MTO 412E Physics of Cloud and Precipitation

Atmospheric pressure, temperature, moisture and water

Units for Thermodynamic Quantities

- Heat (Q) and Work (Q) Units of Energy
- Properties: p, V, T, E (KE, PE, U, H), S
- SI and USCS Units
  - Primary Dimensions: M, L, t, T, I, N, (F\*)
  - Secondary Dimensions (Derived Quantities): F, E, W, Q, p, Power
- Units for the Thermodynamic Quantities

# Two Important Intensive Thermodynamic Properties

Pressure = the force per unit area exerted by a fluid

**Temperature** = a measurement of the internal energy of the fluid

# **Atmosphere Structure**

## Fun facts

- Standard atmosphere
  - Very long term average for mid-latitudes
  - Average surface pressure 1013 mb
  - Average surface temperature 15 °C (59 °F)
- 1/2 of the mass of the atmosphere (500 mb) below 6 km (3.7 miles)

## Atmosphere Structure

#### Fun facts

• Lapse rate (decrease in temperature in the vertical)

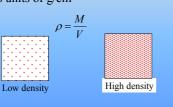
#### Troposphere:

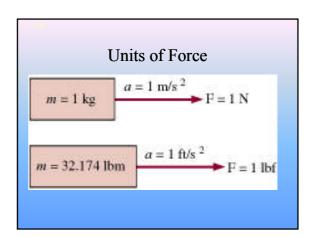
+15 °C (atsfc ) to  $\sim$  -50 °C (at 10 km)  $\longrightarrow$  -6.5 °C / km

Average atmospheric temperature and pressure in the atmosphere

# **Atmospheric Pressure**

# Notes on Pressure Absolute Pressure (p) Atmospheric Pressure (p<sub>atm</sub>) ■ Gage Pressure (p<sub>gage</sub>) Vacuum = Negative gage pressure


# Another Question?


- What is the definition of "pressure"?
  - Pressure is defined as the force exerted on a unit area (F/A), where:
     F = mass x acceleration due to gravity
  - SI Unit: Pa (kPa)
  - Other Units: mmHg, atm
    - 760 mmHg = 1.01325 x 10<sup>5</sup> Pa = 1 atm

# Pressure • Pressure - force per unit area • It has units of N/m<sup>2</sup> or Pascals (Pa) Weight

# Density

- Density mass per unit volume
- It has units of g/cm<sup>3</sup>





### Units of Pressure

Force per unit area is called *pressure*, and its unit is the *Pascal*.

- $1 Pa = N/m^2$
- 1 psi = Lbf/in<sup>2</sup>

### Pressure

• The pressure of a gas is equivalent to thinking about the concentration of a solute in a solution.

So....,

Air is 20% oxygen and 79% Nitrogen + other stuff. If the total pressure is one Atmosphere, then the "partial pressure" of oxygen is...

### Dalton's Law of Partial Pressure.

The total pressure of a gaseous system is the sum of the pressures of each gas in the system.

$$P_T = P_1 + P_2 + P_3 + P_4 + \dots + P_n$$

Example:

$$P_{N2} + P_{O2} + P_{(other)} = 1 atm.$$

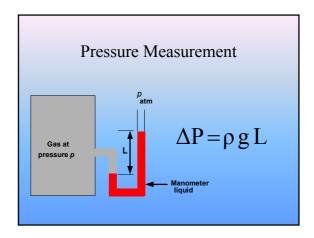
### Pressure

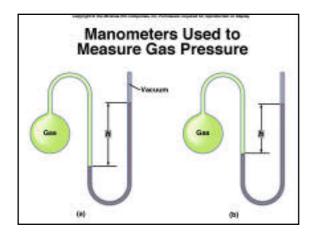
- The SI Unit of Pressure is the Pascal (Pa)
  - Pressure = Force/Area
    - $\rightarrow$ Force = mass X acceleration... The SI unit of force is the *newton* (N). N = 1kg x m/s<sup>2</sup>.
    - $\rightarrow$ The SI unit of area is the square meter (m<sup>2</sup>).
  - $\therefore$  Pa = N/m<sup>2</sup> = kg/s<sup>2</sup>m.

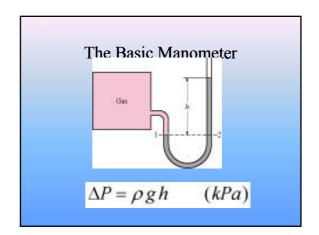


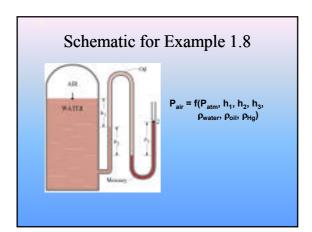
## **Practical Pressure**

- The pascal (Pa) is not in common use.
- The unit of atmosphere (at)ris what is most commonly used. At 0°C and at sea level, the pressure of the earth's atmosphere is defined as "an atmosphere".


Chang P.158


• STP = Standard Temperature (0°C) and Pressure (1atm)


### Conversions


 $-1 \text{ atm} = 760 \text{ torr} = 1.101325 \times 10^{2} \text{ kPa}$ 











# Concept of Atmospheric Pressure We are surrounded by atmospheric gas which

exerts a constant force on us due to its molecular motion

At sea level,

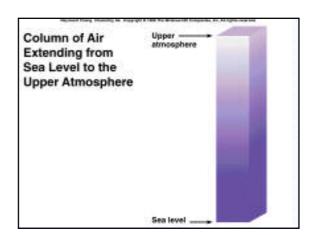
P<sub>atm</sub> = 101.325 kPa = 14.696 psi

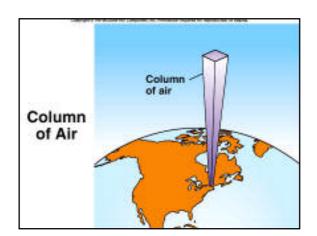
# Atmospheric Pressure

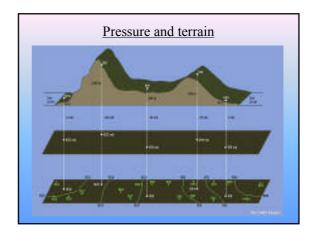
 P (atmospheric pressure): measured by the force of gravity due to the pressure of the atmosphere, divided by total area of the earth's surface

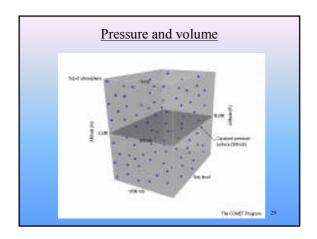
$$P^{o} = \frac{M_{atm} g}{4 r^{2} \pi}$$

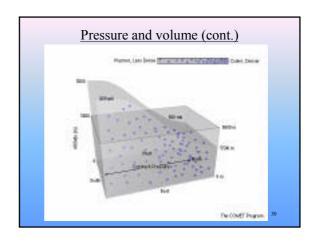
 P (sea level) = 101 325 Pa, M<sub>atm</sub>=mass in kg of atmosphere, g=acceleration due to gravity=9.81ms<sup>-1</sup>, r=radius of the earth=6.37x10<sup>6</sup>m


## Atmospheric Pressure


- Pressure = total weight of air above
- Air is compressible, so gravity concentrates most air molecules near the surface
- Atm pressure decreases with height —
  rising air cools, sinking air warms
- Greatest pressure variation in vertical, but <u>smaller</u> <u>horizontal variations produce winds and weather</u> <u>systems</u>

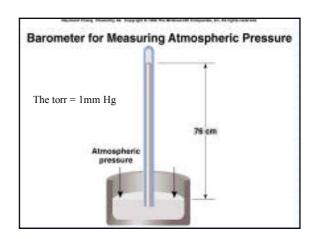

24


# **Atmospheric Pressure**

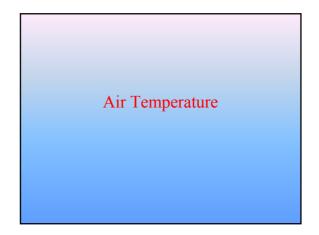

- If all the known quantities are substituted in the equation it is possible to calculate the total mass of the atmosphere
- $M_{atm} = 5.27 \times 10^{18} kg$
- Useful quantity, referred to often



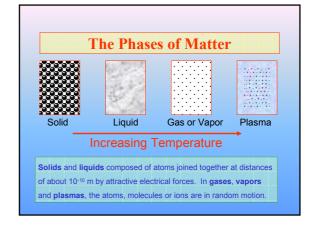







# Measuring Air Pressure


- How do we measure air (gas) pressure?
- When using a manometer, we need to look at the difference in the levels of the Hg in the two arms
  - If the level of Hg in arm next to container is lower, the pressure inside is greater than atmospheric
  - If the level of Hg in arm next to container is higher, the pressure inside is less than atmospheric



# Measurement of Atmospheric Pressure P<sub>atm</sub> = pgh (kPa) At sea level, P<sub>atm</sub> = 101.325 kPa = 14.696 psi = 760 mm Hg (0° C)



# Thermodynamics SOME DEFINITIONS: THERMO – related to heat DYNAMICS – the study of motion SYSTEM – an object or set of objects ENVIRONMENT – the rest of the universe MICROSCOPIC – at an atomic or molecular level MACROSCOPIC – at a level detectable by our senses THERMODYNAMICS is the study of the relationship between heat and motion. is a macroscopic description of the properties of a system using state variables (e.g. volume, temperature, pressure) Atoms are in constant motion, which increases with temperature.



# **Temperature**

#### Temperature

- is a measure of how hot or cold an object is.
- is measured by a thermometer.

**Thermometers** are based on physical properties of objects that change with temperature, for example:

- > volume of a liquid
- ➤ length of a solid
- > pressure of a gas
- > electrical resistance of a solid
- > electrical potential difference between two solids.

# Questions

- Is it possible for two objects to be in thermal equilibrium if they are not touching each other?
- Can objects that have different temperatures be in thermal equilibrium with each other?

# **Thermal Expansion**

Most materials expand when heated:

- ➤ The average distance between atoms increases as the temperature is raised.
- ➤ The increase is proportional to the change in temperature (over a small range).

Consider an object of length  $L_i$  at temperature  $T_i$ 

> If the object is heated or cooled to temperature  $T_f$   $L_f - L_i = \alpha L_i (T_f - T_i)$  or  $\Delta L = \alpha L_i \Delta T$   $\alpha = \text{coefficient of linear expansion } [^{\circ}C^{-1}]$   $(\alpha \text{ is a property of the material})$ 

# Thermal Expansion of Solids and Liquids

| Material | α (°C -1)              |
|----------|------------------------|
| Glass    | 9 x 10 <sup>-6</sup>   |
| Concrete | 12 x 10 <sup>-6</sup>  |
| Copper   | 17 x 10 <sup>-6</sup>  |
| Lead     | 29 x 10 <sup>-6</sup>  |
| Mercury  | 1.8x 10 <sup>-4</sup>  |
| Gasoline | 3.2 x 10 <sup>-4</sup> |

For the same temperature change, the thermal expansion of liquids is much greater than that of solids (> 10 times).

Area Expansion:

 $\Delta A = 2\alpha A_i \Delta T$ 

Volume Expansion  $\Delta V = 3\alpha V_i \Delta T$ 

#### **Thermal Stress**

• Heat can stress materials if no allowance is made for thermal expansion:

$$\Delta L = \frac{1}{E} \frac{F}{A} L_0$$

$$\Delta L = \alpha L_0 \Delta T$$

$$\frac{1}{E} \frac{F}{A} L_0 = \alpha L_0 \Delta T$$

$$\frac{F}{A} = \alpha E \Delta T$$

E = Young's Modulus

Thermal Expansion

Thermal Stress

# Equilibrium

- A system is in equilibrium if its properties are not changing at any given location in the system. This is also known as thermodynamic equilibrium or total equilibrium.
- Equilibrium implies balance no unbalanced potentials (driving forces) in the system.

# Four types of thermodynamic equilibrium:

- *Thermal equilibrium* temperature does not change with time.
- *Mechanical equilibrium* Pressure does not change with time.
- *Phase equilibrium* Mass of each phase is unchanging with time.
- *Chemical equilibrium* molecular structure does not change with time.

# Forms of Energy

• Energy is usually symbolized by E, representing total energy

$$e = \frac{E}{m}$$

• e is energy per unit mass

# Forms of Energy

- Macroscopic forms possessed with respect to some outside reference frame.
  - Kinetic energy,

$$KE = \frac{1}{2} mV^{2}$$
- Potential energy, or  $ke = \frac{1}{2}V^{2}$ 

PE = mgz or pe = gz

# Forms of energy

- Microscopic forms are called internal energy (internal to the molecule) and represent the energy a molecule can have as it translates, rotates, and vibrates. There are other contributors nuclear spin, for example as well.
- We will not concern ourselves with the details, but will use the symbols U and u.

# Energy

· Now, we have

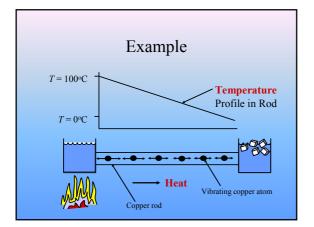
$$E = U + KE + PE$$
$$\Delta E = \Delta U + \Delta KE + \Delta PE$$

- For stationary, closed systems, ΔKE and ΔPE are 0.
- Therefore,  $\Delta E = \Delta U$

# Energy

- Sensible energy the portion of the internal energy associated with all forms of kinetic energy of the molecules.
- Latent energy refers to internal energy associated with binding forces between molecules. Phase changes, such as vaporizing (boiling) water are latent energy changes.

# Thermal Equilibrium


• Occurs when two bodies are at the same temperature T and no heat transfer can occur.

# Temperature

- Rapidly moving molecules have a high temperature
- Slowly moving molecules have a low temperature







## Heat

- Heat is the energy flow resulting from a temperature difference.
- NOTE: HEAT AND TEMPERATURE ARE **NOT** THE SAME!

# Energy

- Energy is the capacity to do work, but work is a form of energy...
- It is easier to think of energy as a scientific and engineering "unit of exchange", much like money is a unit of exchange.
- Example
  - -1 car = \$20 k
  - -1 house = \$100 k
  - -5 cars = 1 house



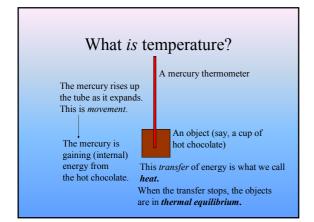


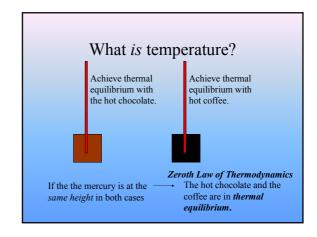
# Question

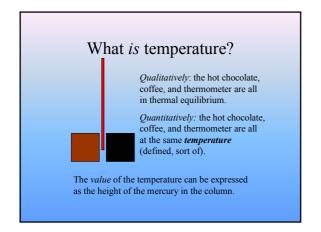
You wake up at 6:00 AM on a winter morning, and go to the kitchen to make coffee. The air temperature is the same in all the rooms of your home. Which has a higher temperature, the carpet in your bedroom or the tiles on the kitchen floor?

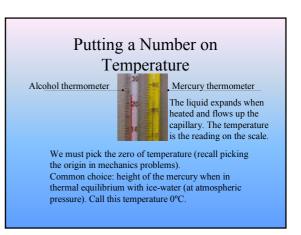
- 2. Carpet3. They are at the *same* temperature.

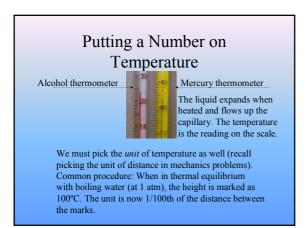
Why do they feel different? Several reasons; one is that your feet are not good thermometers.

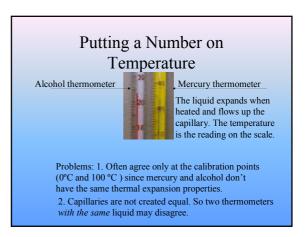

# Measuring Temperature

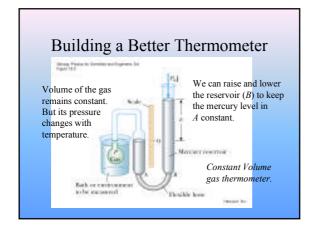

Most objects change in some way as they get hotter or colder. Experimentally, some of the properties that change are

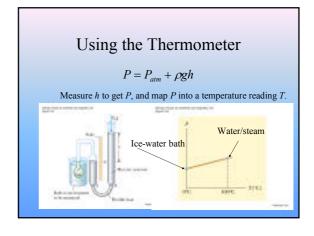

- 1. Volume of liquid.
- 2. Length of a solid.
- 3. Pressure of a gas at constant volume.
- 4. Volume of a gas at constant pressure.

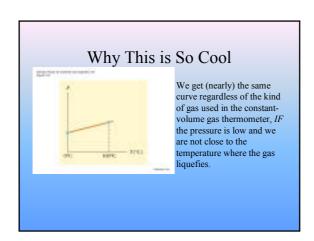

Measurements of temperature are based on these changing physical properties.

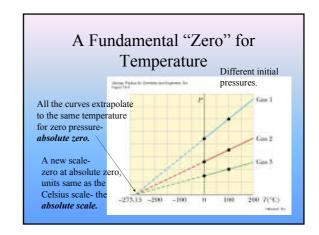

# Example: Liquid Thermometers Alcohol thermometer The liquid expands when heated and flows up the capillary. But before we can measure temperature, we have to have some idea of what it is.














# **Temperature Scales**

- •Celsius
  - · Zero defined by an ice-water bath at 1 atm.
  - Unit defined by water-steam (100°C) at 1 atm.
- •Kelvin (absolute)
  - Zero defined by absolute zero, but we cannot reach that temperature experimentally
  - 273.16 K defined by the *triple-point* of water (0.01°C at 4.58 mm of mercury)
  - Unit is the same as the Celsius scale
- Fahrenheit
  - Zero and unit based on salt-water (?)

# Converting Between the Scales

From Celsius to Kelvin:

$$T_C = T - 273.15$$

From Fahrenheit to Celsius:

$$T_F = \frac{9}{5}T_F + 32^{\circ} \text{F}$$

# ConcepTest

Three objects are at the same temperature. Each object has its temperature increased. Object 1 increases by 10 K, Object 2 increases by 10 °C, and Object 3 increases by 10 °F. The correct ordering of the final temperatures is

```
1. T1 = T2 = T3.
2. T1 = T2 > T3.
```

Answer: 2. Degrees Kelvin and degrees Celsius are the same size so T1 = T2.

3. T1 = T2 < T3.

= 12 < 13. > T2 = T3 Degrees Fahrenheit are smaller than degrees

4. T1 > T2 = T3. Cenlsius, so T3 < T1.

5. T1 < T2 = T3. 6. T1 > T2 > T3.

7. T1 < T 2 < T3.

# Zeroth Law of Thermodynamics

The zeroth law of thermodynamics states that two bodies are in thermal equilibrium if both have the same temperature reading even if they are not in contact. Or,

• If two bodies are in thermal equilibrium with a third body, they are in thermal equilibrium with each other.

# Zero'th Law of Thermodynamics

Our experience tells us that objects placed in contact will eventually reach the same temperature. We say that they are then in thermal equilibrium. This is the basis for

#### The Zero'th Law of Thermodynamics:

If two objects A and B are in thermal equilibrium with a third object C, then A and B are in thermal equilibrium with each other.

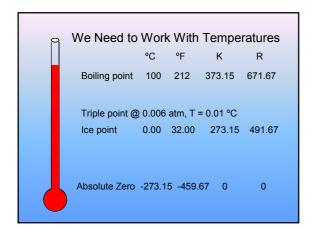
Objects or systems in <a href="https://example.com/the-name-temperature">the-name temperature</a>. This is the physical basis for the definition of temperature.

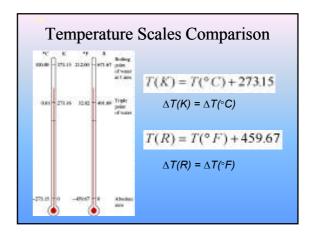
## **Common Temperature Scales**

### Fahrenheit:

 Based on the ability of farm animals to survive without attention (0 ° F is the coldest and 100 ° F is the hottest).

#### Celsius or Centigrade:

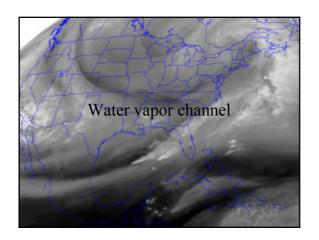

- Based on the physical properties of water on the earth's surface at sea level (0 ° C is the freezing point and 100 ° C is the boiling point).
- $T(^{\circ} C) = (5/9)[T(^{\circ} F) 32]$


 $T (\circ F) = (9/5)T(\circ C) + 32$ 

# Absolute (Kelvin) Temperature Scale The volume occupied by any gas at constant pressure is a linear function of temperature, which always extrapolates to zero at -273.15 °C. This is called Charles's Law and is the basis for the absolute or Kelvin temperature scale: T(K) = T(°C) + 273.15

# Absolute or Kelvin Temperature Scale

- > The absolute or Kelvin scale is the true physical temperature scale.
- T = -273.15 °C = 0 K is the lowest temperature that can be defined for any physical system.
- ➤ Absolute zero of temperature (0 K) is a theoretical limit that can never be reached in a physical system.
  - Experiments on Bose-Einstein Condensation in gases have reached the nano-Kelvin (10° K) range (1998, 2001 Nobel Prizes in physics!)
- The degree steps in the Celsius and Kelvin scales are chosen to be the same:  $\Delta T(^{\circ}C) = \Delta T(K)$ .






# Temperature relationships

- $T (^{\circ}R) = T (^{\circ}F) + 459.67 \text{ [use 460]}$
- $T(K) = T(^{\circ}C) + 273.15$  [use 273]

# Atmospheric Moisture



#### Introduction

First Step: What is the question?

- · General weather conditions
- Support another activity, e.g. environmental monitoring
- · Representative of specific area
- Vertical gradient (e.g. atmospheric stability or flux)
- Time average mean and/or extreme

# Humidity: Measures of Atmospheric Water Content

- Humidity an expression of the amount of water vapor in the air.
- · There are several ways to measure humidity:
  - Vapor Pressure
  - Absolute Humidity
  - Specific Humidity
  - Mixing Ratio
  - Relative Humidity
  - Dew Point Temperature
  - Depression of Wet-bulb Temperature

# measures of atmospheric humidity

- Absolute humidity = mass H<sub>2</sub>O/volume of air
- Specific humidity = mass  $H_2O$  /mass of air
- Mixing ratio = mass of H<sub>2</sub>O /mass of dry air

### I.Water vapor pressure

- Molecules in an air parcel all contribute to parcel pressure
- Each subset of molecules (e.g., N<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O) exerts a partial pressure
- The VAPOR PRESSURE, e, is the pressure exerted by water vapor molecules in the air
  - similar to atmospheric pressure, but due only to the water vapor molecules
  - often expressed in mbar (2-30 mbar common at surface)

**Actual vapor pressure** equals the partial pressure of water vapor in a parcel of air

**Saturation vapor pressure** is the maximum pressure that water molecules would exert if a parcel were saturated Saturation vapor pressure is a function of temperature.

# II. Absolute Humidity

- symbol: h<sub>a</sub>
- h<sub>a</sub> is the density of water vapour in the atmosphere
- units: kg m<sup>-3</sup> or g m<sup>-3</sup>

# **Absolute Humidity**

- Absolute Humidity The density of water vapor (mass of water vapor in a volume of air).
- Dependencies: Volume of the air
- Not widely used.

Because it varies with changes in pressure, thus not very useful in atmospheric sciences

# Formula for Absolute Humidity

• h<sub>a</sub> can be calculated from the formula

$$h_a = 2.11e_a/T_a$$

where

h<sub>a</sub> is the absolute humidity in g m<sup>-3</sup>

e<sub>a</sub> is the vapour pressure in Pa
T<sub>a</sub> is the absolute temperature in K

# Calculation of Absolute Humidity

- example
- $T_a = 20 \text{ °C}; h_r = 0.5$
- therefore  $e_s(T_a) = e_s(20 \text{ °C}) = 2340 \text{ Pa}$
- therefore  $e_a = 0.5*2340 = 1170 \text{ Pa}$
- but  $h_a = 2.11e_a/T_a$
- therefore  $h_a = 2.11 \times 1170/293 = 8.43 \text{ g m}^{-3}$ \*\*\*\*\*

# III. Specific Humidity

- Specific Humidity-The mass of water vapor per unit mass of air.
- · Dependencies: Atmospheric pressure
- Units: grams per kilogram (g/kg)
- · Widely used

$$q = \frac{m_v}{m} = \frac{m_v}{(m_v + m_d)}$$

- q=specific humidity,  $m_v$ =mass of water vapor,  $m_d$ =mass of dry air

# IV. Mixing Ratio

- Mixing Ratio The mass of water vapor relative to the mass of the other gases.
- Offers same advantages as specific humidity

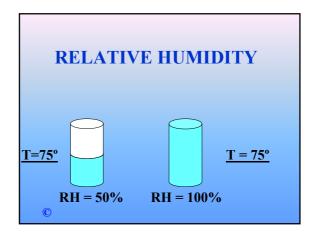
$$r = \frac{m_v}{m_d}$$

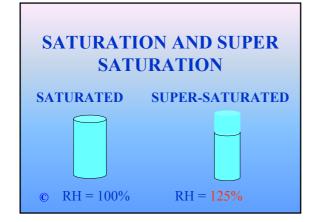
# V. Relative Humidity

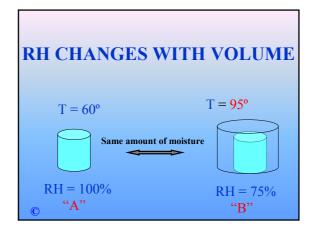
- Relative Humidity The amount of water vapor in the air relative to the maximum amount possible.
- Dependencies: Temperature
- Unit: Percentage (%)
- Widely used, but not necessarily good

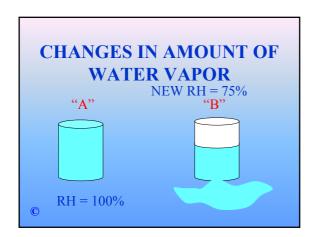
# Relative Humidity

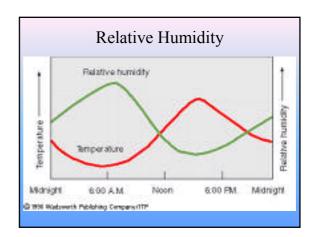
- Symbol: h<sub>r</sub>
- h<sub>r</sub> is the ratio of actual vapour pressure e<sub>a</sub> to saturated vapour pressure e<sub>s</sub>(T<sub>a</sub>) at that temperature
- $h_r = e_a/e_s(T_a)$
- $0 < h_r < 1$
- units: none


#### Expressing the water vapor pressure


- Relative Humidity (RH) is ratio of actual vapor pressure to saturation vapor pressure
  - $-100 * e/e_{s}$
  - Range: 0-100% (+)
  - Air with RH > 100% is supersaturated
- RH can be changed by
  - Changes in water vapor content, e
  - Changes in temperature, which alter  $\boldsymbol{e}_{\boldsymbol{S}}$


# **Relative Humidity**

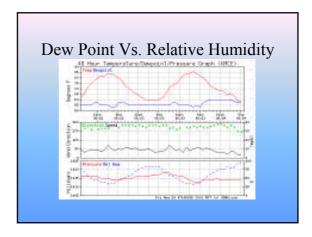

RH= <u>water vapor content</u> x 100 water vapor capacity

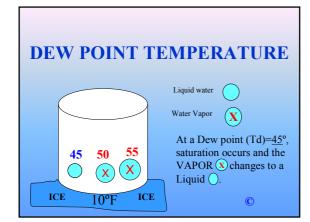

RH = <u>Actual vapor pressure</u> x 100 Saturation vapor pressure

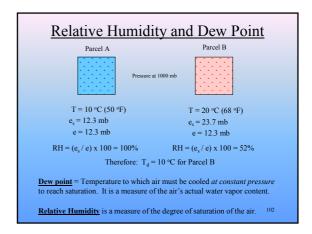


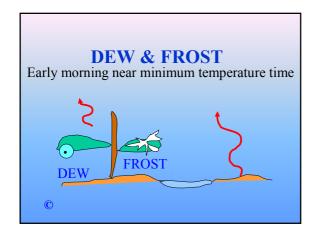


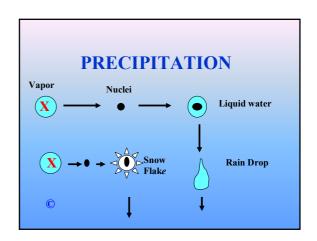


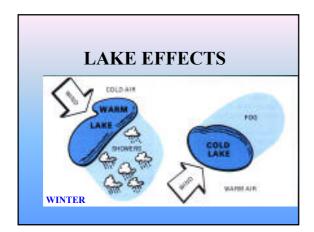


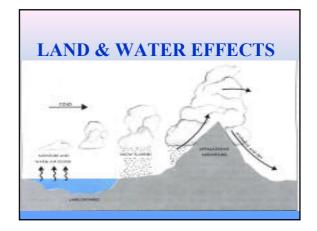





# VI. Dewpoint Temperature


- symbol T<sub>d</sub>
- Unit: °F, °C, K
- · Widely used


is the temperature to which a parcel of air would have to be cooled with no change in pressure or moisture content for saturation to occur














# How do we express the amount of water vapor in an air parcel?

- · Absolute humidity
  - $-\ mass\ of\ water\ vapor/volume\ of\ air\ (g/m^3)$
  - changes when air parcel volume changes
- · Specific humidity
  - mass of water vapor/mass of air (g/kg)
- Mixing ratio
  - mass of water vapor/mass of dry air (g/kg)
- Specific humidity and mixing ratio remain constant as long as water vapor is not added/removed to/from air parcel
- Dew point temperature

# **Temperature Instruments**

# Electrical Thermometers

- Thermocouple
  - More commonly used in industrial applications
- Resistance temperature detector (RTD)
   Good features, but can be sensitive to installation wiring
- Thermistor

   Good answer for many applications

#### Temperature Instruments

# Manual Thermometers and Thermographs

- · Liquid in glass thermometers
  - Basic standard for many years
- Bi-metallic sensor
- Mechanical link to pen for graphs
   Slower response times, less resolution.
- Understand historical data limitations



## **Humidity Instruments**

#### **Electrical Hygrometers**

- · Hygroscopic films detect atmospheric moisture
- Dew point impedance from partial pressure of water vapor

#### Chilled mirror

- Optically sense presence of dew or frost on mirror
  - Measure temperature of mirror for dew point or frost point
  - Recent optical sensing improvements

# **Humidity Instruments**

#### Manual hygrometers

- Psychrometer
  - Paired dry-bulb and wet-bulb thermometers
  - Manual and semi-automated

#### Hygrographs

- Hygroscopic material sensor (e.g. hair)
  - Mechanical link to pen

#### Field Measurement

#### Siting and Instrument Exposure

- Base on purpose of measurement and local logistics
- See monitoring guidance in text References
- Aspirated or naturally ventilated shields (important)
- · Avoid local sources of heat and moisture

### Field Measurement

#### Delta-temperature (vertical gradient)

- Choose levels, such as 2 to 10 meters agl for EPA stability
- · Match sensors to optimize accuracy

#### Documentation

- Pictures worth many megabytes of words
- · Geographic coordinates and reference system

### Field Measurement

#### Measurement system and data collection

Merge into total system requirements

#### On-site processing

- Time averages (fractional seconds to hour or daily)
  - Glass thermometer: approximately 1-min average
  - ASOS 5-min; ASTM 10-min; typical hourly
- Mean (true or median of range), extremes
- Other calculations

#### Field Checks and Calibrations

#### Routine checks

- External changes to sensor or shield (material, coating)
- Component checks (electronic)

#### Calibrations

- · Determine accuracy and resolution requirements
- · Place sensor in known environment
- Total system check use normal readout in operating mode

# Calculations

Measure temperature and relative humidity

- · Calculate dew point directly, or
- Calculate dew point indirectly use vapor pressure
- Dew point is based on vapor pressure over water, by convention
- Calculation is sensitive to RH below about 40 percent

#### Calculations

Measure dry-bulb and wet-bulb temperatures

- · To convert to dew point:
  - Calculate vapor pressure, then dew point
  - Calculate saturation vapor pressure from temperature
- Now you can worry about frozen bulbs

#### Calculate vapor pressure

Calculate saturation vapor pressure from temperature Temperature: t, degrees Celsius Saturation vapor pressure:  $e_s$ , millibars or hecto-Pascals Reasonable option: Campbell Scientific P56 statement Also to calculate vapor pressure from dew-point temperature

$$e_s(t) = 6.1121 \cdot \exp\left(\frac{17.502 \cdot t}{(240.97 + t)}\right)$$

Calculate dew point from vapor pressure

Dew point:  $T_d$ , degrees Celsius Vapor pressure: e, millibars or hecto-Pascals (hint: inverse of previous equation)

$$T_d = \frac{240.97 \cdot \ln(e/6.1121)}{17.502 - \ln(e/6.1121)}$$

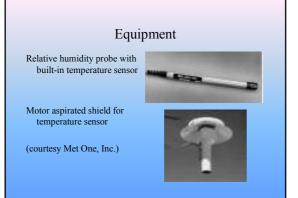
Calculate dew point from temperature and relative humidity (1)

Intermediate calculated term A from:

Temperature: *t*, degrees Celsius Relative humidity: *RH*, percent

$$A = \left[ \ln \left( RH / 100 \right) \right] + \left[ \frac{\left( 17.502 \cdot t \right)}{\left( 240.97 + t \right)} \right]$$

Calculate dew point from temperature and relative humidity (2)


Dew point:  $T_d$ , degrees Celsius Intermediate term: A (see previous slide) note:  $T_d = 0$  °C for RH = 100% and t = 0 °C

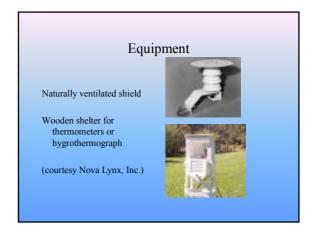
$$Td = \frac{240.97}{\left[ \left( 17.502 / A \right) - 1 \right]}$$

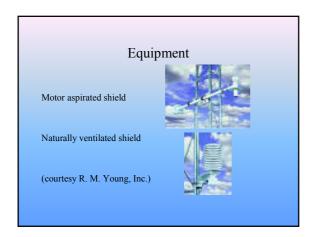
Calculate vapor pressure from wet-bulb and dry-bulb temperatures

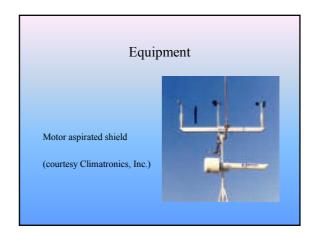
Vapor pressure: *e*, millibars or hecto-Pascals
Dry-bulb temperature: *t*, degrees Celsius
Wet-bulb temperature: *tw*, degrees Celsius
Barometric pressure: *p*, millibars or hecto-Pascals
Then calculate dew point from equation on slide 15

$$e = e_s(tw) - \left[ \left( 6.6 \cdot 10^{-4} \right) \cdot \left( 1 + 0.00115 \cdot tw \right) \cdot p \cdot \left( t - tw \right) \right]$$




# psychrometer


Dry-bulb temperature


Wet-bulb temperature

Wet-bulb depression









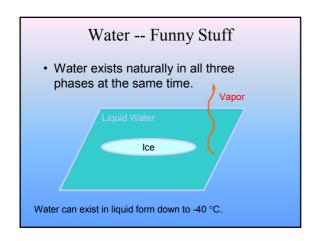
# Water in the atmosphere

# Properties of Water

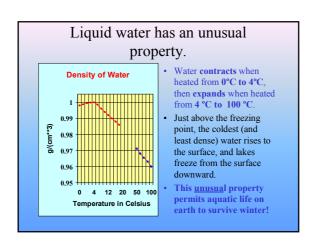
- · Physical States
  - only natural substance that occurs naturally in three states on the earth's surface
- Heat Capacity
  - Highest of all common solids and liquids
- Surface Tension
  - Highest of all common liquids
- Latent Heat of Fusion
  - Highest of all common substances
- Compressibility
- Virtually incompressible as a liquid
- Density
  - Density of seawater is controlled by temperature, salinity and pressure
  - Liquid has maximum density at +4°C; solid phase has lower density!

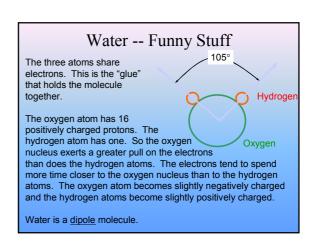
# Properties of Water (cont')

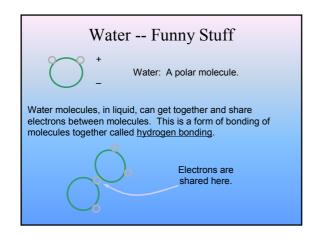
- Radiative Properties
  - transparent to visible wavelengths
  - virtually opaque to many infrared wavelengths
  - large range of albedo possible

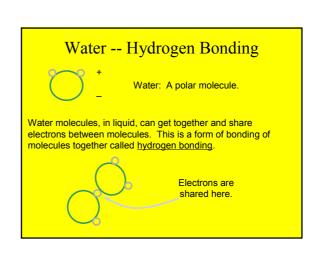

water 10 % (daily average)
 Ice 30 to 40%
 Snow 20 to 95%
 Cloud 30 to 90%

- Water Vapor water in a gaseous form, not droplets.
- · Water can also achieve solid and liquid phases on Earth
  - Temperature and pressure
- Saturation The maximum amount of water that can <u>exist</u> in the atmosphere as a vapor.


# Water -- Funny Stuff


- Water has a very high boiling point (100
   C at 1000 mb).
  - Normally the boiling point increases with increasing molecular weight. Chemically related substances have boiling points 100 to 150 °C.


| Substance       | Formula          | Mol. Wt. | Boil Pt. (°C) |
|-----------------|------------------|----------|---------------|
|                 |                  |          |               |
| Water           | H <sub>2</sub> O | 18       | 100           |
| Methane         | CH₄              | 16       | -164          |
| Ammonia         | NH <sub>3</sub>  | 17       | -75           |
| Iodine Chloride | ICI              | 162      | 97            |
|                 |                  |          |               |



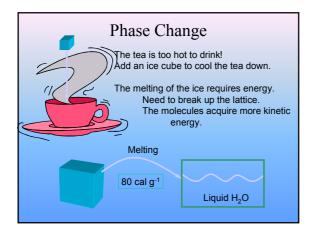

# Water -- Funny Stuff • Density decreases as water freezes. – Ice floats. – Lakes freeze from the top down. – Pipes burst in the winter. • Latent heats of Fusion and Vaporization are unusually high.

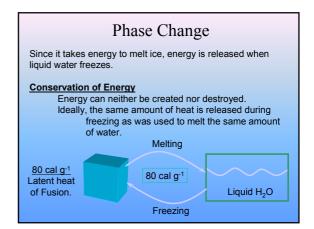









# Water -- Hydrogen Bonding


- · Hydrogen bonds are not permanent.
  - Some groups of water molecules have more energy than others and can move more freely about the liquid.
  - Some of these molecules have so much energy that they can escape the liquid and become vapor.

· Liquid: Order with some chaos.

· Vapor: Pandemonium!

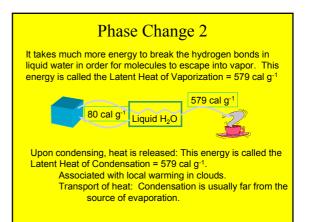
# Ice • A "black tie" affair. • Molecules are organized in a hexagonal lattice. • Lower kinetic energy than liquid or gas. ⑤ Six-sided snow flakes. ⑤ Ice is less dense than the liquid. Ice floats! A few molecules may still escape into the atmosphere — Sublimation Ice in a frost-free freezer will eventually get smaller.

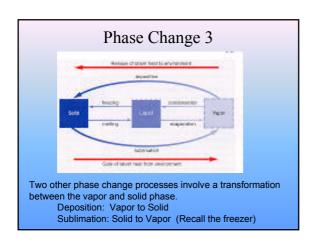


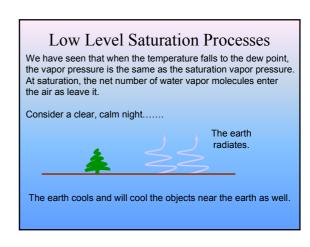


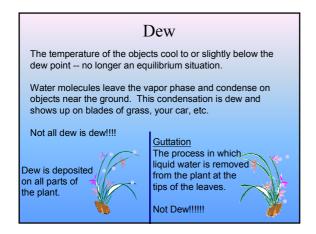
# Salt on the Highways

- If all water freezes at 0 °C, why do we salt the roads in the winter?
- Not all water freezes at 0 °C, so 0 °C is the melting point for pure water.
- · Salt does not melt the ice
  - Need to mix the salt into a solution.
  - The salt solution prevents the ice lattice from forming until a lower temperature.


## Save Our Strawberries!!!

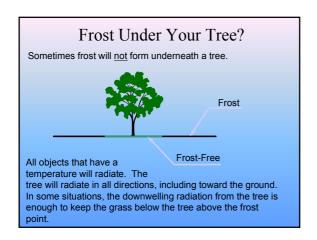

- Plant damage occurs at about -3 °C.
- Temperature sensors are placed near the plants.
- If the temperature is too low, a fine mist of water is sprayed on the plants.

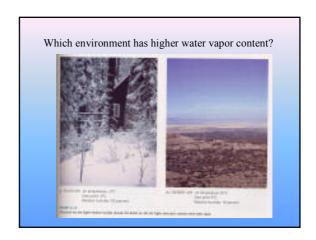




# Save Our Strawberries!!!

- The water freezes, releasing latent heat, keeping the plants' temperature above the critical level.
- After the water freezes, the plants' temperature can fall below the critical temperature. The ice does not act as a blanket.
- More water is added as needed to protect the plant.



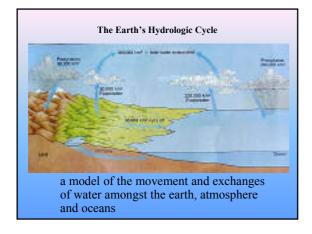





# Frost

- Ice that has been deposited from atmospheric water vapor on a subfreezing surface.
- <u>Frost Point</u>: The temperature at which air must be cooled, at constant pressure, to reach saturation with respect to ice.






# Water vapor is distributed throughout the atmosphere

- Generally largest amounts are found close to the surface, decreasing aloft
  - Closest to the source evaporation from ground, plants, lakes and ocean
  - Warmer air can hold more water vapor than colder air

# Fresh vs. salt water Most of the earth's water is found in the oceans only 3% is fresh water and 3/4 of that is ice The atmosphere contains only ~ 1 week supply of precipitation



# Why is the southwest coast of the US hot and dry while the Gulf coast is hot and moist?

- Both are adjacent to large bodies of water
- Both experience onshore wind flow on a regular basis
- Why does one have a desert like climate and the other ample moisture and rainfall?

Can we explain the hot dry southern California climate based upon the proximity of a cold ocean?

The cold water temperatures typically found off the west coast of continents are a result of oceanic upwelling which ocean currents typically cause in these locations

| F      | REVIEW QUESTIONS                                                                           |
|--------|--------------------------------------------------------------------------------------------|
| 1. Wat | ter, in the form of a gas, is called<br>a. air<br>b. nitrogen<br>c. water vapor<br>d. snow |
|        | common terms used to describe the                                                          |
| amoui  | nt of water vapor present in the air                                                       |
| are    | and .                                                                                      |
|        | a. humidity / moisture b. relative humidity/water                                          |
|        | b. Telative litility/water                                                                 |
|        | c. dew point / saturation                                                                  |
|        | d. relative humidity / dew point                                                           |

- 3. The amount of water vapor in the air is largely determined by the \_\_\_\_\_ of the air.

  a. temperature
  b. pressure
  c. density
  d. condensation constant

  4. Relative humidity depends on how \_\_\_\_ the air is and how much \_\_\_\_ is present.
  a. dry/density
  b. wet/density
  c. dense/water
  d. warm/water vapor
- 5. Virtually all of the atmospheric water vapor exists below the \_\_\_\_\_.

  a. Ionosphere
  b. Thermosphere
  c. Tropopause
  d. Troposphere

  6. The air is said to become saturated when the relative humidity reaches \_\_\_\_\_.

  a. 80%
  b. 85%
  c. 90%
  d. 100%
- 7. The surface temperature-dew point spread is useful for predicting \_\_\_\_\_\_.

  a. sky condition
  b. snow
  c. rain
  d. fog

  8. The process whereby water vapor changes directly to a solid form (ice), or vice versa, is called \_\_\_\_\_.

  a. fusion
  b. vaporization
  c. freezing
  d. sublimation
- 9. Fog, rain and snow are usually heavier on the
  \_\_\_\_\_ side of a water body.
  a. colder
  b. leeward
  c. warmer
  d. windward

  10. \_\_\_\_\_ precipitation can be expected
  from cirrus clouds.
  a. Showery
  b. No
  c. Steady
  d. Freezing

#### 11. The conversion of ice directly into water vapor.

- a. Releases thermal energy
- b. Requires thermal energy
- c. Is known as sublimation
- d. Is not physically possible without first going through the melting process
- e. Both b and c

#### 12. Air cools when it rises because.

- a. The temperature of the environment decreases with height
- b. Water within the parcel evaporates
- c. The pressure of the environment
- d. Both a and c

## 13. Suppose two columns of air have identical depth. The column of air having a greater density

- will a. Have a higher surface pressure b. Have a higher surface temperature
  - c. Have more air molecules per cubic centimeter
  - d. Have the same number of air molecules per cubic centimeter
  - e. Both a and c.

#### 14. Temperature is

- a. The average speed of atoms and molecules
- b. A byproduct of sensible heating
- c. A byproduct of latent heating
- d. Always transferred from hot objects to cold

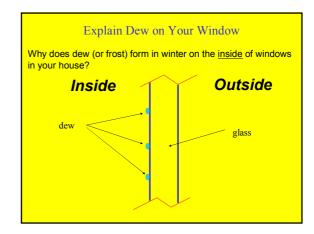
#### 15. Which requires more energy to complete the stated phase transition?

- a. Ice to liquid water
- b. Ice to water vapor
- c. Liquid water to water vapor
- d. Liquid water to ice
- e. Liquid water to slush

# 16. Relative humidity (RH) is NOT a good measure of the amount of moisture in the air

- a. RH depends upon the vapor pressure
- b. RH depends upon the temperature
- c. Cold air can hold far less moisture than
- d. The RH is a function of the dew point

## 17. Which of the following is/are independent of air parcel volume


- a. Relative humidity
- **b.** Mixing ratio
- c. Dew point
- d. Specific humidity e. Both b and d

#### 18. Relative humidity is

- a. The saturation vapor pressure divided by the vapor pressure
- b. The saturation mixing ratio divided by the
- c. The vapor pressure divided by the dew point d. The temperature divided by the dew point

# 19. The saturation vapor pressure depends primarily upon temperature.

- a. True
- b. False
- 20. Thunderstorms are unable to penetrate very far into the stratosphere because, above the tropopause, the temperature of the atmosphere increases with height.
  - a. True
  - b. False



**Explain: Why Ice Cubes Shrink in the Freezer?** 

Usually an important guest is visiting when you discover that the ice cubes are rattling around in the bottom of their trays like contact lenses...