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a b s t r a c t

The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central
place in logistics management. This paper proposes an improved ant colony optimization (IACO), which
possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation
operation, to solve VRP. The computational results for fourteen benchmark problems are reported and
compared to those of other metaheuristic approaches.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Finding efficient vehicle routes is a representative logistics
problem which has been studied for the last 40 years. A typical
vehicle routing problem (VRP) aims to find a set of tours for several
vehicles from a depot to a lot of customers and return to the depot
without exceeding the capacity constraints of each vehicle at min-
imum cost. Since the customer combination is not restricted to the
selection of vehicle routes, VRP is considered as a combinatorial
optimization problem where the number of feasible solutions for
the problem increases exponentially with the number of customers
increasing (Bell and McMullen, 2004).

Heuristic algorithms such as simulated annealing (SA) (Chiang
and Russell, 1996; Koulamas et al., 1994; Osman, 1993; Tavakk-
oli-Moghaddam et al., 2006), genetic algorithms (GAs) (Baker and
Ayechew, 2003; Osman et al., 2005; Thangiah et al., 1994; Prins,
2004), tabu search (TS) (Gendreau et al., 1999; Semet and Taillard,
1993; Renaud et al., 1996; Brandao and Mercer, 1997; Osman,
1993) and ant colony optimization (Doerner et al., 2002; Reimann
et al., 2002; Peng et al., 2005; Mazzeo and Loiseau, 2004; Bullnhei-
mer et al., 1999; Doerner et al., 2004) are widely used for solving
the VRP. Among these heuristic algorithms, ant colony optimiza-
tions (ACO) are new optimization methods proposed by Italian
researchers Dorigo et al. (1996), which simulate the food-seeking
behaviors of ant colonies in nature. It has been successfully applied
as a solution to some classic compounding optimization problems,
e.g. traveling salesman (Dorigo et al., 1996) quadratic assignment
(Gambardella et al., 1997), job-shop scheduling (Colorni et al.,
ll rights reserved.
1994), telecommunication routing (Schoonderwoerd et al., 1997),
etc.

If taking the central depot as the nest and customers as the food,
the VRP is very similar to food-seeking behaviors of ant colonies in
nature. This makes the coding of an ant colony optimization for the
VRP is simple. Among the earliest studies was that of Bullnheimer
et al. (1997) who presented a hybrid ant system algorithm with the
2-opt and the saving algorithm for the VRP. Other researches of the
ACOs to the VRP included the work by Bullnheimer et al. (1999),
Bell and McMullen (2004), Chen and Ting (2006). In the ACOs,
the 2-opt exchange was used as an improvement heuristic within
the routes found by individual vehicles and the pheromone updat-
ing rules mainly considered the global feature of the solution. This
paper proposes an improved ant colony optimization with a new
pheromone updating rule that can integrate the global feature
and the local feature, a mutation operation and the 2-opt exchange
for the VRP. The remainder of the paper is organized as follows.
Section 2 presents the mathematical model for VRP. In Section 3,
we present the IACO with ant-weight strategy and the mutation
operation. Some computational results are discussed in Section 4
and lastly, the conclusions are provided in Section 5.

2. Vehicle routing problem

The VRP is described as a weighted graph G = (C,L) where the
nodes are represented by C = {c0, c1, . . .,cN} and the arcs are repre-
sented by L = {(ci, cj): i – j}. In this graph model, c0 is the central de-
pot and the other nodes are the N customers to be served. Each
node is associated with a fixed quantity qi of goods to be delivered
(a quantity q0 = 0 is associated to the depot c0). To each arc (ci, cj) is
associated a value di,j representing the distance between ci and cj.
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Fig. 2. An example of a parent solution.
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Each tour starts from and terminates at the depot c0, each node ci

must be visited exactly once, and the quantity of goods to be deliv-
ered on a route should never exceed the vehicle capacity Q.

3. Improved ACO for VRP

3.1. Generation of solutions

Using ACO whose colony scale is P, an individual ant simulates a
vehicle, and its route is constructed by incrementally selecting cus-
tomers until all customers have been visited. The customers, who
were already visited by an ant or violated its capacity constraints,
are stored in the infeasible customer list (tabu).

The decision making about combining customers is based on a
probabilistic rule taking into account both the visibility and the
pheromone information. Thus, to select the next customer j for
the kth ant at the ith node, the ant uses the following probabilistic
formula.

pijðkÞ ¼
sa

ij
�gb

ijP
hRtabuk

sa
ih
�gb

ih

j R tabuk

0 otherwise

8<
: ð1Þ

where pij(k) is the probability of choosing to combine customers i
and j on the route, sij the pheromone density of edge (i, j), gij the vis-
ibility of edge (i, j), a and b the relative influence of the pheromone
trails and the visibility values, respectively and tabuk is the set of
the infeasible nodes for the kth ant.

3.2. Mutation operation

Mutation operation referring to genetic algorithm (Yu and Yang,
2007; Yu et al., 2007) alters each child at a predefined probability.
The operators can help the IACO to reach further solutions in the
search space. The idea of the mutation operation is to randomly
mutate the tour and hence produce a new solution that is not very
far from the original one. In this paper, the mutation operator is de-
signed to conduct customer exchanges in a random fashion. Fig. 2
shows the representation of the parent solution in Fig. 1. The steps
for the mutation operation are as follows:

Step 1. Select the two tours from the selected parent solution
and select the mutating point(s) from the each mutating
tour. Fig. 3a shows the 9th customer in the 3rd tour and
the 12th customer in the 4th tour are selected.
Fig. 1. An example of the VRP.
Step 2. Exchange the customers in the different tours and gen-
erate the child solution (see Fig. 3b).

Step 3. Ensure the child solution local optimality. The 2-opt is
applied to improve the mutated tours in child solution.
Finally, the representation and the tours of the mutated
child solution is as Figs. 3c and 4.

However, the mutation operation may violate vehicle capacity
constraints. There are two approaches to deal with this situation.
The first one is to assign a very high cost for such candidate solu-
tions and accordingly reduce their probability of being selected
in the forthcoming search. The second approach is to try to fix
the resultant capacity violations by adjusting the delivery
amounts. The advantage of the second approach over the first
one is that it is more suitable in problems that are more likely to
produce vehicle capacity violations and it enables IACO to investi-
gate further points in the search space. Therefore, the second ap-
proach is adopted to deal with the vehicle capacity violation
situation.

Each route of the solution is mutated with a certain probability
pm. Usually, the diversity of the solution is large at the beginning of
a run and decreases with the time. We adapt the mutation rate
during a run to promote a fast convergence to good solutions dur-
ing the first generations and to introduce more diversity for escap-
ing from local optima during later stages. The mutation probability
at the generation t is

pmðtÞ ¼ pmin
m þ ðpmax

m � pmin
m Þ

1�t=T ð2Þ

where pmin
m and pmax

m are the lower and the upper mutation rates for
the beginning and ending, respectively and T and t are the given
maximum number of generations and the current generation of
the iteration, respectively.

According to preliminary tests, we suggest to set the lower
mutation rate to pmin

m ¼ 1=nc, where nc is the number of the cus-
tomers, and the upper mutation rate to pmax

m ¼ 1=nv, where nv is
the amounts of the routes in the solution.
Fig. 3a. Procedure of mutation (Step 1).



Fig. 3b. Procedure of mutation (Step 2).

Fig. 4. Tours of the mutated child solution.

Fig. 3c. Procedure of mutation (Step 3).
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3.3. Local search

In the 2-opt exchange, all possible pairwise exchanges of cus-
tomer locations visited by individual vehicles are tested to see if an
overall improvement in the objective function can be attained. The
method has been used in several ACOs (Bullnheimer et al., 1997,
1999; Bell and McMullen, 2004; Chen and Ting, 2006) for the VRP.

3.4. Update of pheromone information

The updating of the pheromone trails is a key element to the
adaptive learning technique of ACO and the improvement of future
solutions. First, Pheromone updating is conducted by reducing the
amount of pheromone on all links in order to simulate the natural
evaporation of the pheromone and to ensure that no one path be-
comes too dominant. This is done with the following pheromone
updating equation,
snew
ij ¼ q� sold

ij þ
XK

k

Dsk
ij q 2 ð0;1Þ ð3Þ

where snew
ij is the pheromone on the link (i, j) after updating, sold

ij

the pheromone on the link (i, j) before updating, q the constant
that controls the speed of evaporation, k the number of the
route, K the number of the routes in the solution and K > 0
and Dsk

ij are the increased pheromone on link (i, j) of route k
found by the ant.

The pheromone increment updating rule uses the ant-weight
strategy presented by Yang et al. (2007). Specifically, the strategy
is written as:

Dsk
ij ¼

Q
K�L�

Dk�dij

mk�Dk if link ði; jÞ on the kth route

0 otherwise

(
ð4Þ

where Q is a constant, L the total length of all routes in the solution,
i.e. L ¼

P
kDk, Dk the length of the kth route in the solution, dij the

length of edge (i, j) and mk the number of customers in the kth
routes and mk > 0.

The ant-weight strategy updates the increased pheromone in
terms of the solution quality and the contribution of each link to
the solution, which consists of two components: the global phero-
mone increment and the local pheromone increment. In the ant-
weight strategy, the quantity of the global pheromone increment,
Q/(K�L), of each route is related to the total length of the solution,
while the one of the local pheromone increment (Dk�dij)/(mk�Dk)
of each link is based on the contribution of link (i,j) to the solution.
Since the strategy for updating the increased pheromone consid-
ered both the global feature and local one of a solution, it can pos-
sibly ensure that the assigned increased pheromone is directly
proportional to the quality of routes. The more favorable the
link/route is the more pheromone increment is allocated to it,
and the more accurate directive information is provided for later
search. Meanwhile, by adjusting the pheromone assigning method
for the links of current optimal path automatically, the algorithm
can facilitate more delicate searches in the next cycle in a more
favorable area, which assist in expanding the learning capacity
from past searches. The parameters for updating the increased
pheromone on the edges in the solution in Fig. 1 are calculated
as Fig. 5.

Moreover, in order to prevent from local optimization and in-
crease the probability of obtaining a higher-quality solution,
upper and lower limits [smin, smax] are fixed to the updating
equation.

smin ¼ Q
X

i

,
2d0i; ð5Þ

smax ¼ Q
X

i

,
d0i; ð6Þ

where d0i is the distance from the central depot to the ith customer.



Fig. 5. Parameters for updating the increased pheromone.

Fig. 6. The flowchart of IACO.

Table 1
Computational results using IACO and the well-known published results

No. n Q Best know Best Worst Average Time

C1 50 160 524.61a 524.61 524.61 524.61 2
C2 75 140 835.26a 835.26 859.3 848.85 11
C3 100 200 826.14a 830.00 861.12 844.32 30
C4 150 200 1028.42a 1028.42 1067.1 1042.52 211
C5 199 200 1291.45b 1305.5 1344.41 1321.91 677
C6 50 160 555.43a 555.43 568.89 560.14 24
C7 75 140 909.68a 909.68 942.29 919.1 20
C8 100 200 865.94a 865.94 888.89 871.52 57
C9 150 200 1162.55a 1162.55 1228.9 1194.87 307
C10 199 200 1395.85b 1395.85 1433.68 1412.92 840
C11 120 200 1042.11a 1042.11 1056.26 1048.12 61
C12 100 200 819.56a 819.56 842.51 823.66 31
C13 120 200 1541.14a 1545.93 1572.29 1552.25 127
C14 100 200 866.37a 866.37 869.12 867.05 43

a Taillard (1993).
b Rochat and Taillard (1995).
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3.5. Overall procedure

The flowchart of our IACO for the VRP is shown in Fig. 6.

4. Numerical analysis

The heuristics described in the previous sections is applied to
the 14 vehicle routing problems which can be downloaded from
the OR-library (see Beasley, 1990), and which have been widely
used as benchmarks, in order to compare its ability to find the solu-
tion to VRP. The information of the 14 problems is shown in col-
umns 2–4 in Table 1, which consists of the problem size n, the
vehicle capacity Q, and the well-known published results (Taillard,
1993; Rochat and Taillard, 1995). The IACO parameters used for
VRP instances are Q = 1000, a = 2, b = 1 and q = 0.8. Then, the IACO
were coded in Visual C++.Net 2003 and executed on a PC equipped
with 512 MB of RAM and a Pentium processor running at
1000 MHz. Columns 5–8 present the results from IACO including
the best solution, the worst solution, and the average solution
and average run time (second). The numbers in bold are the results
as the best-known solutions.

To evaluate the ant-weight strategy and the mutation opera-
tion, the two ant colony optimizations with different strategy are
constructed. The first one is a standard ant colony optimization
with the ant-weight strategy (denoted by ACO-W) and the other
is a standard ant colony optimization with the mutation operation
(denoted by ACO-M). The computational results are as shown in
Table 2. The numbers in bold are the best solutions among three
algorithms. It can be observed that ACO-M can obtain the same
solutions as IACO in test problem 1, 2, 3, 6, 7, 11, 12 and 14, while
ACO-W can only obtain the optimum solutions in test problem 1, 2,
6, 7 and 14. Compared with ACO-W, the ACO-M generally provides
better solutions for the 14 problems. This may be attributed that
the introduction of the mutation operation can diversify the ant
colony, explore new possible solution space and prevent the algo-
rithm from trapping in local optimization. However, while the
mutation operation improves the solutions, it also increases the
computation times. We can see that the times consumed by



Table 2
Computational results using IACO, ACO-W and ACO-M

No. IACO ACO-W ACO-M

Best Worst Average Time Best Worst Average Time Best Worst Average Time

C1 524.61 524.61 524.61 2 524.61 524.61 524.61 2 524.61 524.61 524.61 2
C2 835.26 859.3 848.85 11 838.25 859.3 850.05 10 835.26 859.3 849.33 13
C3 830.00 861.12 844.32 30 834.36 861.12 851.02 27 830.00 861.12 847.26 51
C4 1028.42 1067.1 1042.52 211 1044.89 1087.3 1058.62 198 1033.26 1084.31 1052.52 584
C5 1305.5 1344.41 1321.91 677 1335.36 1387.85 1362.37 602 1310.21 1377.29 1340.07 1,134
C6 555.43 568.89 560.14 24 555.43 571.17 563.32 24 555.43 577.49 564.18 24
C7 909.68 942.29 919.1 20 909.68 947.87 927.06 19 909.68 950.1 931.07 22
C8 865.94 888.89 871.52 57 876.52 901.06 888.87 52 869.91 901.06 880.03 79
C9 1162.55 1228.9 1194.87 307 1204.47 1279.39 1252.05 292 1188 1253.31 1222.24 772
C10 1395.85 1433.68 1412.92 840 1439.07 1520.04 1487.78 780 1412.12 1492.36 1466.62 1,320
C11 1042.11 1056.26 1048.12 61 1051.71 1077.33 1059.13 55 1042.11 1060.61 1055.52 204
C12 819.56 842.51 823.66 31 833.31 850.04 840.61 30 819.56 851.11 844.06 77
C13 1545.93 1572.29 1552.25 127 1571.05 1622.88 1592.83 118 1556.86 1618.58 1588.21 402
C14 866.37 869.12 867.05 43 866.37 870.18 868.09 38 866.37 870.18 868.61 79
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ACO-M are more than ACO-W. This may be because that in ACO-W,
the ant-weight strategy is used for updating the increased phero-
mone. It can assign increased pheromone according to the quality
the solution. This improves the learning capacity of the algorithm
from past searches, and enhances the efficiency. Furthermore, IACO
integrated the ant-weight and the mutation operation can provide
the best solutions and consume the less computation times com-
pared with ACO-W and ACO-M.
Table 3
Deviations from the best known solution of several metaheuristic approaches

Prob. RR-PTS G-TS OSM-TS OSM-SA B-AS IACO

C1 0.00 0.00 0.00 0.65 0.00 0.00
C2 0.01 0.06 1.05 0.40 1.08 0.00
C3 0.17 0.40 1.44 0.37 0.75 0.47
C4 1.55 0.75 1.55 2.88 3.22 0.00
C5 3.34 2.42 3.31 6.55 4.03 1.08
C6 0.00 0.00 0.00 0.00 0.87 0.00
C7 0.00 0.39 0.15 0.00 0.72 0.00
C8 0.09 0.00 1.39 0.09 0.09 0.00
C9 0.14 1.31 1.85 0.14 2.88 0.00
C10 1.79 1.62 3.23 1.58 4.00 0.00
C11 0.00 3.01 0.09 12.85 2.22 0.00
C12 0.00 0.00 0.01 0.79 0.00 0.00
C13 0.59 2.12 0.31 0.31 1.22 0.31
C14 0.00 0.00 0.00 2.73 0.08 0.00
Average 0.55 0.86 1.03 2.10 1.51 0.14

Table 4
Computation times of several metaheuristic approaches

Probability RR-PTS G-TS OSM-TS

Run times Scaled times Run times Scaled times Run times Sc

C1 66 5.0 84 7.5 60 2.
C2 2604 197.9 2352 210.2 48 1.
C3 1578 119.9 408 36.4 894 29
C4 2910 221.2 3270 292.1 1764 58
C5 4626 351.6 5028 449.1 1704 56
C6 144 10.9 468 41.8 60 2.
C7 1236 94.0 1908 170.4 744 24
C8 1134 86.2 354 31.6 1962 64
C9 1794 136.3 1278 114.1 2472 81
C10 2562 194.8 2646 236.4 4026 13
C11 672 51.1 714 63.8 780 25
C12 96 7.3 102 9.2 342 11
C13 120 9.1 2088 186.5 1578 52
C14 1482 112.7 1782 159.2 582 19
Average – 114.14 – 143.46 – 40
Our IACO are compared with five other meta-heuristic ap-
proaches in the paper proposed by Bullnheimer et al. (1997), which
consisted of parallel tabu search algorithm (RR-PTS) by Rego and
Roucairol, a tabu search algorithm (G-TS) by Gendreau et al., tabu
search (OSM-TS), a simulated annealing algorithm (OSM-SA) by
Osman and ant system algorithm (B-AS) by Bullnheimer et al.
(1997). The comparison of the deviations from the best known
solution is shown in Table 3. The performance of our IACO is best
among all meta-heuristic approaches, who produces in eleven
problems of fourteen test problems and yields the lowest average
deviation. Also, compared with OSM-SA, the tabu search ap-
proaches are able to provide better solutions. Also, compared
OSM-SA, the tabu search approaches can provide better solutions.

For a correct evaluation and comparison of the quality of six
algorithms the computing times must be taken into account. How-
ever, a correct evaluation and comparison of the computing times
is generally tough due to the enormous variety of computers avail-
able and used by different researchers. A very rough measure of
computers’ performance can be obtained using Dongarra’s (Don-
garra, 2001) tables where the number (in millions) of floating-
point operations per second (Mflop/seconds) executed by each
computer was used, when solving standard linear equations, with
LINPACK program. Regarding computational times, Rego and Rou-
cairol used a sun sparc 4 (about 5.7 MFlop/s), Gendreau et al. used
a 36 MHz Silicon Graphics (about 6.7 MFlop/s), Osman used a VAX
8600(about 2.48 MFlop/s), Bullnheimer et al. used a Pentium
100 MHz (about 8 MFlop/s). In this research, the Pentium 1 GHz
running IACO has an estimated power of 75 MFlop/s. Table 4 shows
OSM-SA B-AS IACO

aled times Run times Scaled times Run times Scaled times Run times

0 6 0.2 6 0.6 2
5 3564 117.8 78 8.3 11
.5 6174 204.1 228 24.3 30
.3 4296 142.1 1104 117.8 211
.3 1374 45.4 5256 560.6 677

0 696 23.0 6 0.6 24
.6 312 10.4 102 10.9 20
.8 366 12.1 288 30.7 57
.8 59,016 1951.5 1650 176.0 307
3.0 2418 79.9 4908 523.5 840
.8 264 8.7 552 58.9 61
.2 48 1.5 300 32.0 31
.1 4572 151.1 660 70.4 127
.3 300 9.9 348 37.1 43
.17 – 196.98 – 117.98 172.93
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the origin computation times and the scaled computation times,
which use Pentium 1 GHz as the baseline, of six approaches.

The performance of IACO is competitive when compared with
other meta-heuristic approaches, such as SA, and TS. Although
the run times are not favor in IACO, our IACO still seems to be supe-
rior in terms of solution quality with an average deviation of 0.14%.
Considering the very rough measure, the scaled times are viewed
as the assistant aspect of the performance. Regarding the computa-
tion efficiency, we find that the IACO can find very good solutions
in an acceptable time.

5. Conclusions

The VRP has been an important problem in the field of distribu-
tion and logistics. Since the delivery routs consist of any combina-
tion of customers, this problem belongs to the class of NP-hard
problems. This paper presents an IACO with ant-weight strategy
and a mutation operation. The computational results of 14 bench-
mark problems reveal that the proposed IACO is effective and effi-
cient. Further research on additional modifications of the IACO to
extensions of the vehicle routing problem with time windows or
with more depots, are of interest.
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