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Tentative Course Outline

• Solving Linear Equations via Elimination

Linear system of equations, elimination, LU Decomposition, Inverses

• Vector Spaces

The four fundamental subspaces, solving Ax = b, rank, dimension.

• Orthogonality

Orthogonality, projection, least squares, Gram-Schmidt orthogonalization.

• Determinants

• Eigenvalues and Eigenvectors

Eigenvalues, eigenvectors, diagonalization, application to difference equations, symmetric ma-
trices, positive definite matrices, iterative splitting methods for solving linear systems, singular
value decomposition.



MAT 281E – Homework 1

Due 09.10.2015

1. Consider an augmented matrix of the form

A =
[
B C

]
,

where B and C are n× n matrices. Assume that B is an invertible matrix. Suppose that after some row
operations on A, we obtain a new augmented matrix

A′ =
[
D E

]
,

Find an expression for E in terms of B, C and D.

Solution. Since A′ is obtained from A by row operations, we can write A′ = RA for some matrix R.
Observe that D = FB, where F = DB−1. Thus, we have,

FA =
[
FB FC

]
=
[
D DB−1C

]
.

Thus, we should have E = DB−1C.

2. We are given the equation

x1

[
1 2 −1

]
+ x2

[
2 4 1

]
+ x3

[
−1 3 0

]
=
[
5 0 3

]
,

where x1, x2, x3 are real numbers. Find x1, x2, x3.

Solution. This is equivalent to solving 1 2 −1
2 4 3
−1 1 0

 x1

x2

x3

 =

5
0
3

 .

To obtain the solution, we form the augmented matrix and start elimination. 1 2 −1 5
2 4 3 0
−1 1 0 3

 r2←r2−2r1−−−−−−−→

 1 2 −1 5
0 0 5 −10
−1 1 0 3

 r3←r3+r1−−−−−−→

1 2 −1 5
0 0 5 −10
0 3 −1 8

 r2↔r3−−−−→

1 2 −1 5
0 3 −1 8
0 0 5 −10


The coefficient matrix reached the upper triangular form so we can now stop elimination and start back-
substituting. Note that the system we now have is,

x1 + 2x2 − x3 = 5

3x2 − x3 = 8

5x3 = −10

From the last equation, we obtain x3 = −2. Substituting x3 = −2 to the second equation, we find x2 = 2.
Finally, the first equation gives x1 = −1.

3. Consider the linear system of equations[
a 2
4 3

] [
x
y

]
=

[
1
b

]
.

(a) Find a pair (a, b) so that the system has a unique solution.

(b) Find a pair (a, b) so that the system has infinitely many solutions.

(c) Find a pair (a, b) so that the system has no solutions.

Solution. Suppose we do elimination on the augmented matrix (assuming a 6= 0)[
a 2 1
4 3 b

]
r2←r2−(4/a)r1−−−−−−−−−−→

[
a 2 1
0 3− 8/a b− 4/a

]
.



(a) As long as 3 6= 8/a, the system will have a unique solution. Take for instance (a, b) = (1, 0).

(b) We obtain infinitely many solutions by setting the second equation to zero with the choice (a, b) =
(8/3, 3/2).

(c) To obtain an inconsistent system of solutions, we can set (a, b) = (8/3, 1) – in this case, the second
equation is 0 = −1/2, which is not satisfied for any choice of x1, x2.

4. Suppose A is a 3 × 3 matrix whose rows are denoted by r1, r2, r3, that is, A =

r1r2
r3

. Also, let B be

another 3× 3 matrix given as

B =

r2 + 2 r3
r1 + r2
r1 − 2 r2

 .

Suppose that for a specific vector c,

B

2
1
2


︸︷︷︸

c

=

1
3
6

 .

Find Ac.

Solution. Observe that we can express B in terms of A as,

B =

0 1 2
1 1 0
1 −2 0

 A.

Thus, we have,0 1 2
1 1 0
1 −2 0


︸ ︷︷ ︸

F

Ac︸︷︷︸
z

=

1
3
6


︸︷︷︸

b

.

To obtain Ac = z, we need to solve F z = b. Let us form the augmented matrix and do elimination.0 1 2 1
1 1 0 3
1 −2 0 6

 r1↔r2−−−−→

1 1 0 3
0 1 2 1
1 −2 0 6

 r3←r3−r1−−−−−−−→

1 1 0 3
0 1 2 1
0 −3 0 3

 r3←r3+3r2−−−−−−−→

1 1 0 3
0 1 2 1
0 0 6 6

 .

The new system of equations is,

z1 + z2 = 3

z2 + 2z3 = 1

6z3 = 6

The last equation gives z3 = 1. Plugging this in the second equation, we obtain z2 = −1. Finally, plugging

these in the first equation, we obtain z1 = 4. Thus, Ac =

 4
−1
1

.
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MAT 281E – Homework 2

Due 16.10.2015

1. Find the LU decomposition of

A =

−1 1 −2
−4 1 −11
−2 −10 −12

 .
Solution. Let us do elimination on A.

A
r2←r2−4r1−−−−−−−→

E1

−1 1 −2
0 −3 −3
−2 −10 −12

 r3←r3−2r1−−−−−−−→
E2

−1 1 −2
0 −3 −3
0 −12 −8

 r3←r3−4r2−−−−−−−→
E3

−1 1 −2
0 −3 −3
0 0 1


︸ ︷︷ ︸

U

The elimination steps can be expressed in terms of matrices as, E3E2E1A = U , where

E1 =

 1 0 0
−4 1 0
0 0 1

 , E2 =

 1 0 0
0 1 0
−2 0 1

 , E3 =

1 0 0
0 1 0
0 −4 1

 .
Observe also that these are easily inverted as,

E−11 =

1 0 0
4 1 0
0 0 1

 , E−12 =

1 0 0
0 1 0
2 0 1

 , E−13 =

1 0 0
0 1 0
0 4 1

 .
Finally, notice that A = LU , for

L = E−11 E−12 E−13 =

1 0 0
4 1 0
2 4 1


Observe that L can be consrtucted by copying the non-zero diagonal entries of the matrices E−1i (please
think about why – or see the book for a discussion on how L ‘stores’ the eliminaton steps).

2. Let A be a matrix given as

A =

1 0 3
2 1 0
4 1 6

 .
Find a real number α, so that,

b =

4
α
3


is in the column space of A.

Solution. In order for b to be in C(A), we must be able to solve Ax = b. Let us form the augmented
matrix and do elimination1 0 3 4

2 1 0 α
4 1 6 3

 r2←r2−2r1
r3←r3−4r1−−−−−−−→

1 0 3 4
0 1 −6 α− 8
0 1 −6 −13

 r3←r3−r2−−−−−−−→

1 0 3 4
0 1 −6 α− 8
0 0 0 −5− α


Notice that the last equation is of the form 0 = −5− α. Therefore, we must have α = −5. Observe that
with this choice we can find a solution.

3. Let V be the subspace of R3 spanned by the vectors v1 and v2, where

v1 =

1
1
1

 , v2 =

1
1
0

 .



Also, let S be the subspace of R3 spanned by

s1 =

2
1
1

 , s2 =

1
2
1

 .
Find a non-zero vector z that lies in both S and V .

Solution. We are asked to find α1, α2, β1, β2 such that

[
v1 v2

] [α1

α2

]
=
[
s1 s2

] [β1
β2

]
.

But we can rewrite this as

[
v1 v2 −s1 −s2

]︸ ︷︷ ︸
A


α1

α2

β1
β2

 =

0
0
0

 .
Thus we need to find a non-zero vector from the null-space of A. Let us do elimination,1 1 −2 −1
1 1 −1 −2
1 0 −1 −1

 r2←r2−r1−−−−−−−→

1 1 −2 −1
0 0 1 −1
1 0 −1 −1

 r3←r3−r1−−−−−−−→

1 1 −2 −1
0 0 1 −1
0 −1 1 0

 r3↔r2−−−−→

1 1 −2 −1
0 −1 1 0
0 0 1 −1


Here, there is only one free variable, namely β2. Setting β2 = 1, we find from the last row that β1 = 1.
Plugging these in the equation described by the second row, we find α2 = 1. Finally, the first row gives
α1 = 2. Thus, the vector

[
v1 v2

] [2
1

]
=
[
s1 s2

] [1
1

]
=

3
3
2


lies in S ∩ V .

4. Describe the null-space of

A =

 1 2 −1 1
−1 −2 1 −1
2 4 3 1

 .
Solution. Let us do elimination on A.

A
r2←r2+r1−−−−−−→

1 2 −1 1
0 0 0 0
2 4 3 1

 r3←r3−2r1−−−−−−−→

1 2 −1 1
0 0 0 0
0 0 5 −1

 r2↔r3−−−−→

1 2 −1 1
0 0 5 −1
0 0 0 0


︸ ︷︷ ︸

R

.

In the last matrix, the pivots are framed. The columns that contain the pivots are the pivot columns
and the other columns are called free columns. The variables that multiply the free columns (x2 and x4
in this case) are the free variables. In order to find the special solutions, we solve for the pivot variables
x1, x3 under the choices (x2, x4) = (1, 0) and (x2, x4) = (0, 1). If we take (x2, x4) = (1, 0), we must have
(x1, x3) = (−1/2, 0) in order for Rx = 0. Similarly, if (x2, x4) = (0, 1), we must have (x1, x3) = (−4/5, 1/5)
in order for Rx = 0. Thus the two special solutions are,

s1 =


−1/2

1
0
0

 , s2 =


−4/5

0
1/5
1

 ,
and N(A) is the set of vectors of the form α1 s1 + α2 s2, where α1, α2 are real numbers.
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MAT 281E – Homework 3

Due 23.10.2015

1. Consider the system of equations Ax = b, where,

A =

 1 −1 3 0 1
−1 1 −2 1 0
2 −2 5 −1 1

 , b =

−3
1
−4

 .
(a) Find a basis for N(A), the nullspace of A.

(b) Describe the solution set of Ax = b.

Solution. We are asked to find the solution set in the question. So let us form the augmented matrix
and do elimination. 1 −1 3 0 1 −3

−1 1 −2 1 0 1
2 −2 5 −1 1 −4

 r2←r2+r1−−−−−−−→
r3←r3−2r1

1 −1 3 0 1 −3
0 0 1 1 1 −2
0 0 −1 −1 −1 2

 r3←r3+r1−−−−−−→

1 −1 3 0 1 −3
0 0 1 1 1 −2
0 0 0 0 0 0

 r1←r1−3r2−−−−−−−→

1 −1 0 −3 −2 3
0 0 1 1 1 −2
0 0 0 0 0 0


We reached the reduced row echelon form. Observe that the system of equations described by Ax = b are
equivalent to C x = d, where

C =

[
1 −1 0 −3 −2
0 0 1 1 1

]
, d =

[
3
−2

]
.

Note that here the first and third columns are pivot columns. Therefore the pivot variables are x1 and
x3. x2, x4, x5 are the free variables.

(a) There are three special solutions for C x = 0, which is equivalent to Ax = 0. Setting (x2, x4, x5) =
(1, 0, 0) and solving for the pivot variables in the equation, we obtain (x1, x3) = (1, 0). Thus,

s1 =


1
1
0
0
0

 .
To obtain s2 we set (x2, x4, x5) = (0, 1, 0) and solve for the pivot variables. To obtain s3 we set
(x2, x4, x5) = (0, 0, 1) and solve for the pivot variables. We obtain,

s2 =


3
0
−1
1
0

 , s3 =


2
0
−1
0
1

 .
N(A) consists of vectors that can be expressed as α1 s1 + α2 s2 + α3 s3, where αi ∈ R.

(b) We need to find a particular solution xp satisfying C xp = d. For that set the free variables to zero
and solve for the pivot variables. That gives

xp =


3
0
−2
0
0

 .
The solution set of Ax = b, consists of all vectors of the form xp +α1 s1 +α2 s2 +α3 s3, where αi ∈ R.



2. We know that a plane in R3 is determined by three points on it. Suppose

p1 =

1
1
2

 , p2 =

1
2
4

 , p3 =

2
1
3


lie on a plane P . Find a matrix A and a vector b such that the solution set of Ax = b is P .

Solution. Note that a plane is described by the equation cT x = b, for a vector c ∈ R3 and b ∈ R. It
suffices to find two vectors orthogonal to c (will be clear when we discuss dimension). Notice that Api = b
for i = 1, 2, 3. Thus Ap3 − Apj = A(p3 − pj) = 0 for j = 1, 2. Thus, sj = (p3 − pj) ∈ N(A) for j = 1, 2.
These vectors are

s1 =

1
0
1

 , s2 =

 1
−1
−1

 . (1)

To find a c, solve

[
sT1
sT2

]
c = 0.

[
1 0 1
1 −1 −1

]
r2←r2−r1−−−−−−−→

[
1 0 1
0 −1 −2

]
Note that c3 is the only free variable. So there’s a single special solution obtained by setting c3 = 1. For

this choice, we obtain c1 = −1, c2 = −2. Thus, c =
[
−1 −2 1

]T
. For this c, observe that cT p1 = −1.

Thus, A =
[
−1 −2 1

]
, b = −1 works.

3. Recall that we say x is orthogonal to y if 〈x, y〉 = 0. Let

A =

[
1 2 3
3 2 1

]
.

Also, let N(A) denote the null-space of A. Find two non-zero vectors z1 and z2 such that if x ∈ N(A),
then x is orthogonal to both z1 and z2. Here, I also ask that z1 and z2 have different directions, that is
z1 6= αz2 for any α ∈ R.

Solution. Suppose x ∈ N(A). This means Ax = 0. But this means that 〈ri, x〉 = 0 for i = 1, 2, where ri
denotes the ith row of A. Thus the two rows of A can be taken as z1, z2.

4. Find a non-zero vector x that is orthogonal to every vector in the column space of A, where

A =

1 2 3
3 2 1
4 4 4

 .
Solution. Observe that if xT A =

[
0 0 0

]
, then xT Aα = 0, for any column vector α ∈ R3. Since any

v ∈ C(A) can be expressed as Aα for some α ∈ R3, find such an x is sufficient for our purpose. Instead
of solving xtA = 0, we can equivalently consider AT x = 0. That is, obtain a vector from the nullspace of
AT . Let us do elimination.1 3 4

2 2 4
3 1 4

 r2←r2−2r1−−−−−−−→ [r3 ← r3 − 3r1]

1 3 4
0 −4 −4
0 −8 −8

 r3←r3−2r2−−−−−−−→

1 3 4
0 −4 −4
0 0 0

 .

Setting the free variable x3 = 1, we find the pivot variables as x2 = −1, x1 = −1. Thus x =

−1
−1
1

 works.

2



MAT 281E – Homework 4

Due 20.11.2015

1. Suppose A, B are matrices of the same size and Ax = Bx for all x. Show that A = B.

Solution. Note that the stated condition implies that (A − B)x = 0 for all x. Now let C = A − B.
Suppose Ci,j 6= 0 for some i, j. Now let x be a vector such that xj = 1 and xk = 0 for k 6= j. Then, if
y = C x, we have yi = Ci,j 6= 0. But this contradicts the assumption that C x = 0. Thus Ci,j = 0 for any
i, j.

2. Suppose S, U are symmetric matrices and xTSx = xTUx for all x. Show that S = U .

Solution. The given condition implies that xT (S − U)x = 0 for all x. Let C = S − U . Observe that
because ST = S and UT = U , we also have CT = C, i.e., C is symmetric. Suppose Ci,j 6= 0. By symmetry,
we also have Cj,i 6= 0. Now let x be a vector such that xi = 1, xj = 1 and xk = 0 for k 6= j, k 6= i. For
this x, we have xTCx = Ci,j + Cj, i = 2Ci,j 6= 0. But this contradicts the assumption that xTC x = 0.
Thus Ci,j = 0 for any i, j.

3. The claim above is no longer valid if S or U is not symmetric. To see this, find two square matrices A,
B with A 6= B such that xTAx = xTBx for all x.

Solution. Consider

A =

[
0 1
0 0

]
, B =

[
0 0
1 0

]
.

Then, for x =

[
x1
x2

]
, we have xT Ax = xT Bx = x1 x2, but A 6= B.

4. Consider the plane described by the equation x + y + z = 0. Find the closest point of this plane to
v =

(
1, 2, 3

)
.

Solution. Notice that this plane is the null space of the matrix A =
[
1 1 1

]
. Thus we need to project

v onto N(A). An alternative is to project v onto N(A)⊥ and subtract it from N(A). For this problem,
this latter approach is easier because N(A)⊥ = C(AT ) and since A has only one row, C(AT ) is spanned

by x =
[
1 1 1

]T
. The projection matrix onto N(A) is therefore given as, P = I − x(xT x)−1xT .

Computing Pv, we find Pv =
[
−1 0 1

]T
.

5. Consider the plane described by the equation x + y + z = 1. Find the closest point of this plane to
v =

(
1, 2, 3

)
.

Solution. This plane is not a subspace. We need a description of the solution set of the plane equation

[
1 1 1

] x1x2
x3

 = 1.

Observe that a particular solution is
[
1 0 0

]
. Also, the special solutions are given as,

s1 =

−1
1
0

 , s2 =

−1
0
1

 .
Thus the solution set is given as, the set of points of the form1

0
0


︸︷︷︸
p

+

−1 −1
1 0
0 1


︸ ︷︷ ︸

A

[
α1

α2

]
.

Thus we need to solve

min
α
‖(v − p)−Aα‖.



Letting b = v − p, we know that the solution of this problem also solves

AT Aα∗ = AT b.

Notice that

AT A =

[
2 1
1 2

]
, AT b =

[
2
3

]
.

Solving for α∗ (via elimination), we find α∗ =
[
1/3 4/3

]T
. Thus the closest point of the plane to v is

p+Aα∗ =
[
−2/3 1/3 4/3

]T
.

6. Consider the lines l1 =
(
x, 2x, x+ 3, −x

)
, l2 =

(
1− y, −2y, −1− y, 2

)
in R4. Find two points p ∈ l1,

q ∈ l2 that minimize ‖p− q‖.

Solution. Notice that we are trying to solve

min
x,y

∥∥∥∥∥∥∥∥



1
2
1
−1

x+


0
0
3
0


−



−1
−2
−1
0

 y +


1
0
−1
2



∥∥∥∥∥∥∥∥ .

This can be equivalently written as,

min
x,y

∥∥∥∥∥∥∥∥∥∥∥∥


1 1
2 2
1 1
−1 0


︸ ︷︷ ︸

A

[
x
y

]
︸︷︷︸
α

−


1
0
−4
2


︸ ︷︷ ︸

b

∥∥∥∥∥∥∥∥∥∥∥∥
.

The minimizing α∗ satisfies, ATAα∗ = AT b. Notice that

AT A =

[
7 6
6 6

]
, AT b =

[
−5
−3

]
. (1)

Thus we find x∗ = −2, y∗ = 3/2. Therefore the closest points of l1 and l2 are,
(
−2, −4, 1, 2

)
∈ l1 and(

−1/2, −3, −5/2, 2
)
∈ l2.

7. Suppose that N(AT ), the left null-space of A, is two dimensional and the projection of
(
1, 2, 3

)
to N(AT )

is
(
0, 1, 1

)
. Find a basis for C(A), the column space of A.

Solution. Observe that N(AT ) is a subspace of R3. Since it is two dimensional, its complement C(A)
must be one dimensional. Thus it is sufficient to find a vector from C(A) to find a basis. Recall that if
Pv is the projection of v onto a space S, then v − Pv is the projection onto S⊥. Since C(A) = N(AT )⊥,
it follows that (1, 2, 3)− (0, 1, 1) = (1, 1, 2) is in C(A) and forms a basis for C(A).

2



MAT 281E – Homework 5

Due 27.11.2015

1. Show that if q1, q2, . . . , qk are orthogonal non-zero vectors, they are also linearly independent.

Solution. Suppose

α1q1 + α2q2 + . . .+ αkqk = 0.

Imagine we compute the inner product of both sides with qj for some j. For i 6= j, since 〈qj , qi〉 = 0, we
have

〈qj , (α1q1 + α2q2 + . . .+ αkqk)〉 = α1〈qj , q1〉+ . . .+ αk〈qj , qk〉
= αj〈qj , qj〉
= αj‖qj‖2

= 0.

But since qj ’s are non-zero vectors, ‖qj‖2 > 0 and thus αj = 0. Since j was an arbitrary index, it follows
that all αi’s must be zero. Thus qi’s are linearly independent.

2. Let S be the subspace of R4 described by the equation ‘x1 − x2 + x3 − 2x4 = 0’.

(a) Find a basis for S.

(b) Find an orthonormal basis for S.

Solution. (a) Notice that S = N(A), where A =
[
1 −1 1 −2

]
. Thus the special solutions of Ax = 0

give a basis for S. The special solutions are,

s1 =


1
1
0
0

 , s2 =


−1
0
1
0

 , s3 =


2
0
0
1

 .
(b) We apply the Gram-Schmidt procedure to s1, s2, s3. We first set

q1 =
s1
‖s1‖

=
1√
2


1
1
0
0

 .
Now let

q̃2 = s2 − q1 qT1 s2 =


−1/2
1/2
1
0

 .
Then set q2 = q̃2/‖q̃2‖ =

√
2/3 q̃2. Finally,

q̃3 = s3 − q1 qT1 s3 − q2 qT2 s3 =


2/3
−2/3
2/3
1

 ,
and q3 = q̃3/‖q̃3‖ =

√
3/7 q̃3.

3. Let A be a matrix whose columns are not linearly independent. Also, let b be a vector, that is not in
C(A) (i.e., the column space of A). Suppose also that z is another vector for which AT Az = AT b.

(a) What is the closest vector in C(A) to b? Express it in terms of A, b and/or z.

(b) Let P be the projection matrix onto C(A). Also, let Q be the projection matrix onto the left nullspace
of A, i.e. N(AT ). Express ‘(P −Q) b’ in terms of A, b and/or z.



Solution. (a) Recall that if b = b1 + b2 where b1 ∈ C(A) and b2 ∈ C(A)⊥ = N(AT ), then b1 is the
closest vector in C(A) to b. Since b1 ∈ C(A), we can find a vector u such that Au = b. But we know
that such a u is found by solving AT Au = AT b. Therefore, Az is closest vector in C(A) to b.

(b) According to the discussion above, P b = b1, Qb = b2 = b − b1. Using b1 = Az, we thus have
(P −Q)b = Az − (b−Az) = 2Az − b.

4. Let S be a plane in R3. Also, let the projection matrix onto S be given as

P =

 5/6 −2/6 1/6
−2/6 2/6 2/6
1/6 2/6 5/6

 .
Find a set of coefficients a1, a2, a3, such that the solution set of the equation

a1 x1 + a2 x2 + a3 x3 = 0

is equivalent to S.

Solution. A plane in R3 is 2-dimensional. Therefore S is 2-dimensional. Thus S⊥ is 1-dimensional and
a basis for S⊥ contains a single vector and thus it’s sufficient to find a single non-zero vector in S⊥

to obtain a basis. Let x =
[
1 0 0

]T
. Then z = (x − Px) ∈ S⊥ and z is a basis for S⊥. Notice

z =
[
1/6 2/6 −1/6

]T
. Thus, S = N(A), where A =

[
1 2 −1

]
.

2



MAT 281E – Homework 6

Due 04.12.2015

1. Suppose we are given

a1 =

1
1
0

 , a2 =

 1
−1
1

 , a3 =

1
1
3


that span R3.

Also, let

A =

1
2
3


︸︷︷︸
u

[
1 1 0

]︸ ︷︷ ︸
aT
1

.

(a) Apply the Gram-Schmidt procedure to the vectors {a1,a2,a3} to find three vectors {q1,q2,q3} which
form an orthonormal basis for R3.

(b) What are the dimensions of N(A) and C(A)?

(c) Find three eigenvectors, e1, e2, e3, of A that span R3. What are the associated eigenvalues?

Solution. (a) We start by setting

q1 =
a1

‖a1‖
=

1√
2

1
1
0

 .
Consider now the second vector, we first define

q̃2 = a2 − q1 q
T
1 a2 =

 1
−1
1

− 0

1
1
0

 =

 1
−1
1

 ,
and then set

q2 =
q̃2

‖q̃2‖
=

1√
3

 1
−1
1

 .
Finally for the third vector, we first define

q̃3 = a3 − q1 q
T
1 a3 − q2 q

T
2 a3 =

1
1
3

− 1

1
1
0

− 1

 1
−1
1

 =

−1
1
2

 ,
and then set

q3 =
q̃3

‖q̃3‖
=

1√
6

−1
1
2

 .
(b) Observe that the columns of Aare multiples of u. Therefore, C(A) is spanned by u, so that dimC(A) =

1. Since dimC(A) = rank = dimC(AT )and dimC(AT ) + dimN(A) = number of columns, it follows
that dimN(A) = 2. The same conclusion may also be deduced by observing that N(A)is the set of
vectors orthogonal to a1.

(c) First observe that since q2 and q3 are orthogonal to a1 they are eigenvectors of Awith eigenvalue 0
(that is, Aq2 = 0q2, Aq3 = 0q3). Finally observe that since C(A)is spanned by u, for any x, we have
Ax = c u, where c is some scalar. Thus if we take x = u, we obtain, Au = λu, where λ = aT1 u = 3.
We know from part (a) that q2and q3are linearly independent. Check that since qT1 u 6= 0, u is not in
the span of q2and q3 (why?). Thus, u, q2, q3 span R3 and they are eigenvectors of A.



2. Let

A =

1 −1 3
1 1 1
1 −1 1

 .
Find an orthogonal matrix Q and an upper triangular matrix R such that A = QR.

Solution. Let us denote the ith column of A by ai. We will apply the Gram-Schmidt procedure on A.
We start with

q1 =
a1

‖a1‖
=

1√
3

1
1
1

 .
For the second vector, we set

q̃2 = a2 − q1 q
T
1 a2 =

−1
1
−1

− −1

3

1
1
1

 =

−2/3
4/3
−2/3

 ,
and

q2 =
q̃2

‖q̃2‖
=

1√
6

−1
2
−1

 .
For the last vector, we define

q̃3 = a3 − q1 q
T
1 a3 − q2 q

T
2 a3 =

3
1
1

− 5

3

1
1
1

− −2

6

−1
2
−1

 =

 1
0
−1

 ,
and set

q3 =
q̃3

‖q̃3‖
=

1√
2

 1
0
−1

 .
Now observe that

a1 =
√

3q1,

a2 = q1 q
T
1 a2 + q2 q

T
2 a2 =

−1√
3
q1 +

4√
6
q2,

a3 = q1 q
T
1 a3 + q2 q

T
2 a3 + q3 q

T
3 a3 =

5√
3
q1 +

−2√
6
q2 +

√
2q3.

Therefore,

A =
[
q1 q2 q3

] √3 −1/
√

3 5/
√

3

0 4/
√

6 −2/
√

6

0 0
√

2

 .
3. Let A be a matrix with eigenvalues 1, 2, and associated eigenvectors

e1 =

[
2
1

]
, e2 =

[
3
2

]
.

Also, let I denote the 2× 2 identity matrix. Compute (A− I)10.

Solution. Observe that

(A− I)e1 = Ae1 − e1 = 0

(A− I)e2 = Ae2 − e2 = (2− 1)e2.

2



Thus ei’s are eigenvectors of A− Ialso (any vector is an eigenvector of I). Thus we can write,

A− I =
[
e1 e2

]︸ ︷︷ ︸
E

[
0 0
0 1

]
︸ ︷︷ ︸

Λ

E−1.

Thus, (A− I)10 = E Λ10E−1. But observe that Λ10 = Λ. Therefore, A− I = A− I. To find A, we invert
E and plug it in

A = E

[
1 0
0 2

]
E−1,

which I leave to you.

4. Let A be a matrix with eigenvalues 1, 1/2, and associated eigenvectors

e1 =

[
1
1

]
, e2 =

[
1
2

]
.

(a) Write down the eigenvalues and eigenvectors of A10.

(b) Compute A10 v, where v =

[
(29 − 1)
(210 − 1)

]
.

(c) Find A.

Solution. (a) First note that

A =
[
e1 e2

]︸ ︷︷ ︸
E

[
1 0
0 1/2

]
︸ ︷︷ ︸

Λ

E−1.

Observe that A10 = E Λ10E−1. Since Λ10 is also diagonal, its diagonal entries (which are 110 and
(1/2)10) must be the eigenvalues and the columns of E, namely e1, e2 must be the eigenvectors.

(b) Notice that

v = 29 e2 − e1.

Thus, by the discussion in part (a), we have,

Av = −Ae1 + 29Ae2 = −e1 + 29 1

210
e2 =

[
−1/2

0

]
.

(c) We find E−1by Gasus-Jordan elimination as,

E−1 =

[
2 −1
−1 1

]
.

Plugging this in the expression for A, we find

A = E ΛE−1 =

[
3/2 −1/2
1 0

]

5. Let S be a subspace of R3. Also, let PS be the non-zero projection matrix for S. Suppose that,

PS

3
2
1

 =

2
2
2

 , PS

0
2
1

 =

1
1
1

 .
(a) Find a basis for S⊥, the orthogonal complement of S.

(b) Find a basis for S.

(c) Find three linearly independent eigenvectors and the associated eigenvalues for PS .

3



Solution. (a) Note that dim(S) + dim(S⊥) = 3 since both are subspaces of R3. Observe first that

v =
[
1 1 1

]T
is in S, so that dim(S) ≥ 1. Therefore, dim(S⊥) ≤ 2. Observe also that

u1 =

3
2
1

− PS

3
2
1

 =

 1
0
−1

 ∈ S⊥, and u2 =

0
2
1

− PS

0
2
1

 =

−1
1
0

 ∈ S⊥.
Further, observe that u1 u2are linearly independent. Since dim(S⊥) ≤ 2, it follows that u1and u2

actually form a basis for S⊥.

(b) Form part (a), we find that dim(S) = 1. Thus v ∈ S is a basis for S.

(c) Observe that PS v = v. Thus v is an eigenvector of PS with eigenvalue 1. Observe also that
PS u1 = 0u1, PSu2 = 0u2. Thus, u1 and u2 are eigenvectors with eigenvalue 0. Since v, u1, u2 are
linearly independent (why?), we are done.

6. Suppose A is an n×n matrix and it has an eigenvalue equal to λ. Let B be the 2n× 2n matrix defined as

B =

[
0 A
A 0

]
.

Show that λ and −λ are eigenvalues of B.

Solution. Suppose Ax = λx (such an x has to exist). Consider now the length-2nvector yformed as

y =

[
x
x

]
. Observe that

B y =

[
Ax
Ax

]
= λ

[
x
x

]
= λy.

Thus λ is an eigenvalue of B.

Consider now the length-2nvector zformed as y =

[
x
−x

]
. Observe that

B z =

[
−Ax
Ax

]
= λ

[
−x
x

]
= −λz.

Thus −λ is an eigenvalue of B.

4



MAT 281E – Homework 7

Due 30.12.2015

Decide whether the following are true or false. Give brief explanations to justify your answer. Assume that
the matrix A has real-valued entries.

1. For any A, we can find invertible E and a diagonal Λ such that A = E ΛE−1.

Answer. False. Think of A =

[
0 1
0 0

]
. Both eigenvalues of this matrix are zero but the only eigenvector

is of the form

[
c
0

]
for c 6= 0.

2. If A = E ΛE−1, for a diagonal Λ, then E contains the eigenvectors of A and Λ contains the eigenvalues
of A.

Answer. True. If AE = E Λ, then Aei = λi ei, where ei represents column i of Eand λi is the entry at
the ith diagonal entry of Λ.

3. An n× n matrix always has n distinct eigenvalues.

Answer. False. I has only 1 as an eigenvalue.

4. If A is invertible, then all of its eigenvalues are non-zero.

Answer. True. If this were not true, we could have Ax = 0 for a non-zero x, and A would not be
invertible in that case.

5. If all eigenvalues of A are non-zero, then A is invertible.

Answer. True. Remember that detA is the product of the eigenvalues. So, if the eigenvalue are non-zero,
detAis non-zero, and therefore Ais invertible. Notice that this is the converse of the previous statement
and an argument based on the determinant can also be used for showing that statement.

6. For an n× n matrix, we can always find n eigenvectors that span Rn.

Answer. False. Think again of A =

[
0 1
0 0

]
. This matrix has a single eigenvector. (It has a ‘generalized

eigenvector’, which we did not discuss in class – that’s related with the Jordan form.)

7. If A is a singular n× n matrix, we cannot find n linearly independent eigenvectors.

Answer. False. Think of A =

[
1 0
0 0

]
. The vectors e1 =

[
1
0

]
and e2 =

[
0
1

]
are eigenvectors of A and

they are linearly independent.

8. If A is symmetric, we can find n linearly independent eigenvectors.

Answer. True. By the spectral theorem, A = QΛQT for a diagonal Λ and orthogonal Q. The columns
of Qcontain eigenvectors of Aand they are linearly independent as a consequence of orthogonality.

9. If we can find n orthogonal eigenvectors for an n× n matrix A, then A is symmetric.

Answer. True. If we can find n orthogonal eigenvectors for A, namely q1, . . . , qn, then we can form
Q =

[
q1 . . . qn

]
and write AQ = QΛ for a diagonal Λ. But this means A = QΛQT and so A is

symmetric.

10. If A is symmetric, then any two linearly independent eigenvectors of A have to be orthogonal.

Answer. False. Think of I. e1 =

[
1
0

]
and e2 =

[
1
1

]
are linearly independent eigenvectors of I but they

are not orthogonal. (Spectral theorem implies that we can find an orthogonal set of eigenvectors but this
does not exclude the possibility that there might be two linearly independent eigenvectors that are not
orthogonal.)



11. If A is real, then its eigenvalues have to be real-valued.

Answer. False. Think of A =

[
0 1
−1 0

]
. The eigenvalues of A are ±i.

12. If A is symmetric, then its eigenvalues have to be real-valued.

Answer. True. Recall the spectral theorem.

13. If A is real, then its eigenvectors have to be real-valued.

Answer. False. Think of A =

[
0 1
−1 0

]
. e =

[
i
− i

]
is an eigenvector of A.

14. If A is symmetric, then its eigenvectors have to be real-valued.

Answer. False. Think of I. e =

[
i
i

]
is an eigenvector. (Spectral theorem implies that we can find

real-valued eigenvectors but this does not exclude the possibility that a complex-valued vector is an
eigenvector.)

15. If A and B are diagonalizable and have the same eigenvectors, then AB = BA.

Answer. True. If A and B are diagonalizable and have the same eigenvectors, then we can write A =
E ΛAE

−1, B = E ΛB E
−1for diagonal matrices ΛAand ΛB . So,

AB = E ΛAE
−1E ΛB E

−1 = E ΛA ΛB E
−1 = E ΛB ΛAE

−1 = E ΛB E
−1E ΛAE

−1 = BA.

16. If A and B are symmetric, then AB = BA.

Answer. False. Take any non-trivial symmetric matrices and try the two products above.

17. If A and B are symmetric, then AB is also symmetric.

Answer. False. Again, try this on your own.

18. For any square A, we can find an orthogonal Q and an upper-triangular U such that A = QU QT .

Answer. True. This is the Schur decomposition discussed in class.

19. For any square A, we can find an orthogonal Q and an lower-triangular L such that A = QLQT .

Answer. True. This follows from the Schur decomposition. Let B = AT . Then, by the Schur decompo-
sition, we can find orthogonal Q and upper triangular Usuch that B = QU QT . But then A = QUT QT .
Since UT is lower-triangular, the claim follows.

20. Any matrix has at least one eigenvalue.

Answer. True. The characteristic polynomial has at least a single root by the ‘fundamental theorem of
algebra’.

21. If e1, . . . , ek are eigenvectors of A associated with different eigenvalues, then e1, . . . , ek are linearly inde-
pendent.

Answer. True. I’ll demonstrate this for k = 2. Let E =
[
e1 e2

]
and let Λbe the diagonal matrix holding

the associated eigenvectors so that AE = E Λ. Now suppose E α = 0 for a non-zero vector α. But this
means, E Λα = 0 also. Thus, we can write

0 = E

[
α1 λ1, α1

α2 λ2, α2

]
= E

[
α1 λ1 α1

α2 λ2 α2

]
= E

[
α1 0
0 α2

] [
1 λ1
1 λ2

]
.

But by the assumption that λi are distinct, it follows that the last matrix is invertible. Therefore,

E

[
α1 0
0 α2

]
=

[
α1 e1 α2 e2

]
= 0.

Since ei’s are non-zero vectors, the last equality cannot hold. Thus we cannot find a non-zero vector α
such that E α = 0. This means that the columns of E are linearly independent.

For the case of arbitrary k, the proof of which I leave to you, a keyword that might be useful is ‘Vander-
monde matrices’.
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22. If an n× n matrix A has n distinct eigenvalues, then it is diagonalizable.

Answer. True. If λ1, . . . , λn are the distinct eigenvalues, then we obtain different eigenvectors by solving
(A − λi)x = 0. By the argument for the previous statement these eigenvectors are linearly independent,
and thus follows the claim.

23. The sum of the diagonal entries of A is equal to the sum of the eigenvalues.

Answer. True. Recall that the trace of A is equal to the sum of the eigenvalues as discussed in class.

24. If the diagonal entries of A are non-zero then the eigenvalues are also non-zero.

Answer. False. Think of A =

[
1 1
1 1

]
. This matrix has non-zeros on its diagonal but it is not invertible

so it has a zero eigenvalue.

25. The product of the diagonal entries of A is equal to the product of the eigenvalues.

Answer. False. Think again of A =

[
1 1
1 1

]
. This matrix has a zero eigenvalue, so the product of the

eigenvalues is zero, wheras the product of the diagonal entries is unity.

3



MAT 281E – Linear Algebra and Applications

Midterm Examination – I

06.11.2015

1. Consider the matrices A, B below, related to each other by an elimination operation.(20 pts) 1 2 3

2 3 4

4 5 6


︸ ︷︷ ︸

A

r3←r3−2r2−−−−−−−→

1 2 3

2 3 4

0 −1 −2


︸ ︷︷ ︸

B

(a) Find two matrices C1, C2 such that C1AC2 = B.

(b) Find two matrices D1, D2 such that A = D1BD2.

2. Consider the system of linear equations(30 pts)

1 1 0 1 −2

2 3 −1 1 −3

0 −1 1 −1 3


︸ ︷︷ ︸

A


x1
x2
x3
x4
x5


︸ ︷︷ ︸

x

=

 3

7

−3


︸ ︷︷ ︸

b

.

(a) Find a particular solution that solves this system of linear equations.

(b) Describe N(A), the nullspace of A (that is, find the special solutions).

(c) What is the rank of A?

(d) Describe the whole solution set of the system of linear equations Ax = b.

3. Consider the matrix(25 pts)

A =

[
1 2 3 2

2 3 5 4

]
.

(a) Find the rank of A. Find also the dimension of N(A) (the nullspace of A).

(b) Find two non-zero orthogonal vectors v1, v2 that are both in N(A).

4. Consider the matrix(25 pts)

A =

1 2 3

2 3 2

3 5 5

 .

(a) Find the rank of A.

(b) What is the dimension of C(A)?

(c) What is the maximum number of linearly independent non-zero vectors you can find in

C(A)?

(d) Find a basis for C(A), the column space of A.

(e) Find a basis for C(AT ), the row space of A.

(f) Find a (3× r) matrix B and an (r × 3) matrix C such that A = BC.

(Hint : Express the either the columns or rows of A in terms of the bases you found in part

(d) or part (e).)



MAT 281E – Linear Algebra and Applications

Midterm Examination – II

10.12.2015

Student Name :

Student Num. :

4 Questions, 100 Minutes

Please Show Your Work for Full Credit!

1. Suppose we are given a matrix A and a vector b as(25 pts)

A =


1 1 1

−1 1 2

1 1 0

−1 1 1

 , b =


5

4

2

2

 .

(a) Find a vector x that minimizes ‖Ax− b‖.
(b) Find the projection of b onto the column space of A, that is C(A).

(c) Find the projection of b onto the left null-space of A, that is N(AT ).

2. Consider the subspace S of R3 defined as the solution set of(25 pts)

x1 + 2x2 + 3x3 = 0.

(a) Find the projection matrix for S⊥, where S⊥ is the orthogonal complement of S.

(b) Find the projection matrix for S.

(c) Let

v =

1

1

1

 .

Find p ∈ S, and q ∈ S⊥ such that v = p + q.

3. Consider the vectors(25 pts)

a1 =


1

−1

1

−1

 , a2 =


1

1

1

−1

 , a3 =


1

0

1

0

 .

Apply the Gram-Schmidt process to a1, a2, a3 to obtain three orthogonal unit vectors q1, q2, q3
that span the same space as a1, a2, a3.

4. Consider the matrix(25 pts)

A =

[
9 −4

20 −9

]
.

(a) Find the eigenvalues and the eigenvectors of A.

(b) Find an invertible matrix E and a diagonal matrix D such that A = EDE−1.
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1. Consider the system of equations(20 pts)

1 1 1 1 1

2 3 3 3 3

1 2 3 4 5


︸ ︷︷ ︸

A


x1
x2
x3
x4
x5


︸ ︷︷ ︸

x

=

2

5

1


︸︷︷︸

b

.

(a) Describe the solution set of Ax = b.

(b) Write down a basis for N(A), the nullspace of A.

(c) What is the rank of A? What are the dimensions of the four fundamental subspaces, N(A),

C(A), N(AT ), C(AT )?

2. We are given a system S that takes a vector x ∈ R2 as input and outputs a vector y ∈ R2(20 pts)

according to the equation y = Ax+ b, as shown below.

Sx y = Ax + b

We do not know A and b and we would like to determine them. For this, we input different

vectors x1, x2, x3 to S and observe the outputs y1, y2, y3. Here yi denotes the output for xi.

These vectors are given as,

x1 =

[
1

1

]
, x2 =

[
1

2

]
, x3 =

[
3

5

]
, y1 =

[
2

5

]
, y2 =

[
4

9

]
, y3 =

[
12

27

]
.

(a) Find α1 ∈ R and α2 ∈ R such that x3 = α1 x1 + α2 x2.

(b) Determine A and b.

3. Let(20 pts)

A =

1 1

1 1

1 −1

 , b =

 3

−1

3

 .
(a) Find a vector x that satisfies AT Ax = AT b.



(b) Find a vector x that minimizes ‖Ax− 2 b‖. (Pay attention to the factor 2 in front of b).

(c) Find the projection of 2 b onto C(A) (the column space of A).

(d) Find the projection of 2 b onto N(AT ) (the left nullspace of A).

4. Let(20 pts)

q1 =
1√
6


1

2

1

0

 , q2 =
1√
6


2

−1

0

1

 .
Observe that q1 and q2 are orthogonal unit vectors. Find two more vectors q3, q4 so that q1, q2,

q3, q4 is an orthonormal basis for R4 (that is, qi’s are orthogonal unit vectors).

5. Consider the matrix(20 pts)

A =

[
0 −2

1 3

]
.

(a) Find an invertible matrix E and a diagonal matrix D such that E−1AE = D.

(b) Let B be a matrix that satisfies G−1BG = F , where

G =

[
1 2

3 4

]
, F =

[
4 0

0 5

]
.

Also, let Z be the 2×2 zero matrix, that is, Z =

[
0 0

0 0

]
. Finally, let C be the 4×4 matrix

formed as,

C =

[
A Z

Z B

]
.

Write down the eigenvalues and the corresponding eigenvectors of C.


