Offstring1 4 9 1 12 3 

Parent2 5 2 9 4 7  1812 16 11103

8

8

10

610 11725

6521711

Fig. 5. Example of crossover processing.

5.6. Stopping criterion

To compare the computation efficiency of different algorithms,
different stopping times are set as stopping criterion. After a pre-
determined stopping time, the algorithm ends.

6. Lower bound

To determine the effectiveness of the developedmethod, we need
to compare the makespan obtained by the proposed metaheuristics
algorithms with the optimal one obtained by the solution of above
mixed-integer program. However, finding the optimal makespan re-
quires the solution of a mixed-integer program, which can be quite
time consuming even for medium-sized problems. Therefore, the op-
timal solution is measured against well-defined lower bounds.

Lower bound problem is widely discussed in HFSS problem. Here,
we derive the lower bound on the optimal makespan based on the
method proposed by Stantos (1995) and the method designed by
Chen (2007).

Let LS(i, s) denote the left-hand side sum of processing time from
stage 1 to s − 1 for job i, and RS(i, s) the right-hand side sum of
processing time from stage s+ 1 to S for job i. LS(i, s) and RS(i, s) are
given by

LS(i, s) =
⎧⎨
⎩

s−1∑
l=1

p(i, l), s >1

0, s = 1
(18)

RS(i, s) =
⎧⎨
⎩

S∑
l=s+1

p(i, l), s < S

0, s = S
(19)

JL(k, s) is the kth value in the ascending order list of LS(i, s) for all
jobs in stage s, and RL(k, s) is the kth value in the ascending order list
of RS(i, s) for all jobs in stage s. Based on these denotations, Stantos
proposed stage-based lower bounds, lbs and global lower bound, glb
for HFSS problem as follows:

lbs = 1
ms

⎡
⎣

ms∑

i=1

LS(i, s) +
n∑

i=1

p(i, s) +
ms∑

i=1

RS(i, s)

⎤
⎦ , s = 1, 2, . . . , S (20)

glb = max
0� s� S

{lbs} (21)

During the container loading process, a setup time is needed after
each operation is finished. Therefore, the makespan lower bound
must account for these setup times. Considering that the container
sequence for each machine and the exact values of the setup times
are not known, we develop a notation SETLs (i) to obtain the minimum
possible setup time for each container.

For each container i, let SETLs (i) denote the minimum time re-
quired to set up the container immediately preceding container i at
stage s, wijs denote setup time between container i and container j
at stage s.

SETLs (i) = min
j

wijs (22)
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Therefore, the stage-based lower bounds, LBs and global lower
bound, LB for scheduling problem for loading outbound containers
can be formulated as follows:

LBs = 1
ms

⎡
⎣

ms∑

i=1

LS(i, s) +
n∑

i=1

p(i, s) +
ms∑

i=1

RS(i, s) +
n−ms∑

i=1

SETLs (i)

⎤
⎦ ,

s = 1, 2, 3 (23)

LB = max
1� s�3

{LBs} (24)

7. Numerical experiments

7.1. Validity of the simulation optimization method

Numerical test are given to assess the solution quality and effi-
ciency of the developed simulation optimization method. And two
schedulingmethod, namely “single-crane oriented” and “multi-crane
oriented”, are compared.

In “single-crane oriented” method, a set of YTs is usually assigned
to a specific QC until the work is completed, the YTs return to the QC
directly after finishing a delivery task. And the YTs cannot be shared
by different QCs. “Single-crane oriented” method is simple to be
implemented, but it leads to the increment of empty travel of YTs. In
“multi-crane oriented”method, instead of being assigned to a specific
QC, YTs are shared by different QCs, thus can be dispatched accord
to the real-time operation task of QCs. Therefore, the “multi-crane
oriented” method can reduce the needed trailers without increasing
the loading and unloading time of the vessel.

Firstly, “single-crane oriented” case is used to test the validity
of the developed simulation optimization method. Data generator is
developed to produce instance sets with specific characteristics. The
parameters for terminal layout are based on the data received from
Port of Dalian. Details are as follows:

• Loading process is considered.
• The available QCs are 3; each QC dispatched 3 YTs and 2 YCs.
• The processing time of QCs are generated from uniform distribu-

tion of U(100, 150) s, and the processing time of YCs follows the
uniform distribution of U(260, 320) s.

• Storage location in yard for each container is selected randomly.
The storage location determines the processing time for YTs.

• The setup times in stages 1 and 2 are determined by the storage
location for each container In stage 1, the setup time is obtained
by calculating the move time of YC between the locations of two
containers In stage 2, the setup time of two containers is obtained
by calculating the travel time of YT from the shipside to the loca-
tion of the second container in container yard after it has trans-
ported the first container to shipside. The setup times in stage 3
depend on the ship stowage plan. It can be obtained by calculat-
ing the move time of QC between the locations of two containers
on ship.

Four GA-based simulation optimization algorithms are compared
in terms of both solution quality and efficiency which can be defined
as

(1) GN-LPT: Initialize container sequence according to LPT rule, im-
prove the sequence by GA, and predict objective function and
filter out bad solution by NN.

(2) GN-SPT: Initialize container sequence according to SPT rule, im-
prove the sequence by GA, and predict objective function and
filter out bad solution by NN.

(4) GA-LPT: Initialize container sequence according to LPT rule, im-
prove the sequence by GA.
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Fig. 6. Convergence of the proposed algorithms.

(5) GA-SPT: Initialize container sequence according to SPT rule, im-
prove the sequence by GA.

The makespan obtained by simulation optimization method is
compared with the global lower bound. The relative deviation (RD)
is calculated by the following formula:

RD = Cmax − LB
LB

× 100 (25)

where Cmax is the makespan obtained by the developed algorithms
and LB is its lower bound.

The number of containers is 400. In the test, the population size is
50. The algorithms and modules are run on personal computer with
Pentium IV 1.7GHZ processor and 512MB random access memory.
To examine the convergence speed of the proposed algorithms, we
run the four algorithms 10 times, respectively. Fig. 6 reveals the av-
erage values of the total loading times changing with the generation.

From Fig. 6 we can find that both of GN-LPT and GA-LPT can
reach convergence. However, the needed generation to convergence
of GN-LPT is less than that of GA-LPT. GN-LPT can reach convergence
within 350 generations, while GA-LPT reached convergence in 750
generations. Meanwhile, the solution quality of GA-LPT is better than
GN-LPT. This is because that in GA-LPT, NN filter out potential bad
solution which reduces the search space of GA, thus accelerate the
convergence speed. And the filtering of potential bad solutions may
also filter out potential good solutions.

Then, the genetic search procedure is run for fixed time periods
of 60, 90, 120min, respectively, and Table 1 summarizes the results.

Table 1 show that all of the four methods can improve the initial
solutions greatly. When the search time is fixed to 60 or 90min,
the makspans obtained by GN-LPT and GN-SPT are less than that of
GA-LPT and GA-SPT. And when the search time is fixed to 120min,
there is no obvious difference between GN-LPT and GA-LPT. This is
because that the prediction and filter function of NN is incorporated
into GN-LPT and GN-SPT to decrease the time to calculate objective
function and the computation time, thus the convergence times of
GN-LPT and GN-SPT is less than that of GA-LPT and GA-SPT.

As to RD, there is no obvious difference between GN-LPT, GN-SPT
and GA-LPT, GA-SPT. This indicates that the incorporation of NN does
not influence the accuracy. Therefore, the proposed hybrid algorithm
can greatly decrease the computation time without decreasing the
solution accuracy. In addition, GN-LPT performs better than GN-SPT,
and GA-LPT performs better than GA-SPT, which indicates that LPT
heuristics performs better than SPT heuristics.

Furthermore, six scenarios are designed according to the number
of being handled containers. Using these scenarios, GN-LPT and GN-
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Table 1
Results obtained by different simulation optimization algorithms.

Optimization algorithms Initial solution (Cmax) Solution obtained by simulation optimization RD (%)

Search time 60min Search time 90min Search time 120min

GN-LPT 357.16 306.40 306.14 306.09 4.19
GN-SPT 368.83 307.27 306.93 306.84 4.45
GA-LPT 357.16 326.74 310.84 305.57 4.01
GA-SPT 368.83 331.56 314.02 306.48 4.32
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Fig. 7. Relative deviation (RD) obtained by GN-LPT and GN-SPT methods.

Table 2
Comparison of “single-crane oriented” with “multi-crane oriented” method.

Scheduling method Makespan
(Cmax)

QCs
utilization (%)

YTs
utilization (%)

Convergence
time (min)

Single-crane oriented 306.40 90.40 72.87 60
Multi-crane oriented 290.18 95.33 83.54 110

SPT are compared. The running time of simulation optimization is
fixed to 90min. Results (Fig. 7) indicates that with the increment
of containers, the difference of RD between GN-LPT and GN-SPT
increases. It indicates that initial solution becomes more important
as the problem size increment.

7.2. Comparing “single-crane oriented” method with “multi-crane
oriented” one

“Single-crane oriented” and “multi-crane oriented” scheduling
methods are compared. Suppose that GNLPT method is used and the
number of containers is 400. Results are given in Table 2.

Table 2 indicates that “multi-crane oriented” scheduling method
can decrease the makespan and increase the YTs utilization. This
is because that YTs can be shared by different QCs in “multi-crane
oriented”, thus it can decrease the waiting time of QCs and YTs. The
comparison of these two policies has been studied also in Chen's
paper (named static and dynamic) and similar conclusions were al-
ready presented. This also indicates the our simulation optimization
can be used to solve the two scheduling problems.

In addition, the convergence time of “multi-crane oriented”
method is more than that of “single-crane oriented” method, which
indicates that “multi-crane oriented” method is more complicated
than “single-crane oriented” method.

7.3. Comparing simulation optimization method with existing method

Presently, two methods, namely optimization and simulation, are
widely used in scheduling problem of container terminals. Optimiza-
tion method aims to obtain optimal scheduling scheme by search the
solution space. Simulation model can be used to evaluation certain
scheduling scheme or dispatching rules. And method proposed in

Table 3
Comparison of simulation optimization with method proposed by Chen [16].

n Problem size RD (%) CPU times (s)

QC YC YT GN-LPT TA1 GN-LPT TA1

40 2 6 8 0.92 0.38 65.0 46.7
50 2 6 8 1.20 0.48 103.2 95.2
80 2 6 8 1.49 1.35 268.4 176.0

100 2 6 10 1.74 2.14 423.1 387.2
200 4 10 16 2.63 4.01 1053.6 635.4
400 4 10 16 3.35 6.17 2321.7 1764.2
500 4 10 16 4.07 8.04 2930.4 2846.5

this paper integrates optimization method with simulation. There-
fore, to demonstrate the benefits, we compare our method with two
existing methods.

Firstly, experiments are conducted to compare our method GN-
LPT with method proposed by Chen [17]. Chen proposed two algo-
rithms based on tabu search, namely, tabu search algorithm with
MIH_ND initial solution heuristic (TA1), and tabu search algorithm
with MIH_MET initial solution heuristic (TA2). In this paper, we com-
pare our method with TA1. Results are given in Table 3.

From Table 3, we can find that RD obtained by GN-LPT is more
than that of TA1 when the container number is small (40, 50, 80),
and when the container number is large, RD obtained by GN-LPT
is less than that of TA1. This is because that TA1 method tries
to optimize the operation order of all three stages; but GN-LPT
method only optimizes the loading order, the operation order in
each stage is determined by dispatching rules. Therefore, with the
increase of container number, the solution quality of TA1 decreases.
Moreover, simulation optimization method considers the uncer-
tainty factor in operation process, thus the results of simulation
optimization method is more accurate. On the other hand, the com-
putation time of our method is more than that of TA1. Although our
method does not intend to find the optimal operation sequence of
each machine, the running of simulation is computationally expen-
sive which increase the computation time of simulation optimization
method.

From the seven data sets in Table 3, we can calculate that the
average ratio of time by optimization and simulation is 13.5% and
86.5%, respectively. The number of iterations between optimization
module and simulation module of the seven data sets is 160, 200,
250, 250, 300, 350 and 400, respectively.

Furthermore, we obtain near optimal scheduling scheme by op-
timization algorithm designed by Chen ([17], TA1), and then input
the scheme to simulation model. By running simulation model, the
accurate loading or unloading times of a scheduling scheme can
be obtained. We compare these results with those of our proposed
method. Results are given in Table 4.

From Table 4, the loading or unloading time obtained by opti-
mization algorithm (e.g., TA1) are more that of simulation algorithm.
For three-stage hybrid flow shop problem, evaluating of loading or
unloading time is difficult due to the complex constraints and un-
certain factors, thus in the process of optimization algorithm, the
objective function is obtained by approximation calculation without
considering the blockage and setup time and the scheme obtained
by optimization algorithm (TA1) cannot ensure the minimization of
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Table 4
Comparison of loading/unloading time obtained by different method.

n Problem size The deviation of loading/unloading time with lower bound (%)

QC YC YT Optimization algorithm (TA1) Simulation optimization (GN-LPT)

40 2 6 8 1.24 0.92
50 2 6 8 1.41 1.20
80 2 6 8 1.53 1.49

100 2 6 10 2.29 1.74
200 4 10 16 4.37 2.63
400 4 10 16 5.96 3.35
500 4 10 16 7.96 4.07

loading or unloading time. In the process of simulation optimiza-
tion, the accurate loading or unloading time of a scheme can be
obtained by simulation model. Therefore, the simulation algorithm
can improve the solution quality comparing to single optimization
algorithm or simulation.

8. Conclusions

In this paper, scheduling problem for loading or unloading
containers in container terminals was discussed. Combining the
simulation analysis and the optimal decision-making mechanism,
a simulation optimization method was proposed, this method
integrates optimization algorithms, simulation model, and job
partition rule. Meanwhile, to improve the computation efficiency
of simulation optimization, an NN-based surrogate model was
designed. Numerical tests were provided to illustrate the efficiency
of the proposed method. Numerical tests show that simulation op-
timization method can solve the scheduling problem of container
terminals efficiently. And NN-based surrogate model can improve
the computation efficiency of simulation optimization. In addition,
initialization methods (such as LPT and SPT) are important for
the scheduling problem and helpful for the improvement of the
solution.

The proposed model involves the problem of determining the
loading or unloading sequence, scheduling and dispatching various
kind of equipment (QCs, YCs, YTs) simultaneously. Therefore, com-
paring with models optimizing different equipments, respectively,
it can improve the coordination among different equipments and
enhance the integration of operation scheduling in container termi-
nals. Simulation optimization method considers the uncertain and
stochastic factor in operation process; also it can deal with complex
constraints in scheduling model. Therefore, simulation optimization
method can tackle the practical scheduling problem efficiently. The
main disadvantage of the simulation optimization is the long com-
putation time.

References

[1] Daganzo CF. The crane scheduling problem. Transportation Research Part B
1989;23:159–75.

[2] Kim KH. A crane scheduling method for port container terminals. European
Journal of Operational Research 2004;156:752–68.

[3] Lee D-H, Cao Z, Meng Q. Scheduling of two-transtainer systems for loading
outbound containers in port container terminals with simulated annealing
algorithm. International Journal of Production Economics 2007;107:115–24.

[4] Lee D-H, Wang HQ, Miao L. et al. Quay crane scheduling with non-
interference constraints in port container terminals. Transportation Research
Part E 2008;44:124–35.

[5] Goodchild AV, Daganzo CF. Crane double cycling in container ports: planning
methods and evaluation. Transportation Research Part B 2007;41:875–91.

[6] Evers JM, Koppers AJ. Automated guided vehicle traffic control at a container
terminal. Transportation Research Part A 1996;30:21–34.

[7] Liu C-I, Ioannou PA. A comparison of different AGV dispatching rules in an
automated container terminal. In: The IEEE fifth conference on intelligent
transportation systems, Singapore; 2002. p. 880–5.

[8] Vis IFA. Minimum vehicle fleet size under time-window constraints at a
container terminal. Transportation Science 2005;39(2):249–60.

[9] Kim KY, Kim KH. A routing algorithm for a single straddle carrier to load export
containers onto a containership. International Journal of Production Economics
1999;59:425–33.

[10] Kim KH, Kim KY. Routing straddle carriers for the loading operation of
containers using a beam search algorithm. Computers & Industrial Engineering
1999;36:109–13.

[11] Nishimura E, Imai A, Papadimitriou S. Yard trailer routing at a maritime
container terminal. Transportation Research Part E 2005;41:53–76.

[12] Zhang C, Wan Y-W, Liu J. Dynamic crane deployment in container storage
yards. Transportation Research Part B 2002;36:537–55.

[13] Linna R, Liu J-Y, Wan Y-W. Rubber tired gantry crane deployment for container
yard operation. Computers & Industrial Engineering 2003;45:429–42.

[14] Kim KH, Lee KM, Hwang H. Sequencing delivery and receiving operations for
yard cranes in port container terminals. International Journal of Production
Economics 2003;84:283–92.

[15] Ng WC. Crane scheduling in container yards with inter-crane interference.
European Journal of Operational Research 2005;164:64–78.

[16] Bish EK. A multiple-crane-constrained scheduling problem in a container
terminal. European Journal of Operational Research 2003;144:83–107.

[17] Chen L, Bostel N, Dejax P. et al. A tabu search algorithm for the integrated
scheduling problem of container handling systems in a maritime terminal.
European Journal of Operational Research 2007;181:40–58.

[18] Shabayek AA, Yeung WW. A simulation model for the Kwai Chung container
terminals in Hong Kong. European Journal of Operational Research 2002;140:
1–11.

[19] Won YY, Yong SC. A simulation model for container-terminal operation
analysis using an object-oriented approach. International Journal of Production
Economics 1999;59:221–30.

[20] Maurizio B, Azedine B, Mohamed R. Object oriented model for container
terminal distributed simulation. European Journal of Operational Research
2006;175:1731–51.

[21] April J, Glove F, Kelly JP, Laguna M. Practical introduction to simulation
optimization. In: Proceedings of the 2003 winter simulation conference. 2003.
p. 71–8.

[22] Allaoui H, Artiba A. Integrating simulation and optimization to schedule a hybrid
flow shop with maintenance constraints. Computers & Industrial Engineering
2004;47:431–50.

[23] Guo Y, Liao W, Cheng X, Liu L. SimOpt: a new simulation optimization system
based virtual simulation for manufacturing system. Simulation Modelling
Practice and Theory 2006;14:577–85.

[24] Julian SY. Solid waste planning under uncertainty using evolutionary
simulation-optimization. Socio-Economic Planning Sciences 2007;41:38–40.

[25] Lin H-T, Liao C-J. A case study in a two-stage hybrid flow shop with setup
time and dedicated machines. International Journal of Production Economics
2003;86(2):133–43.

[26] Kurz ME, Askin RG. Comparing scheduling rules for flexible flow lines.
International Journal of Production Economics 2003;85(3):371–88.

[27] Jin Z, Yang Z, Ito T. Metaheuristic algorithms for the multistage hybrid
flow shop scheduling problem. International Journal of Production Economics
2006;100:322–34.

[28] Olafsson S, Kim J. Simulation optimization. In: Proceedings of the 2002 winter
simulation conference. 2002. p. 79–84.

[29] Lawrence J. Introduction to neural networks: design, theory, and applications.
Nevada, CA: California Scientific Software; 1994.


	Integrating simulation and optimization to schedule loading operations in container terminals
	Introduction
	Literature review
	Integrating scheduling model for containers terminals
	Hybrid flow shop scheduling problem
	Scheduling problem for loading outbound containers
	Job precedence constraints
	Blocking
	Setup times

	Model formulation

	Simulation optimization
	Framework of simulation optimization
	Integration environment
	Simulation module
	Simulation optimization algorithm

	A hybrid algorithm for simulation optimization
	Outline of solution procedure
	NN design
	Encoding and initialization of GA
	Calculation of fitness value
	Genetic algorithm operators
	Reproduction
	Crossover operator
	Mutation

	Stopping criterion

	Lower bound
	Numerical experiments
	Validity of the simulation optimization method
	Comparing ``single-crane oriented'' method with ``multi-crane oriented'' one
	Comparing simulation optimization method with existing method

	Conclusions
	References


