
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 306 (2007) 495–506

www.elsevier.com/locate/jsvi
Flexural–torsional-coupled vibration analysis of axially loaded
closed-section composite Timoshenko beam by using DTM

M.O. Kaya�, O. Ozdemir Ozgumus

Faculty of Aeronautics and Astronautics, Istanbul Technical University, 34469 Istanbul, Turkey

Received 19 July 2005; received in revised form 8 January 2007; accepted 9 May 2007

Available online 30 July 2007
Abstract

This study introduces the differential transform method (DTM) to analyse the free vibration response of an axially

loaded, closed-section composite Timoshenko beam which features material coupling between flapwise bending and

torsional vibrations due to ply orientation. The governing differential equations of motion are derived using Hamilton’s

principle and solved by applying DTM. The mode shapes are plotted, the natural frequencies are calculated and the effects

of the bending–torsion coupling, the axial force and the slenderness ratio on the natural frequencies are investigated using

the computer package, Mathematica. Wherever possible, comparisons are made with the studies in open literature.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials are increasingly being preferred in the construction of aerospace structures such as
aircraft wings and helicopter blades. These materials have favourable engineering properties such as high
strength/stiffness to weight ratios and excellent fatigue behaviour [1]. Another advantage of the composite
structures is its ability to be controlled of the structural properties such as elastic and structural couplings
through the use of specific lay-up and fibre orientations.

Due to their practical importance and potential benefits mentioned above, the vibration analysis of
composite beams has been an important research area in recent years. The coupling between the bending and
torsional vibrations, which can occur in both solid and thin-walled composite beams, is of particular interest
from an aeroelastic standpoint [2]. Bank and Kao [3] analysed free and forced vibration of thin-walled fibre-
reinforced composite material beams using the Timoshenko beam theory. Song and Librescu [4] worked on
the study of the bending vibration response of laminated composite cantilevered thin-walled box beam
subjected to a harmonically oscillatory concentrated load. Rao and Ganesan [5] examined the harmonic
response of tapered composite beams by using a finite element model based on the higher-order shear
deformation theory. Banerjee [6] used the dynamic stiffness matrix method to study the free vibration
behaviour of an axially loaded composite Timoshenko beam. Na and Librescu [7] investigated a number of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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effects that are geometric and physical in nature on the dynamic response control of adaptive nonuniform
composite thin-walled beams.

In this study, which is an extension of the authors’ previous works [8–10], vibration analysis of an axially
loaded, composite Timoshenko beam with bending–torsion coupling is performed using the differential
transform method (DTM). The concept of this method was first introduced by Zhou [11] in 1986 and it was
used to solve both linear and nonlinear initial value problems in electric circuit analysis. The method has the
inherent ability to deal with nonlinear problems which enabled Chiou and Tzeng [12] to apply the Taylor
transform to solve nonlinear vibration problems. Furthermore, the method may be employed for the solution
of both ordinary and partial differential equations. Jang et al. [13] applied the two-dimensional DTM to the
solution of partial differential equations. Abdel and Hassan [14] adopted the differential transformation
method to solve some eigenvalue problems. Since previous studies have shown that the DTM to be an efficient
tool to solve nonlinear or parameter varying systems, it is not surprising that it has gained much attention of
several researchers [15–18], in recent years.

2. Formulation

A straight composite beam with length L, height h and breadth b is shown in Fig. 1. In the right-handed
Cartesian coordinate system, the x-axis is the centroidal axis of the beam. The flexural displacement, w(x,t)
and the torsional rotation, c(x,t) of the x-axis, occur in the z direction and about the x-axis itself, respectively.
Here, x and t, respectively denote the spanwise coordinate and the time. Since the cross-sections of the beam
have symmetry in both planes, the x-axis is also the locus of the geometric shear centres of the beam cross-
sections. Therefore, the beam features material coupling between flapwise bending and torsional vibrations
only due to ply orientation. The constant axial force P, which acts through the centroid of the cross section, is
considered to be positive when it is compressive as in Fig. 1. However, since P can be either positive or
negative, tension is also included.

The total potential energy, U and the kinetic energy, T of the axially loaded composite Timoshenko beam
are given as follows [19]:

U ¼
1

2

Z L

0

EIyðy
0
Þ
2
� P½ðw0Þ2 þ ðIs=mÞðc

0
Þ
2
� þ 2Ky0c0 þ kAGðw0 � yÞ2 þ GJðc0Þ2

� �
dx, (1a)

T ¼
1

2

Z L

0

½mð _wÞ2 þ I sð
_cÞ2 þ rIyð

_yÞ2�dx, (1b)

where primes and dots denote differentiation with respect to spanwise coordinate x and time t, respectively.
Here r is the material density; A the cross sectional area; Iy the second moment of inertia of the beam cross
section about the y-axis; m ¼ rA is the mass per unit length; Is the polar mass moment of inertia per unit length
about the x-axis; EIy, GJ, K and kGA are the flexural rigidity, torsional rigidity, flexure–torsion coupling
P

P

z

y

x

L

b

h

Fig. 1. Configuration of an axially loaded composite Timoshenko beam.
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rigidity and shear rigidity of the composite beam, respectively. The expressions of the inertia and stiffness
terms, i.e., rIy, m, EIy, etc., can be found in Song and Librescu [20].

Hamilton’s principle, which is expressed as follows, is applied to the energy expressions given above in order
to obtain the governing equations of motion and the boundary conditions:Z t2

t1

ðdT � dU þ dW Þdt ¼ 0. (2)

Here, W is the virtual work done by the nonconservative forces. In this study, the virtual work and damping
are not included. Therefore, substituting Eqs. (1a) and (1b) into Eq. (2) and knowing dw ¼ dy ¼ dc ¼ 0 at
t ¼ t1 and t ¼ t2, the following governing undamped partial differential equations of motion for the free
vibration analysis of the beam model are obtained:

�rI €yþ EIyy
00
þ kAGðw0 � yÞ þ Kc00 ¼ 0, (3a)

�m €w� Pw00 þ kAGðw00 � y0Þ ¼ 0, (3b)

�Is
€c� PðIs=mÞc

00
þ Ky00 þ GJc00 ¼ 0. (3c)

As a result of applying Hamilton’s principle, the following boundary conditions are obtained:
�
 The geometric boundary conditions at the cantilever end, x ¼ 0, of the Timoshenko beam:

wð0; tÞ ¼ yð0; tÞ ¼ cð0; tÞ ¼ 0. (4a)
�
 The natural boundary conditions at the free end, x ¼ L, of the Timoshenko beam:

Bending moment : EIyy
0
þ Kc0 ¼ 0. (4b)

Shear force : �Pw0 þ kAGðw0 � yÞ ¼ 0. (4c)

Torque : �ðPIs=mÞc
0
þ Ky0 þ GJc0 ¼ 0. (4d)
A sinusoidal variation of w(x,t), c(x,t) and y(x,t) with a circular natural frequency o is assumed and the
functions are approximated as

wðx; tÞ ¼ w̄ðxÞeiot, (5a)

cðx; tÞ ¼ c̄ðxÞeiot, (5b)

yðx; tÞ ¼ ȳðxÞeiot. (5c)

Substituting Eqs. (5a)–(5c) into Eqs. (3a)–(3c), equations of motion can be rewritten as follows:

rIo2ȳþ EIyȳ
00
þ kAGðw̄0 � ȳÞ þ Kc̄

00
¼ 0, (6a)

mo2w̄� Pw̄00 þ kAGðw̄00 � ȳ
0
Þ ¼ 0, (6b)

Iso2c̄� PðIs=mÞc̄
00
þ K ȳ

00
þ GJc̄

00
¼ 0. (6c)

The following dimensionless parameters are introduced to make comparisons with the results in open
literature:

x̄ ¼
x

L
; ~w ¼

w̄

L
; r2 ¼

I

AL2
. (7)
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Using the parameters given above, Eqs. (6a)–(6c) can be expressed in the following dimensionless forms:

A1ȳ
��
þ A2ȳþ A3 ~w

� þ A4c̄
��
¼ 0, (8a)

B1 ~w
�� þ B2 ~wþ B3ȳ

�
¼ 0, (8b)

C1c̄
��
þ C2c̄þ C3ȳ

��
¼ 0, (8c)

where ð Þ� ¼ dð Þ=dx̄ and ð Þ0 ¼ ð1=LÞð Þ�. Here, the dimensionless coefficients are:

A1 ¼ 1; A2 ¼
mL4r2

EIy

o2 �
kAGL2

EIy

; A3 ¼
kAGL2

EIy

; A4 ¼
K

EIy

, (9a)

B1 ¼ 1�
P

kAG
; B2 ¼

L2m
kAG

o2; B3 ¼ �1 (9b)

C1 ¼ 1�
PIs

GJm
; C2 ¼

IsL
2

GJ
o2; C3 ¼

K

GJ
. (9c)

Moreover, using the dimensionless parameters, the boundary conditions expressed in Eqs. (4a)–(4d) for x̄ ¼ 0
and x̄ ¼ 1 can be rewritten as follows:

at x̄ ¼ 0) ȳ ¼ ~w ¼ c̄ ¼ 0, (10a)

at x̄ ¼ 1) A4c̄
�
þ ȳ
�
¼ 0, (10b)

B1 ~w
� � ȳ ¼ 0, (10c)

C1c̄
�
þ C3ȳ

�
¼ 0. (10d)
3. The differential transform method

The DTM is a transformation technique based on the Taylor series expansion and it is a useful tool to
obtain analytical solutions of differential equations. In this method, certain transformation rules are applied
and the governing differential equations and the boundary conditions of the system are transformed into a set
of algebraic equations in terms of the differential transforms of the original functions and the solution of these
algebraic equations gives the desired solution of the problem. It is different from high-order Taylor series
method because Taylor series method requires symbolic computation of the necessary derivatives of the data
functions and is expensive for large orders. The DTM is an iterative procedure to obtain analytic Taylor series
solutions of differential equations. The basic definitions and the application procedure of this method can be
introduced as follows.

Consider a function f(x) which is analytic in a domain D and let x ¼ x0 represent any point in D. The
function f(x) is then represented by a power series whose centre is located at x0. The differential transform of
the function f(x) is given by

F k½ � ¼
1

k!

dkf ðxÞ

dxk

 !
x¼x0

, (11)

where f(x) is the original function and F[k] the transformed function.
The inverse transformation is defined as follows:

f ðxÞ ¼
X1
k¼0

ðx� x0Þ
kF k½ �. (12)
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Table 1

DTM theorems used for equations of motion

Original function Transformed function

f ðxÞ ¼ gðxÞ � hðxÞ F ½k� ¼ G½k� �H½k�

f ðxÞ ¼ lgðxÞ F ½k� ¼ lG½k�

f ðxÞ ¼ gðxÞhðxÞ F ½k� ¼
Pk

l¼0G½k � l�H½l�

f ðxÞ ¼
dngðxÞ

dxn
F ½k� ¼

ðk þ nÞ!

k!
G½k þ n�

f ðxÞ ¼ xn

F ½k� ¼ dðk � nÞ ¼
0 if kan;

1 if k ¼ n:

(

Table 2

DTM theorems used for boundary conditions

x ¼ 0 x ¼ 1

Original B.C. Transformed B.C. Original B.C. Transformed B.C.

f(0) ¼ 0 F(0) ¼ 0 f(1) ¼ 0
P1

k¼0F ðkÞ ¼ 0

df

dx
ð0Þ ¼ 0

F(1) ¼ 0 df

dx
ð1Þ ¼ 0

P1
k¼0kF ðkÞ ¼ 0

d2f

dx2
ð0Þ ¼ 0

F(2) ¼ 0 d2f

dx2
ð1Þ ¼ 0

P1
k¼0kðk � 1ÞF ðkÞ ¼ 0

d3f

dx3
ð0Þ ¼ 0

F(3) ¼ 0 d3f

dx3
ð1Þ ¼ 0

P1
k¼0ðk � 1Þðk � 2ÞkF ðkÞ ¼ 0
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Combining Eqs. (11) and (12), we get

f ðxÞ ¼
X1
k¼0

ðx� x0Þ
k

k!

dkf ðxÞ

dxk

 !
x¼x0

. (13)

Considering Eq. (13), it is noticed that the concept of differential transform is derived from Taylor series
expansion. However, the method does not evaluate the derivatives symbolically.

In actual applications, the function f(x) is expressed by a finite series and Eq. (13) can be rewritten as
follows:

f ðxÞ ¼
Xm

k¼0

ðx� x0Þ
k

k!

dkf ðxÞ

dxk

 !
x¼x0

, (14)

which means that f ðxÞ ¼
P1

k¼mþ1ððx� x0Þ
k=k!Þððdkf ðxÞkÞ=dxkÞx¼x0

is negligibly small. Here, the value of m

depends on the convergence of the natural frequencies.
Theorems that are frequently used in the transformation of the differential equations and the boundary

conditions are introduced in Tables 1 and 2, respectively.

4. Formulation with DTM

In the solution step, the DTM is applied to Eqs. (8a)–(8c) by using the theorems introduced in Table 1 and
the following expressions are obtained:

A1ðk þ 2Þðk þ 1Þy½k þ 2� þ A2y½k� þ A3ðk þ 1ÞW ½k þ 1� þ A4ðk þ 2Þðk þ 1Þc½k þ 2� ¼ 0, (15a)
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B1ðk þ 2Þðk þ 1ÞW ½k þ 2� þ B2W ½k� þ B3ðk þ 1Þy½k þ 1� ¼ 0, (15b)

C1ðk þ 2Þðk þ 1Þc½k þ 2� þ C2c½k� þ C3ðk þ 2Þðk þ 1Þy½k þ 2� ¼ 0, (15c)

where y[k], W[k] and c[k] are the transformed functions of ȳ, ~w, c̄, respectively.
Additionally, applying DTM to Eqs. (10a)–(10d) by using the theorems introduced in Table 2, the boundary

conditions are given as follows:

at x̄ ¼ 0) y½0� ¼W ½0� ¼ c½0� ¼ 0, (16a)

at x̄ ¼ 1) A4ðk þ 1Þc½k þ 1� þ ðk þ 1Þy½k þ 1� ¼ 0, (16b)

B1ðk þ 1Þw½k þ 1� � y½k� ¼ 0, (16c)

C1ðk þ 1Þc½k þ 1� þ C3ðk þ 1Þy½k þ 1� ¼ 0. (16d)

Substituting the boundary conditions expressed in Eqs. (16a)–(16d) into Eqs. (15a)–(15c) and taking y[1] ¼ c1,
W[1] ¼ c2, c[1] ¼ c3, the following expression is obtained:

A
ðnÞ
j1 ðoÞc1 þ A

ðnÞ
j2 ðoÞc2 þ A

ðnÞ
j3 ðoÞc3 ¼ 0; j ¼ 1; 2; 3, (17)

where c1, c2 and c3 are constants and A
ðnÞ
j1 ðoÞ;A

ðnÞ
j2 ðoÞ;A

ðnÞ
j3 ðoÞ are polynomials of o corresponding to n.

The matrix form of Eq. (17) can be written as

A
ðnÞ
11 ðoÞ A

ðnÞ
12 ðoÞ A

ðnÞ
13 ðoÞ

A
ðnÞ
21 ðoÞ A

ðnÞ
22 ðoÞ A

ðnÞ
23 ðoÞ

A
ðnÞ
31 ðoÞ A

ðnÞ
32 ðoÞ A

ðnÞ
33 ðoÞ

2
664

3
775

c1

c2

c3

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>;. (18)

The eigenvalues are calculated by taking the determinant of the Aji

� �
matrix:

A
ðnÞ
11 ðoÞ A

ðnÞ
12 ðoÞ A

ðnÞ
13 ðoÞ

A
ðnÞ
21 ðoÞ A

ðnÞ
22 ðoÞ A

ðnÞ
23 ðoÞ

A
ðnÞ
31 ðoÞ A

ðnÞ
32 ðoÞ A

ðnÞ
33 ðoÞ

��������

��������
¼ 0. (19)

Solving Eq. (19), the eigenvalues are calculated. The jth estimated eigenvalue, oðnÞj corresponds to n and the
value of n is determined by the following equation:

oðnÞj � oðn�1Þj

��� ���p�, (20)

where oðn�1Þj is the jth estimated eigenvalue corresponding to n�1 and where e is the tolerance parameter.
If Eq. (20) is satisfied, then the jth eigenvalue, oðnÞj , is obtained. In general, oðnÞj are conjugated complex

values, and can be written as oðnÞj ¼ aj þ ibj . Neglecting the small imaginary part bj, the jth natural frequency,
aj, is found.

After calculating the natural frequencies, the mode shapes can be plotted. The procedure used in plotting
the mode shapes are explained below.

Using Eq. (18), the following equalities can be written:

A12ðoÞc2 þ A13ðoÞc3 ¼ �A11ðoÞc1, (21a)

A22ðoÞc2 þ A23ðoÞc3 ¼ �A21ðoÞc1. (21b)

Considering Eqs. (21a) and (21b), constants c2 and c3 can be written in terms of c1 as follows:

c2 ¼ �

A11ðoÞ A13ðoÞ

A22ðoÞ A23ðoÞ

�����
�����

D
c1, (22a)
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c3 ¼ �

A12ðoÞ A11ðoÞ

A22ðoÞ A21ðoÞ

�����
�����

D
c1, (22b)

where

D ¼
A12 A13

A22 A23

�����
�����. (23)

The functions ȳðx̄Þ, ~wðx̄Þ and c̄ðx̄Þ are expressed in series as explained before in DTM application so they can
be written as follows:

ȳðx̄Þ ¼
Xm

k¼1

y½k�x̄k, (24a)

~wðx̄Þ ¼
Xm

k¼1

W ½k�x̄k, (24b)

c̄ðx̄Þ ¼
Xm

k¼1

c½k�x̄k. (24c)

Here the y[k], W[k] and c[k] are the transformed functions of ȳ, ~w, c̄ and they can be expressed in terms of o,
c1, c2 and c3. Since c2 and c3 have been written in terms of c1 above, y[k], W[k] and c[k] can be expressed in
terms of c1 as follows:

y½k� ¼ yðo; c1Þ, (25a)

W ½k� ¼W ðo; c1Þ, (25b)

c½k� ¼ cðo; c1Þ. (25c)

Using the functions given by Eqs. (25a)–(25c), the mode shapes can be plotted for several values of o.

5. Results and discussion

The computer package Mathematica is used to write a program for the expressions given by
Eqs. (15a)–(16d). In order to validate the calculated results, illustrative examples, taken from Refs. [6,19],
are solved and the results are compared with the ones given in these references.

The beam model studied in Ref. [6] is solved in this study as an illustrative example by using DTM. It is a
cantilever glass-epoxy composite beam with a rectangular cross section with width ¼ 12.7mm and
thickness ¼ 3.18mm. Unidirectional plies each having fibre angles of +151are used in the analysis. The
data used for the analysis are as follows:

EI ¼ 0:2865Nm2; GJ ¼ 0:1891Nm2; kAG ¼ 6343:3N;

m ¼ 0:0544 kg=m; Is ¼ 0:777� 10�6 kgm; K ¼ 0:1143Nm2,

L ¼ 0:1905m; r2 ¼ 0:00002322.

First, expressions for the second and third transformed functions of ȳ, ~w, c̄ are given below by allowing the
axial force, P, as a variable:

y½2� ¼
ð0:121378P� 1606:98Þc2
3:03542� 0:000302128P

,

y½3� ¼
3:56938� 10�7c3o2 þ 6c1ð1� 0:0000755319PÞ ð0:126668P=0:000157647P� 1Þ � 5:80653� 10�9o2

� �
27:3188� 0:00271915P

,
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W ½2� ¼
0:5c1

1� 0:000157647P
,

W ½3� ¼
2:09954� 107c2ð�535:66� 1:5745� 10�7o2 þ Pð0:0404594þ 1:56716� 10�11o2ÞÞ

ðP� 10046:8ÞðP� 6343:3Þ
,

c½2� ¼
971:327c2

3:03542� 0:000302128P
,
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Fig. 2. (a–f) The normal mode shapes of the composite beam without bending–torsion coupling ( , w; , c).
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c½3� ¼
c1ð1:07165� 106Pþ 0:0491252o2 � 7:74443� 10�6Po2Þ þ c3o2ð0:000329032P� 2:08715Þ

6:373� 107 � 16390:1Pþ P2
.

In Fig. 2(a)–(f), the first six mode shapes of the considered beam model under the effect of the compressive
axial force (P ¼ 7.5) are introduced without coupling. Additionally, the same mode shapes are plotted in
Fig. 3(a)–(f) by including the coupling effect. When Figs. 2 and 3 are compared with the ones in Ref. [19], it is
seen that the results are in good agreement. Fig. 2(a)–(f) reveal that the first three, the fifth and the sixth
normal modes are bending modes while the fourth normal mode is the fundamental torsion mode. Fig. 3(a)–(f)
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Fig. 3. (a–f) The sixth normal mode shapes of the composite beam with bending–torsion coupling ( , w; , c).
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Table 3

Effects of axial force and bending-torsion coupling on the natural frequencies

Natural frequencies

P ¼ 7.5 (compression) P ¼ 0 P ¼ �7.5 (tension)

Coupled Uncoupled Coupled Uncoupled Coupled Uncoupled

DTM Ref. [6] DTM Ref. [19] DTM Ref. [6] DTM DTM Ref. [6] DTM Ref. [19]

21.987 21.99 28.064 28.06 30.747 30.75 35.283 37.106 37.1 40.975 40.97

181.495 181.5 210.162 210.16 189.779 189.8 217.341 197.672 197.7 224.259 224.25

511.818 511.9 586.519 586.51 518.791 518.8 592.626 525.665 525.6 598.668 598.66

648.047 648.0 647.228 647.22 648.169 648.3 647.411 648.495 648.6 647.595 647.59

979.473 – 1113.950 1113.95 986.199 – 1119.847 992.878 – 1125.711 1125.71

1558.134 – 1766.662 – 1564.751 – 1772.556 1571.338 – 1778.429 –

Table 4

Effects of the inverse of the slenderness ratio on the natural frequencies

r Natural frequencies

0 21.98865 181.56047 512.22181 648.05015 980.76696 1560.98805

0.02 21.96686 180.44028 505.38498 647.99460 959.09075 1513.44841

0.04 21.90184 177.19537 486.33305 647.85277 901.14712 1390.13207

0.06 21.79469 172.14481 458.78059 476.56065 823.57290 1235.12260

0.08 21.64714 165.73826 427.12073 647.35065 742.62206 1085.00090

0.1 21.46153 158.46520 394.95017 645.81753 668.83578 954.67926
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reveal that the first three, the fifth and the sixth normal modes are the coupled modes while the fourth normal
mode remains the fundamental torsion mode.

In Table 3, effects of axial force and bending–torsion coupling on the natural frequencies are inspected.
Here, the first six natural frequencies, calculated for the undamped vibration, are introduced and the results of
Refs. [6 and 19] are given for comparison. When Table 3 is considered, it is noticed that the natural frequencies
increase as the axial force changes from compression (P ¼ 7.5) to tension (P ¼ �7.5) which reveals that the
compressive force has a softening effect on the natural frequencies while the tension force has a stiffening
effect. Additionally, it is noticed that bending–torsion coupling has a decreasing effect on the natural
frequencies. However, since the fourth normal mode is the fundamental torsion, it is normal that
bending–torsion coupling and the value of the axial force have very little effect on the fourth natural
frequency [6].

Effects of the inverse of the slenderness ratio, r, is investigated and the results are tabulated in Table 4. Here
it is noticed that inverse of the slenderness has a decreasing effect on the natural frequencies. Therefore, the
natural frequencies of a coupled Timoshenko beam are lower than the natural frequencies of a coupled
Euler–Bernoulli beam. Additionally, it is observed that the decrease in the natural frequencies is more for the
higher modes. The Timoshenko beam theory is mostly used when the higher modes are examined so it is
something expected that Timoshenko effect is more dominant on the higher modes.

In Fig. 4, convergence of the first four natural frequencies are introduced. Here, it is seen that to evaluate up
to fourth natural frequency to five-digit precision, it was necessary to take 34 terms. Therefore, the value of m

mentioned in Eq. (14) is 34 for the first four natural frequencies. Additionally, here it is seen that higher modes
appear when more terms are taken into account in DTM application. Thus, depending on the order of the
required mode, one must try a few values for the term number at the beginning of the Mathematica
calculations in order to find the adequate number of terms.
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Fig. 4. Convergence of the first four natural frequencies.
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6. Conclusion

Using Hamilton’s principle, the equations of motion are derived for a cantilever composite Timoshenko
beam featuring bending–torsion coupling and these equations are solved using the DTM. The essential steps
of the DTM application includes transforming the governing equations of motion into algebraic equations,
solving the transformed equations and then applying a process of inverse transformation to obtain any desired
natural frequency. All the steps are very straightforward. At first glance, application of the DTM to both
the equations of motion and the boundary conditions seem to be very involved computationally. However,
all the algebraic calculations are finished quickly by using a symbolic computational software. Besides all
these, the analysis of the convergence of the results show that DTM solutions converge fast. When the results
are compared with the published exact results, very good agreement is observed.
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Additionally, the following results are obtained in this study:
�
 In the case of uncoupled modes, the first three, the fifth and the sixth normal modes are bending modes
while the fourth normal mode is the fundamental torsion mode.

�
 In the case of coupled modes, the first three, the fifth and the sixth normal modes are the coupled modes

while the fourth normal mode remains the fundamental torsion mode.

�
 The compressive force has a softening effect on the natural frequencies while the tension force has a

stiffening effect so the natural frequencies increase as the axial force changes from compression to tension.

�
 Bending–torsion coupling has a decreasing effect on the natural frequencies.

�
 Inverse of the slenderness has a decreasing effect on the natural frequencies, especially on the higher modes.
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