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Impedance of a Coil Surrounding an Infinite Cylinder 
with an Arbitrary Radial Conductivity Profile 

Erol Uzal, Ibrahim Ozkol, and Metin 0. Kaya 

Abstruct- A numerical-analytical method of computing the 
impedance of a cylindrical coil surrounding a cylindrical work- 
piece with an arbitrary radial conductivity change is presented. 
The coil is driven by a constant current source at a fixed 
frequency. Maxwell's equations are used in the quasi-static ap- 
proximation and the work-piece is assumed to be nonmagnetic. 
The solution can be used in the modeling of eddy-current nonde- 
structive evaluation of cylindrical parts. 

Zndex Terms- Coil impedance, eddy-current, nondestructive 
evaluation. 

I. INTRODUCTION 

NFERRING one-dimensional (1 -D) property variations is I an important problem in eddy-current nondestructive eval- 
uation (NDE). Its applications include estimating the thickness, 
conductivity, and approximate profiles of surface layers result- 
ing from processes like cladding, nitriding, heat treating, and 
ion implantation. This is an example of an inverse problem 
in which some measured terminal quantity, like voltage or 
impedance, is used to estimate the properties of the workpiece. 
The forward solution of the problem, i.e., the solution for the 
impedance or voltage of the eddy-current probe coil when 
the layer properties are known, is used to compute the layer 
properties by backfitting the measured data. 

The works of Cheng [l], Dodd and Deeds [2], Cheng et al. 
[3],  and Uzal et al. [4] provide the necessary forward solutions 
in analytical form for plane and cylindrical bodies. Norton and 
Kahn [5] ,  Moulder et al. [6], and Uzal et al. [7] used exact 
forward solutions and least square minimization to solve the 
inverse problem. In this study, we would like to propose a 
numerical method for computing the impedance of a right 
cylindrical coil encircling an infinite cylindrical workpiece that 
has an arbitrary radial conductivity profile. Properties of the 
cylinder do not change in the axial direction. The method is 
based on an analytical solution of the problem with the same 
geometry, but with a conductivity profile that is piecewise 
constant. We take the magnetic permeability as constant and 
equal to the magnetic permeability of free space, but it could 
easily be included as a piecewise constant function in the 
solution. 

In Section 11, we develop the solution for a piecewise 
constant conductivity profile and give an expression for the 
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computation of the impedance change from an unprocessed 
cylinder, i.e., the impedance of the coil for a cylinder with 
constant conductivity minus the impedance for the coil with 
piecewise constant radial-conductivity profile. In Section 111, 
after introducing the numerical method and testing its con- 
vergence, we give numerical results for several conductivity 
profiles. Finally, we conclude the paper with a discussion in 
Section IV. 

11. ANALYTICAL SOLUTION FOR A PIECEWISE 
CONSTANT CONDUCTIVITY PROFILE 

In this section we develop the analytical solution for a 
cylinder with a piecewise constant radial-conductivity profile. 
First, the solution for a single-turn coil is considered and later 
the solution for an n-turn coil is formed by superposition. 

The common axis of the cylinder and the coil is denoted i ls  

the z-axis (Fig. 1). We use the cylindrical coordinate system. 
The coil's radius is TO and it is located at the axial position 
20. The cylinder consists of various layers as shown in Fig. 1. 
The interface between layers k and k + 1 is located at T k .  

There are a total of N - 2 layers of material including the 
cylinder core. The conductivity of layer k is (Tk .  Layers N - 1 
and N are air with zero conductivity. The coil is located at 
the interface of these two layers. The magnetic permeability is 
,UO (magnetic permeability of free space) everywhere. The coil 
is driven by a constant current source of angular frequency w 
and magnitude I. Therefore, any field quantity F(F, t )  will 
have the time dependence as 

F(T,  t )  = Re(F(r')eimt} (1) 

where 7' denotes the space coordinates. In eddy-current NDE, 
w is low enough for the quasi-static approximation to be made. 
Furthermore, using the vector potential with the Coulomb 
gauge, based on the assertion that no free charges exist, the 
equation that the vector potential satisfies can be written as 

( 2) V2A - i m p o a ( r ) i  = 0 

where o( r )  is the piecewise constant conductivity function. 
Electric and magnetic field intensities are related to the veclor 
potential by 

Since the problem is axially symmetrical, the vector potential 
has only an azimuthal component that depends on T and z 

-# 

A = A(r, .).'e 1:3) 
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Fig. 1, Multilayered cylindrical workpiece surrounded by a single-turn coil. 

where E‘Q is the unit vector in circumferential direction. There- 
fore (2) reduces to the scalar equation 

d2A 1 d A  A d2A , 
- + - - - - + __ = zmpoa(r)A. 
dr2 r dr  r2 d z 2  (4) 

We denote the vector potential in region k by A(k)  (T,  z ) ,  where 
a(r)  is equal to the constant O k .  Thus, A(”(r, Z )  satisfies 

We find, by using separation of variables, that the solutions to 
(5) should be of the form 

A(k)  Am [Bk(Q)Il(QkT) + ck(a)Kl(ak7-)l 

. COS Q ( X  - ZO)  da.  (6)  

The form of (6) assures that the solution is symmetrical about 
x = zo. 1 1  and KI  are the modified Bessel functions (or the 
Bessel functions of imaginary argument). a k  is defined as 

Q k  = 1/a2 + iwpoak,  k = I, 2, ‘ .  . , N .  (7) 

Bk(a) and Ck(a)  are found from jump and boundary con- 
ditions. At the interface between two layers (regions), the 
jump conditions are that the tangential electric field should be 
continuous and the jump in tangential magnetic field should 
be equal to the surface current at the interface. These lead to 

at 

for m = I, 2, . . . , N - 2, and for m = N - 1 we have 

Z )  = X )  (Sc) 

where S is the Dirac delta distribution. There are no surface 
currents except at the coil’s position. We must add to these 
the conditions 

A is finite at r = 0 (94  
A +  0 as r -+ 00 (9b) 

which can be satisfied by taking 

C1 = 0 and BN = 0. 

Using (6) in (S) and applying the Fourier cosine theorem, we 
obtain the equations for the unknown coefficients 
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We rewrite (10) as follows: 

[cm+l] Bm+1 = H m  [El], m = 1, 2, . . . f N - 2 (12) 

where I 

am11  = Qm+lIO(Q,+l~m)K1(Qm.m)  

+ %I1 (%+1 rm )KO (Qm7-m ) (144 
am12 = ~ m + l ~ O ( ~ m + l ~ m ) ~ l ( ~ ! , ~ m )  

- Q m ~ l ( a m + l r m ) ~ o ( a m r m )  (14b) 

- a m K l ( Q m + l T m ) K O ( Q m r m )  

am22 = a m + l K O ( Q m + l ~ m ) ~ l ( a m . , )  

+ amK1 (Qm+1 rm )Io (Q,,T,,). 

am21 = am+lKO(am+lTm)Kl (Qmrm) Fig. 2. Geometry of the problem with an n-turn coil. R = “ - 2  is the 
( 1 4 ~ )  radius of the workpiece. 

(14d) 

To obtain an explicit expression for the impedance, we need 
to evaluate BN-~,  CN-1, and BN.  For this purpose, using 
(12) iteratively, we obtain 

To be able to compute the coil impedance, we should write 
An-turn in the region that the coil occupies, i.e., for RI < r < 
R2 and L1 < z < La. Using (18) with (20) in (19), we obtain 
the vector potential in the region that the coil occupies as 

“ “ 2  aL 
p o J  1 - sin - cos a ( z  - L O ) S ( ~ ,  r)dcr 

2 An-turn - 
lr a 

(21) 
where Lo = (L1 + L2)/2 and L = La - L1 is the length of 
the coil, and 

(15) [2:] = .[:I 
where H is the product of 2 x 2 matrices 

Induced voltage for a single-turn coil of radius TO is given Iby Thus 

BN-1 hi1 the line integral over the coil: - = 4 ( a ,  r1, ” ’ ,  T N - 2 ,  g l ,  ” ’ ,  U N - 2 ) .  (17) 

V = iw A’. dr‘= i ~ 2 ~ ~ o A ( r o ,  ZO).  f’ 
CN-1 h2l 

coil Solving the system consisting of (11) and (17) for B N - ~ ,  
C N - 1 ,  and B N ,  we obtain 

A=--ro I Q(a,  r,  T O )  cos a ( z  - ZO)  da, 

For the n-turn coil, use superposition: 
00 

rAn- turn(~ ,  z )  dr d;t. 

(23)  

iw2nn 
Ir V =  

r > r ~ - 2  ( 1 8 4  (L2 - Ll)(R2 - R1) 

where 

&(al r,  TO> = [4(a)K1(ar) + Il(a7-)lKl(aro) 
[ 4 ( 4 K l  (&To)  + I1 (aro)lK1 ( Q T )  

T < To 

> To * 

( 18b) 
Now, we consider an n-turn coil of rectangular cross section 

encircling the cylinder (Fig. 2). Vector potential for this case 
is written by superposition as 

Rz Lz 
An-turn = S,, S,, A(r, z ,  T O ,  Z O )  ~ Z O  dro (19) 

where A(r,  x ,  T O ,  zg)  is the solution for the single-turn coil 
problem given by (18), except that I should be replaced by 
the current density J(r0,  20).  We will assume that the current 
is uniformly distributed over the rectangular cross section of 
the coil, which means J is constant 

Here, it is assumed that the turns are uniformly distributed 
over the cross section. The coil impedance Z = V / I  is found 
by substituting (21) in (23) as 

where 

P ( a )  = L: zKl (as )  ds (25)  

and 20, the impedance of the n-turn coil in free-space, is 
given by 

16iwpon2 “ “ 1  2 C g  

L2(R2 - R I ) ~  I 2 sin 2 
2 0  = 
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We are interested in the impedance difference between a 
layered cylinder and a homogeneous cylinder of conductivity 
al. The reason for this, as explained in [7], is to subtract some 
of the modeling errors. Since for a homogeneous cylinder of 
radius T N - 2  and conductivity a1 

d’hom(a) = 
QJO ( QTN - 2 )  11 (0 1 rN - 2 )  - a 1 10 ( a  1 TN ~ 2 ) 11 ( ~ T N  - 2 ) 

aKO(Q9-N-2)11(alrN-2) + alKl ( Q T N - d J O  ( Q l T N - 2 )  

(27) 

the impedance difference A 2  = Zhomog - Zlayered is given by 

Siwp0n2 O0 1 , , a L  
2 

az = 
L2(R2 - R I ) ~  
. [4hom(Q) - $(a)]p2(a)  (28) 

Finally, we give an explicit formula for computing the 
vector potential in layer m in the case of an n-turn coil 

where 

and the inverse of €3, is given by 

111. NUMERICAL METHOD FOR A 
CONTINUOUS CONDUCTIVITY PROFILE 

The solution given in the previous section can be used to 
compute the impedance change for any continuously changing 
radial conductivity profile. First, the profile is divided into 
N - 2 discrete regions. By taking the conductivity in region 
5 ( r k  < r < T ~ + I )  equal to the constant 

we obtain an approximate piecewise constant profile to which 
the solution of the previous section can be applied. As the 
number of layers, N - 2 ,  is increased, the solution should 
converge to the exact solution for the continuous profile. 

As a test case for the method, we consider the follow- 
ing conductivity change with the radial distance inside the 
workpiece 

c r = a + b  tanh __ (‘7) 
where 

a, tanh __ 
a =  (“7, 

c 
tanh (; 

TABLE I 
FIXED PARAMETERS FOR THE SAMPLE COMPUTATIONS 

Inner radius of coil rl=12 mm 

Outer radius of coil r2=15 mm 

Length of coil L=30 mm 

Number of turns n=500 

Radius of the cylinder 

Surface conductivity c,=107 Sim 

Conductivity at the center 

R=10 mm 

c,=2 io7 S/m 

Inflection point c=8 mm 

2.00 

1.20 

0.00 4.00 8.00 
Radial distance (mm) 

Sample conductivity profiles described by (32). Fig. 3. 

v -  

tanh (:) + tanh (7) 
where a, and a, are the conductivities at the center and at the 
surface of the cylinder, respectively. Equation (32) shows a 
continuous change in conductivity from a, to a,, the steepness 
of the change being controlled by the parameter X, which has 
the dimension of length. The inflection point in the profile is 
at r = e, for X = 0, (32) becomes a discontinuous change at 
r = c. R is the radius of the cylindrical workpiece. 

In order to give some numerical results, we take the pa- 
rameters of the problem as shown in Table I. The resulting 
conductivity profiles for various values of X axe shown in 
Fig. 3. In this case, the homogeneous or unprocessed cylinder 
has uniform conductivity a, everywhere. 

To examine the convergence of the method, when the 
number of layers is increased, we consider the X = 2 mm 
case in Table I and divide the profile into 10, 20, 30, . . . layers. 
The computed impedance difference at a frequency of 1000 Hz 
converges as shown in Table 11. We found that taking about 
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0.40 - 

- 

0.00 - 

h 

9 
8 -0.40 - 
8 

- 4 

!3 
c) 

.- - 

-0.80 - 

- 

-1.20 

TABLE I1 
CONVERGENCE OF THE METHOD AT 1 kHz 

an arbitrary radial conductivity variation. The method was 
based on an analytical solution for the problem with the same 

We presented sample computations using the proposed method 
for several conductivity profiles. This method has obvious 
advantages over the purely numerical methods, namely, we 
do not have to do any discretization except the 1-D conduc- 
tivity profile. Also, instead of solving large systems of linear 
algebraic equations, we need to evaluate well-known special 
functions and compute some integrals numerically. 

geometry, but with a piecewise constant-radial conductivity. 

0 h=O 

n h = l  

0 h=2 
A h=3 

h=4 
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30 -0.0838 -1.4615 

40 -0 0832 -1.4625 

50 -0.0830 -1.4629 

40-50 discrete layers is enough for four-place accuracy in the 
computed impedance difference. 

Real and imaginary parts of the impedance differences for 
the profiles in Fig. 3 are shown in Fig. 4(a) and (b). It is clear 
that, on the average, the real part is more sensitive to the 
shape of the profile than the imaginary part. Also, there is 
a characteristic relative maxima and a zero crossing in the 
real part, as was the case for the planar surface layers [6],  
[7]. As the steepness of the profile is changed, the relative 
maxima does not change much, but the zero crossing frequency 
strongly depends on the steepness of the profile. 
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