MAT 281E - Linear Algebra and Applications

Fall 2013

Instructor: Ilker Bayram
EEB 1103
ibayram@itu.edu.tr
Class Meets : 13.30-16.30, Friday
EEB 5202
Office Hours: 10.00-12.00, Friday
Textbook: G. Strang, 'Introduction to Linear Algebra', $4^{\text {th }}$ Edition, Wellesley Cambridge.
Grading : 2 Midterms (30\% each), Final (40\%).

Homework: There will be a homework almost every week but they will not be graded.
Webpage: http://ninova.itu.edu.tr/Ders/1039/Sinif/6402

Tentative Course Outline

- Solving Linear Equations via Elimination Linear system of equations, elimination, LU Decomposition, Inverses
- Vector Spaces

The four fundamental subspaces, solving $A x=b$, rank, dimension.

- Orthogonality

Orthogonality, projection, least squares, Gram-Schmidt orthogonalization.

- Determinants
- Eigenvalues and Eigenvectors

Eigenvalues, eigenvectors, diagonalization, application to difference equations, symmetric matrices, positive definite matrices, iterative splitting methods for solving linear systems, singular value decomposition.

MAT 281E - Homework 1

Due: 04.10.2013

1. Consider the matrices A and C given below

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right], \quad C=\left[\begin{array}{lll}
h & g & i \\
e & d & f \\
b & a & c
\end{array}\right]
$$

Notice that if we exchange the first and third rows of A, and then exchange the first and second columns of the resulting matrix, we obtain C. Find matrices P_{1}, P_{2} such that

$$
P_{1} A P_{2}=C
$$

Solution. Recall multiplying a matrix A on the left leads to row operations on A. Multiplying on the right leads to column operations. To exchange the first and third rows of A, multiply on the left by

$$
P_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

To exchange the first and second columns, multiply on the right by

$$
P_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2. Solve the linear system of equations

$$
\left[\begin{array}{cccc}
2 & 1 & -1 & 3 \\
4 & 2 & 1 & 1 \\
3 & 1 & 1 & 0 \\
2 & 2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-6 \\
3 \\
5 \\
-1
\end{array}\right]
$$

by Gaussian elimination. Use the augmented matrix for doing elimination. Also, write down the elimination matrix that you (implicitly) use at each elimination step.

Solution. We form the augmented matrix by augmenting the vector on the right hand side to the coefficient matrix :

$$
A=\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & -6 \\
4 & 2 & 1 & 1 & 3 \\
3 & 1 & 1 & 0 & 5 \\
2 & 2 & 0 & 1 & -1
\end{array}\right]
$$

Let us now do elimination on the augmented matrix to reduce the coefficient matrix to an upper triangular matrix.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & -6 \\
4 & 2 & 1 & 1 & 3 \\
3 & 1 & 1 & 0 & 5 \\
2 & 2 & 0 & 1 & -1
\end{array}\right] \xrightarrow{r_{2}-2 r_{1}}\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & -6 \\
0 & 0 & 3 & -5 & 15 \\
3 & 1 & 1 & 0 & 5 \\
2 & 2 & 0 & 1 & -1
\end{array}\right] \xrightarrow{r_{3}-(3 / 2) r_{1}}\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & -6 \\
0 & 0 & 3 & -5 & 15 \\
0 & -1 / 2 & 5 / 2 & -9 / 2 & 14 \\
2 & 2 & 0 & 1 & -1
\end{array}\right]} \\
& \xrightarrow{r_{4}-r_{1}}\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & -6 \\
0 & 0 & 3 & -5 & 15 \\
0 & -1 / 2 & 5 / 2 & -9 / 2 & 14 \\
0 & 1 & 1 & -2 & 5
\end{array}\right] \xrightarrow{r_{2} \leftrightarrow r_{3}}\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & -6 \\
0 & -1 / 2 & 5 / 2 & -9 / 2 & 14 \\
0 & 0 & 3 & -5 & 15 \\
0 & 1 & 1 & -2 & 5
\end{array}\right] \\
& \xrightarrow{r_{4}-(-2) r_{2}}\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & -6 \\
0 & -1 / 2 & 5 / 2 & -9 / 2 & 14 \\
0 & 0 & 3 & -5 & 15 \\
0 & 0 & 6 & -11 & 33
\end{array}\right] \xrightarrow{r_{4}-2 r_{3}} \underbrace{\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & -6 \\
0 & -1 / 2 & 5 / 2 & -9 / 2 & 14 \\
0 & 0 & 3 & -5 & 15 \\
0 & 0 & 0 & -1 & 3
\end{array}\right]}_{B}
\end{aligned}
$$

The last matrix represents the system of equations

$$
\left[\begin{array}{cccc}
2 & 1 & -1 & 3 \\
0 & -1 / 2 & 5 / 2 & -9 / 2 \\
0 & 0 & 3 & -5 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-6 \\
14 \\
15 \\
3
\end{array}\right]
$$

We can solve for x_{4} from the last equation as $x_{4}=-3$. Substituting this value in the third equation,

$$
3 x_{3}-5(-3)=15
$$

we obtain $x_{3}=0$. Using the values of x_{3} and x_{4} in the second equation,

$$
(-1 / 2) x_{2}+(5 / 2) 0+(-9 / 2)(-3)=14
$$

we get $x_{2}=-1$. Finally, from the first equation,

$$
2 x_{1}+1(-1)+(-1)(0)+(3)(-1)=-6
$$

we obtain $x_{1}=-1$. Thus the solution is (Check it !)

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-3
\end{array}\right] .
$$

Now, there are six elimination steps from A to B (count the number of arrows). Starting with the first these can be realized by multiplications on the left by the following matrices.

$$
\left.\begin{array}{l}
E_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 / 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 \\
0 & 0 & 1 \\
0 \\
-1 & 0 & 0
\end{array} 1\right.
\end{array}\right] .
$$

Using these matrices, we can express the relation between A and B as,

$$
E_{6} E_{5} E_{4} E_{3} E_{2} E_{1} A=B
$$

3. (a) Let I denote the $n \times n$ identity matrix and $a=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$ a length- n row vector. Consider the $(n+1) \times(n+1)$ matrix

$$
B=\left[\begin{array}{ll}
1 & a \\
0 & I
\end{array}\right]
$$

Here, 0 represents a zero vector of length- n. Find the inverse of B in terms of a.
(b) Let A be an $n \times n$ invertible matrix with inverse given as A^{-1}. Also, let a be as given in part (a). Consider the $(n+1) \times(n+1)$ matrix

$$
C=\left[\begin{array}{ll}
1 & a \\
0 & A
\end{array}\right]
$$

constructed similarly as above. Find C^{-1}, the inverse of C.
Solution. (a) Consider a 2×2 matrix

$$
\tilde{B}=\left[\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right]
$$

for some constant c. We can find the inverse of this matrix (either by inspection or Gauss-Jordan elimination), as

$$
\tilde{B}^{-1}=\left[\begin{array}{cc}
1 & -c \tag{1}\\
0 & 1
\end{array}\right] .
$$

Based on this observation, treating the blocks of B as if they are scalars, one can suggest

$$
B^{-1}=\left[\begin{array}{cc}
1 & -a \\
0 & I
\end{array}\right]
$$

Check that this is indeed the inverse of B (i.e. check that the blocks can be multiplied etc.).
(b) Suppose we multiply C by the block diagonal matrix,

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & A^{-1}
\end{array}\right],
$$

where 0's represent blocks of zeros with possibly different sizes (what should the sizes be?). Notice that the product is,

$$
\tilde{C}=\left[\begin{array}{ll}
1 & a \\
0 & I
\end{array}\right]
$$

We know the inverse of \tilde{C} from part (a) (note that $B=\tilde{C}$). Therefore, we find the inverse of C as

$$
C^{-1}=B^{-1}\left[\begin{array}{cc}
1 & 0 \\
0 & A^{-1}
\end{array}\right]=\left[\begin{array}{cc}
1 & -a A^{-1} \\
0 & A^{-1}
\end{array}\right] .
$$

4. Recall that we defined the inner product of two length- n (column) vectors x, y as,

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}
$$

Note that the inner product is linear in the sense that for a, b scalars and x, t vectors, we have

$$
\langle a x+b t, y\rangle=a\langle x, y\rangle+b\langle t, y\rangle .
$$

Now let A be a square matrix whose columns are denoted by c_{i}, i.e.,

$$
A=\left[\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right] .
$$

Consider the inner product $\langle A x, y\rangle$. Find a square matrix B such that $\langle A x, y\rangle=\langle x, B y\rangle$, no matter how we choose x and y.
(Hint : All you need is the definition of the inner product and the linearity property above.)
Solution. Recall from block multiplication rules that if x is a length- n vector,

$$
A x=x_{1} c_{1}+x_{2} c_{2}+\ldots+x_{n} c_{n}=\sum_{i=1}^{n} x_{i} c_{i}
$$

Therefore,

$$
\begin{aligned}
\langle A x, y\rangle & =\left\langle x_{1} c_{1}+x_{2} c_{2}+\ldots+x_{n} c_{n}, y\right\rangle \\
& =x_{1}\left\langle c_{1}, y\right\rangle+x_{2}\left\langle c_{2}, y\right\rangle+\ldots+x_{n}\left\langle c_{n}, y\right\rangle \\
& =\langle\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \underbrace{\left.\left[\begin{array}{c}
\left\langle c_{1}, y\right\rangle \\
\left\langle c_{2}, y\right\rangle \\
\vdots \\
\left\langle c_{n}, y\right\rangle
\end{array}\right]\right\rangle}_{z}
\end{aligned}
$$

Observe that z is nothing but

$$
z=\left[\begin{array}{c}
c_{1}^{T} \\
c_{2}^{T} \\
\vdots \\
c_{n}^{T}
\end{array}\right] y
$$

Therefore, $B=A^{T}$.

MAT 281E - Homework 2

11.10.2013

1. Suppose that a 3×3 matrix A whose rows are denoted by $r_{1}, r_{2} r_{3}$, is invertible. Consider the matrix

$$
B=\left[\begin{array}{c}
2 r_{1}-r_{2} \\
4 r_{1}+r_{2}-r_{3} \\
6 r_{2}+r_{3}
\end{array}\right] .
$$

Is B invertible or not? Explain your reasoning.
Solution. Recall that if we multiply A on the left by some matrix C, then the rows of the product consist of linear combinations of the rows of A. Therefore, B can be expressed as,

$$
B=\underbrace{\left[\begin{array}{ccc}
2 & -1 & 0 \\
4 & 1 & -1 \\
0 & 6 & 1
\end{array}\right]}_{C} \underbrace{\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]}_{A} .
$$

We know that A is invertible. If C is also invertible, then B will be invertible with inverse given as $B^{-1}=A^{-1} C^{-1}$. However, if C is not invertible, B will not be invertible (why not?). Let us now check if C is invertible. We do so by doing elimination - all we need to see is whether the pivots are non-zero or not, that is we don't actuall need C^{-1}, so we don't work with the augmented matrix.

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
4 & 1 & -1 \\
0 & 6 & 1
\end{array}\right] \xrightarrow{r_{2}-2 r_{1}}\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 3 & -1 \\
0 & 6 & 1
\end{array}\right] \xrightarrow{r_{3}-2 r_{2}}\left[\begin{array}{ccc}
(2) & -1 & 0 \\
0 & (3) & -1 \\
0 & 0 & (3)
\end{array}\right] .
$$

Note that the pivots (circled) are all non-zero. Therefore C is invertible. By the previous argument, B is invertible.
2. Suppose that an invertible matrix A has columns c_{1}, c_{2}, c_{3}. Suppose also that the matrices B and C are defined as,

$$
B=\left[\begin{array}{lll}
\left(c_{1}-c_{2}\right) & \left(c_{3}\right) & \left(2 c_{1}+c_{2}-c_{3}\right)
\end{array}\right], \quad C=\left[\begin{array}{lll}
\left(c_{2}-c_{3}\right) & \left(c_{1}+c_{2}+c_{3}\right) & \left(3 c_{1}+c_{3}\right)
\end{array}\right] .
$$

Here, the columns of the matrices are enclosed in parentheses. Find two matrices D, E such that $B=$ $D C E$.

Solution. Recall that multiplication of A on the right leads to a product whose columns can be expressed as linear combinations of the columns of A. Thus, we have,

$$
B=\underbrace{\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{ccc}
1 & 0 & 2 \\
-1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]}_{X}, \quad C=\underbrace{\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{ccc}
0 & 1 & 3 \\
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]}_{Z}
$$

From the second equality, we get $A=C Z^{-1}$. Plugging this in the first equality, we obtain, $B=C Z^{-1} Y$. Therefore $B=D C E$ for $D=I, E=Z^{-1} Y$. To find $Z^{-1} Y$, do Gauss-Jordan elimination (work with the augmented matrix $\left[\begin{array}{ll}Z & Y\end{array}\right]$).
3. Find the $L U$ decomposition of

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 4 \\
1 & -1 & 1
\end{array}\right]
$$

Solution. Let us do elimination on A,

$$
A \xrightarrow[E_{1}]{r_{2}-2 r_{1}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -2 \\
1 & -1 & 1
\end{array}\right] \xrightarrow[E_{2}]{r_{3}-r_{1}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -2 \\
0 & -3 & -2
\end{array}\right] \xrightarrow[E_{3}]{r_{3}+(2 / 3) r_{2}} \underbrace{\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -2 \\
0 & 0 & 1
\end{array}\right]}_{U} .
$$

The elimination matrices that (implicitly) realize these steps are,

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 / 3 & 1
\end{array}\right] .
$$

Therefore, we have that $E_{3} E_{2} E_{1} A=U$. Equivalently, $A=L U$ where $L=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}$. Note that the inverses of E_{i} are easy to obtain :

$$
E_{1}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \quad E_{3}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right] .
$$

Multiplying these matrices we find L as,

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & -2 / 3 & 1
\end{array}\right]
$$

MAT 281E - Homework 3

15.11.2013

1. Suppose we are given vectors $u_{1}, u_{2}, \ldots, u_{k}$ which form a basis for a space U and using them we define new vectors z_{1}, \ldots, z_{k} as

$$
\begin{gathered}
z_{1}=u_{1} \\
z_{2}=u_{1}+u_{2} \\
\vdots \\
z_{k}=\sum_{i=1}^{k} u_{i} .
\end{gathered}
$$

Does the sequence z_{1}, \ldots, z_{k} also form a basis for U ?
Solution. Notice that z_{i} 's are related to u_{i} 's through,

$$
\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{k}
\end{array}\right]=\underbrace{\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
& & \ddots & & \\
1 & 1 & 1 & \ldots & 1
\end{array}\right]}_{A}\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{k}
\end{array}\right] .
$$

Here, A is a matrix composed of all zeros above the diagonal and one everywhere else. Note that A is invertible - to see this do elimination to find that all of the pivots are non-zero (I leave it to you to recognize the pattern in elimination - inverse of A has a very simple form). Invertibility of A implies that

$$
\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{k}
\end{array}\right]=A^{-1}\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{k}
\end{array}\right]
$$

This equation implies that u_{i} 's can be expressed as linear combinations of z_{i} 's. This in turn means that z_{i} 's also span U. To see this, note that for any $u \in U$, we can find a weights α_{i} such that

$$
u=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{k} u_{k}=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{k}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right]
$$

since u_{i} 's span U. But we also have $u^{T}=z^{T}\left(A^{-1}\right)^{T}$. Therefore,

$$
u=\left[\begin{array}{llll}
z_{1} & z_{2} & \ldots & z_{k}
\end{array}\right] \underbrace{\left(A^{-1}\right)^{T}\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right]}_{\beta}=\beta_{1} z_{1}+\beta_{2} z_{2}+\ldots+\beta_{k} z_{k}
$$

Thus, any $u \in U$ can be expressed as a linear combination of z_{i} 's. Thus, z_{i} 's span U.
Now we need to see if z_{i} 's are linearly independent. Suppose they are not. In that case, we can find weights α_{i}, not all zero such that

$$
\alpha_{1} z_{1}+\alpha_{2} z_{2}+\ldots+\alpha_{k} z_{k}=\left[\begin{array}{cccc}
z_{1} & z_{2} & \ldots & z_{k}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right]=0
$$

Using again the relation $z^{T}=u^{T} A^{T}$, we have,

$$
\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{k}
\end{array}\right] \underbrace{A^{T}\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right]}_{\gamma}=\gamma_{1} u_{1}+\gamma_{2} u_{2}+\ldots+\gamma_{k} u_{k}=0
$$

Since A^{T} is invertible, we can conclude that not all γ_{k} 's are equal to zero. That is, u_{i} 's are linearly independent. But this is a clear contradiction because we already know that u_{i} 's are linearly independent. Thus, the assumption leading to this contradiction must be false $-z_{i}$'s are linearly independent.
Actually, the ongoing arguments also imply the following : In an n-dimensional space, any collection of n linearly independent vectors form a basis for the space.
2. Suppose U and V are two-dimensional subspaces of \mathbb{R}^{3} and $U \neq V$. Show that there exists a vector $z \in \mathbb{R}^{3}$ such that $z \notin U$ and $z \notin V$.
Solution. Since U and V are two dimensional spaces, we can find bases that consist of two vectors for each. Specifically, suppose $\left\{u_{1}, u_{2}\right\}$ is a basis for U and $\left\{s_{1}, s_{2}\right\}$ is a basis for V. Note that either u_{1} or u_{2} can be in V but not both. Because if both were in V, then u_{1} and u_{2}, being independent, would also be a basis for V and we would have $U=V$, which is not the case. By reasoning similarly, we can say that one of $\left\{s_{1}, s_{2}\right\}$ has to be out of U. Suppose $u_{1} \notin V$ and $s_{1} \notin U$. Then $z=u_{1}+s_{1}$ is in neither U nor V. To see this, note that if $z \in U$, then we can find constants α_{i} such that $z=\alpha_{1} s_{1}+\alpha_{2} s_{2}$. But this means that $u_{1}=\left(\alpha_{1}-1\right) s_{1}+\alpha_{2} s_{2}$, which implies that $u_{1} \in V$, which is, by assumption, false. Thus, $z \notin V$. By a similar argument, it follows that $z \notin U$ either (modify the argument to show this on your own!).
3. Suppose U and V are two-dimensional subspaces of \mathbb{R}^{3} and $U \neq V$.
(a) Let Z be the intersection of U and V, i.e. $Z=U \cap V$. Is Z a subspace or not?
(b) Let Z be the union of U and V, i.e. $Z=U \cup V$. Is Z a subspace or not?

Solution. (a) It is a subspace. To see that, we need to check two conditions.
(i) Suppose $u \in U \cap V$. Also, let α be a scalar. Since $u \in U$ and U is a space, $\alpha u \in U$ also. Repeating the same argument, since $u \in V$ and V is a space, $\alpha u \in V$ also. Thus, $\alpha u \in U \cap V$.
(ii) Suppose both u and v are in $U \cap V$. Then, since u and v are both in U and U is a space, $u+v$ is also in U. Similarly, since u and v are both in V and V is a space, $u+v$ is also in V. To conclude, $u+v$ is in $U \cap V$.
(b) It is not a subspace. Note that from Q2, we know that we can find $u \in U, v \in V$ such that $u+v$ is in neither U nor V. That is, although $u \in U \cup V$ and $v \in U \cup V,(u+v) \notin U \cup V$.
4. Let $v=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]^{T}$ be a non-zero vector in \mathbb{R}^{3} and consider the plane P defined as the solution of $v^{T} x=0$. Note that P is a two dimensional subspace. Let s_{1}, s_{2} be a basis for P. Show that the collection $\left\{s_{1}, s_{2}, v\right\}$ forms a basis for \mathbb{R}^{3}.
Solution. Suppose that

$$
\begin{equation*}
\alpha_{1} s_{1}+\alpha_{2} s_{2}+\alpha_{3} v=0 \tag{1}
\end{equation*}
$$

for some scalar α_{i} 's. Note that in this case,

$$
u=\alpha_{1} s_{1}+\alpha_{2} s_{2}=-\alpha_{3} v
$$

But since u is a linear combination of s_{1} and s_{2}, it is in P. Therefore it satisfies $v^{T} u=0$. This is equivalent to,

$$
-v^{T} \alpha_{3} v=-\alpha_{3}\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)=0 .
$$

Since we know that v is a non-zero vector, we must have $\alpha_{3}=0$. But this means that $u=\alpha_{1} s_{1}+\alpha_{2} s_{2}=0$. Since s_{i} 's are linearly independent (recall that they form a basis for P), we must also have $\alpha_{1}=\alpha_{2}=0$. Therefore, we showed that the only linear combination of s_{1}, s_{2}, v that gives the zero vector is the one with all weights (α_{i} 's) equal to zero. Therefore, the collection s_{1}, s_{2}, v is linearly independent.
This in turn means that the 3×3 matrix $A=\left[\begin{array}{lll}s_{1} & s_{2} & v\end{array}\right]$ is invertible. Thus, given an arbitrary $u \in \mathbb{R}^{3}$, we can solve $A x=u$ - that is we can represent u as a linear combination of the columns (i.e. s_{1}, s_{2}, v) of A. Thus they form a basis for \mathbb{R}^{3}.
Alternatively, recalling the solution to Q1 above, we can argue that since \mathbb{R}^{3} is a 3-dimensional space and s_{1}, s_{2}, v are 3 linearly independent vectors in \mathbb{R}^{3}, they form a basis for \mathbb{R}^{3}.

MAT 281E - Homework 4

Due 29.11.2013

1. Consider a plane P, described as the set of vectors $x=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$ that satisfy the equation $x_{1}-2 x_{2}+$ $3 x_{3}=0$. Find a basis for P^{\perp}, the orthogonal complement of P.

Solution. Note that P is the nullspace of the matrix $A=\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]$. We know from class that $N(A)^{\perp}=C\left(A^{T}\right)$. Therefore, $P=C\left(A^{T}\right)$. Since A^{T} contains a single vector, it actually forms a basis for $C\left(A^{T}\right)$.
2. Given an arbitrary b, we know that the system $A x=b$ might not have a solution, if $b \notin C(A)$. However, we noted in class that to find the best approximation to b, we can instead solve the system $A^{T} A x=A^{T} b$. Show that this system always has a solution.

Solution. Note that we can decompose $b=b_{1}+b_{2}$, where $b_{1} \in N\left(A^{T}\right), b_{2} \in C(A)$. Since $b_{2} \in C(A)$, we can find x such that $A x=b_{2}$. But since $A^{T} b_{1}=0$, we have, $A^{T} A x=A^{T} b_{2}=A^{T} b_{2}+A^{T} b_{1}=A^{T} b$.
3. Consider a set of non-zero vectors as $\left\{q_{1}, \ldots, q_{k}\right\}$ such that $\left\langle q_{i}, q_{j}\right\rangle=0$ for all (i, j) pairs with $i \neq j$ - that is the set of vectors are orthogonal. Show that, this implies that the vectors are also linearly independent. (Notice however that the converse does not hold - we can find a set of linearly independent vectors which are not orthogonal.)

Solution. We showed this in class.
4. Find an orthonormal basis for the plane P in Question-1.

Solution. Let us first find a vector from the nullspace of P. For this, recall that P is the nullspace of $A=\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]$. Note that the second and the third columns are the free columns. Setting the second variable to one and the third variable to zero, we find a special solution as $s_{1}=\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]^{T}$. Since P is two dimensional, we need another vector for the basis. But the question asks that the basis be orthonormal. Therefore, the second basis vector should be orthogonal to s_{1}. In order to lie in the plane, it should also be orthogonal to the row space of A. Therefore, it can be obtained by finding the nullspace of

$$
\left[\begin{array}{ccc}
1 & -2 & 3 \\
2 & 1 & 0
\end{array}\right] \xrightarrow{r_{2}-2 r_{1}}\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & 5 & -6
\end{array}\right]
$$

From this we have that $s_{2}=\left[\begin{array}{lll}-3 / 5 & 6 / 5 & 1\end{array}\right]$ is orthogonal to s_{1} and lies in P. Normalizing, we obtain that $\left\{s_{1} /\left\|s_{1}\right\|, s_{2} /\left\|s_{2}\right\|\right\}$ is an orthonormal basis for P.
5. Consider a complex number of the form $z=z_{r}+i z_{i}$, where z_{r} is the real part and z_{i} is the imaginary part of this number. Note that we can also represent z with the length-two vector $\left[\begin{array}{ll}z_{r} & z_{i}\end{array}\right]^{T}$. Recall that we can also express z as

$$
z=\underbrace{\sqrt{z_{r}^{2}+z_{i}^{2}}}_{|z|} e^{i \theta}
$$

where $\tan (\theta)=z_{i} / z_{r}$. Suppose we transform the vector $\left[\begin{array}{ll}z_{r} & z_{i}\end{array}\right]^{T}$ as,

$$
\left[\begin{array}{c}
y_{r} \\
y_{i}
\end{array}\right]=A\left[\begin{array}{c}
z_{r} \\
z_{i}
\end{array}\right] .
$$

Also, let $y=y_{r}+i y_{i}$.
(a) Find a matrix A such that $y=z e^{i \alpha}$.
(b) Find the inverse of A from part (a).

Solution. (a) Recall Euler's relation : $e^{i \alpha}=\cos (\alpha)+i \sin (\alpha)$. Therefore,

$$
z e^{i \alpha}=\left(z_{r}+i z_{i}\right)(\cos (\alpha)+i \sin (\alpha))=\underbrace{\left(\cos (\alpha) z_{r}-\sin (\alpha) z_{i}\right)}_{y_{r}}+i \underbrace{\left(\sin (\alpha) z_{r}+\cos (\alpha) z_{i}\right)}_{y_{i}}
$$

Thus we can write

$$
\left[\begin{array}{c}
y_{r} \\
y_{i}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right]}_{A}\left[\begin{array}{c}
z_{r} \\
z_{i}
\end{array}\right] .
$$

Note that multiplying with A rotates the vector by α.
(b) Note that $z=e^{-i \alpha} y$. Therefore, if we replace α with $-\alpha$ in A, we should obtain A^{-1}. That is,

$$
A^{-1}=\left[\begin{array}{cc}
\cos (\alpha) & \sin (\alpha) \\
-\sin (\alpha) & \cos (\alpha)
\end{array}\right]
$$

Observe that $A^{-1}=A^{T}$. Actually A is an orthogonal matrix. In general, rotation matrices are orthogonal.

MAT 281E - Homework 5

Due 06.12.2013

1. Consider an $n \times n$ matrix A which has ones on the antidiagonal and zero everywhere else. That is, A is of the form

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
& & \vdots & & \\
0 & 1 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

(a) Find $|A|$ for $n=2,3,4$.
(b) Give a general expression of $|A|$ for a general n.

Solution. (a) For $n=2, A$ is,

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Exchanging the rows we get the identity matrix. Since $|I|=1$ and exchanging two rows has the effect of multiplying the determinant with $-1,|A|=-1$.
For $n=3$, Let I_{i}, denote the rows of the identity matrix. Then, A is,

$$
A=\left[\begin{array}{c}
I_{3} \\
I_{2} \\
I_{1}
\end{array}\right]
$$

Suppose we move I_{1} up to the first row position in two steps, where at each step we exchange it with the row just above it. That is,

$$
\left[\begin{array}{c}
I_{3} \\
I_{2} \\
I_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{c}
I_{3} \\
I_{1} \\
I_{2}
\end{array}\right] \longrightarrow\left[\begin{array}{l}
I_{1} \\
I_{3} \\
I_{2}
\end{array}\right] .
$$

Note that this preserves the order for the rest of the rows. Now exchange the second and third rows, to obtain I. This is not the fastest way to obtain I but it is systematic and the number of row exchanges is easy to count (which will be useful in the following). Overall, we did $2+1=3$ row exchanges, so $|A|=(-1)^{3}=-1$.
You might guess that for $n=4,|A|=-1$, but that would be wrong. I leave it to you to check that.
(b) Let I_{i} be defined as above. Then,

$$
A=\left[\begin{array}{c}
I_{n} \\
I_{n-1} \\
\vdots \\
I_{2} \\
I_{1}
\end{array}\right]
$$

Now suppose we move I_{1} up as described above, without permuting the order of the rest of the rows. With $n-1$ row exchanges, we reach the matrix

$$
\left[\begin{array}{c}
I_{1} \\
I_{n} \\
I_{n-1} \\
\vdots \\
I_{2}
\end{array}\right]
$$

Now do the same for I_{2} on this modified matrix, this time placing it into the second row. With $n-2$ row exchanges, we obtain

$$
\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{n} \\
\vdots \\
I_{3}
\end{array}\right] .
$$

Continuing like, this, we obtain I by doing

$$
(n-1)+(n-2)+\ldots+1=\frac{(n-1) n}{2}
$$

row exchanges. Therefore,

$$
|A|=(-1)^{n(n-1) / 2}= \begin{cases}1, & \text { if } n \text { or }(n-1) \text { is divisible by } 4, \\ -1, & \text { otherwise }\end{cases}
$$

2. Consider the matrices

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
t & x & y \\
t^{2} & x^{2} & y^{2}
\end{array}\right], \quad B=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
t & x & y & z \\
t^{2} & x^{2} & y^{2} & z^{2} \\
t^{3} & x^{3} & y^{3} & z^{3}
\end{array}\right]
$$

(a) Find an expression for the determinant of A.
(Hint : Observe that the determinant will be a second order polynomial in terms of t. That is, $|A|$ is of the form

$$
|A|=c_{2} t^{2}+c_{1} t_{1}+c_{0}=c_{2}\left(t-z_{0}\right)\left(t-z_{1}\right)
$$

where z_{i} 's are the roots of the quadratic polynomial. For which values of t is A singular? Those values should give z_{i} 's.)
(b) Give a condition in terms of x, y, z so that A is invertible.
(c) Find an expression for the determinant of B.

Solution. (a) Observe that if $t=x$, then the first and the second colums of A are the same, in which case $|A|$ would be zero. Similarly, $|A|=0$ if $t=y$. In view of the hint, we have then $|A|=c_{2}(t-x)(t-y)$. Observe that c_{2} is the coefficient of t^{2} in the expression for $|A|$. But this is equal to $(y-x)$. Thus $|A|=(y-x)(t-x)(t-y)$.
(b) If the variables x, y, t are distinct (i.e., take different values), then the determinant is non-zero and A is invertible. Observe that this is also a necessary condition (what was the difference between 'necessity' and 'sufficiency'?), meaning that if A is invertible, then x, y, t must be distinct.
(c) Observe similarly that if $t=x$ or $t=y$ or $t=z$, then $|A|$ is zero. Thus,

$$
|A|=c_{3}(t-x)(t-y)(t-z)
$$

To determine c_{3}, observe that it is the coefficient of t_{3} in the expression for $|A|$. Thus, making use of part (a),

$$
c_{3}=-\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{2} & y^{2} & z^{2}
\end{array}\right|=-(z-y)(x-y)(x-z)
$$

3. Consider the matrix (notice the change in the matrix)

$$
A=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 3 & 0 \\
0 & 3 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

Find the eigenvalues and eigenvectors of A.
Solution. Notice that $A-2 I$ and $A-3 I$ are singular, because both matrices have a zero row. Therefore 2 and 3 are eigenvalues. Recall that the associated eigenvectors can be found by finding vectors from the nullsapces of $A-2 I$ and $A-3 I$. In this case, they are easy to find : $\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}$ and $\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}$. Consider now the submatrix

$$
B=\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right]
$$

Suppose that λ_{1} and λ_{2} are the eigenvalues of this matrix with associated eigenvectors x_{1} and x_{2}. In that case, observe that

$$
A\left[\begin{array}{c}
0 \\
x_{i} \\
0
\end{array}\right]=\lambda_{i} \underbrace{\left[\begin{array}{c}
0 \\
x_{i} \\
0
\end{array}\right]}_{s_{i}}, \quad \text { for } i=1,2 .
$$

Therefore, s_{i} are eigenvectors of A with eigenvalues λ_{i}. To find λ_{i} and s_{i}, we go back to B, can compute the roots of $|B-\lambda I|$, which is

$$
|B-\lambda I|=(2-\lambda)(2-\lambda)-9=\lambda^{2}-4 \lambda-5=(\lambda-5)(\lambda+1) .
$$

Thus $\lambda_{1}=5, \lambda_{2}=-1$. We find the associated eigenvectors as $x_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
4. Consider the matrices

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & 2 \\
0 & 2 & -1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
4 & 0 & 2 \\
0 & 1 & 0 \\
2 & 0 & -1
\end{array}\right] .
$$

(a) Find the eigenvalues and eigenvectors of A.
(b) Suppose x is an eigenvalue of a matrix S with eigenvalue λ. Also, let U be a matrix related to S as $U=Q S Q^{T}$, where Q is an orthogonal matrix. Show that λ is an eigenvalue of U also. Can you find the corresponding eigenvector for U ?
(c) Find the eigenvalues and eigenvectors of B.

Solution. (a) As above, we observe that $A-I$ is singular, with $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ in the nullspace. Consider now the submatrix

$$
C=\left[\begin{array}{cc}
4 & 2 \\
2 & -1
\end{array}\right]
$$

We find the eigenvalues by finding the roots of $|C-\lambda I|$. Once we obtain the eigenvalues λ_{i}, the eigenvectors x_{i} are found by computing vectors from the nullspace of $C-\lambda_{i}$. As in the question above, observe that

$$
A \underbrace{\left[\begin{array}{c}
0 \\
x_{i}
\end{array}\right]}_{s_{i}}=\lambda_{i} s_{i},
$$

thus giving the eigenvalues.
(b) Since $S=Q^{T} U Q$ and $S x=\lambda x$, we have, $U Q x=\lambda Q x$. Therefore $Q x$ is an eigenvalue of U with eigenvector λ.
(c) Notice that $B=P^{T} A P$, where

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus if λ_{i} are eigenvalues of A with eigenvectors e_{i}, then the same λ_{i} are also eigenvalues of B with eigenvectors $P e_{i}$.

MAT 281E - Linear Algebra and Applications, CRN : 10620
Midterm Examination - I
01.11.2013

Student Name: \qquad
Student Num. : \qquad

5 Questions, 120 Minutes
Please Show Your Work for Full Credit!
(20 pts) 1. Consider the system of linear equations

$$
\left[\begin{array}{ccc}
2 & -1 & -1 \\
4 & -1 & -3 \\
-2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right] .
$$

(a) Find x_{1}, x_{2}, x_{3} by Gaussian elimination.
(b) Write down the elimination matrix that you used in the first step of elimination.
(15 pts) 2. Consider the linear system of equations

$$
\left[\begin{array}{ll}
a & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
b
\end{array}\right] .
$$

(a) Find a pair (a, b) so that the system has a unique solution.
(b) Find a pair (a, b) so that the system has infinitely many solutions.
(c) Find a pair (a, b) so that the system has no solutions.
(15 pts) 3. Suppose A is a 3×3 matrix whose rows are denoted by r_{1}, r_{2}, r_{3}, that is, $A=\left[\begin{array}{l}r_{1} \\ r_{2} \\ r_{3}\end{array}\right]$. Also, let B be another 3×3 matrix given as

$$
B=\left[\begin{array}{c}
r_{2}+2 r_{3} \\
r_{1}+r_{2} \\
r_{1}-2 r_{2}
\end{array}\right]
$$

Suppose that for a specific vector c,

$$
B \underbrace{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]}_{c}=\left[\begin{array}{l}
1 \\
3 \\
6
\end{array}\right] .
$$

Find $A c$.
4. Consider the system of linear equations

$$
\underbrace{\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
2 & 3 & -1 & 1 \\
0 & -1 & 1 & -1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
4 \\
5 \\
-1
\end{array}\right]}_{b} .
$$

(a) Find a particular solution that solves this system of linear equations.
(b) Describe $N(A)$, the nullspace of A (that is, find the special solutions).
(c) What is the rank of A ?
(d) Describe the whole solution set of the system of linear equations $A x=b$.
(20 pts) $\quad 5$. Consider a plane P, in \mathbb{R}^{3}, described by the equation

$$
x_{1}+a_{2} x_{2}+a_{3} x_{3}=0
$$

Suppose we are given two vectors u, v in P as,

$$
u=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], \quad v=\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right]
$$

(a) Find a_{2} and a_{3}.
(b) Find two vectors w, y that are not in P, such that $w \neq \alpha y$ for any real-valued α (that is, w cannot be obtained by multiplying y with a scalar.)
(c) Are the vectors u, v, w, y linearly indepdendent? Here, w and y are the vectors you found in part (b). Please explain your reasoning for full credit.

MAT 281E - Linear Algebra and Applications, CRN : 10620 Midterm Examination - II
13.12.2013

Student Name : \qquad
Student Num. : \qquad

5 Questions, 100 Minutes
Please Show Your Work for Full Credit!
(20 pts) 1. Let S be the set of vectors of the form

$$
\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+\alpha_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\alpha_{2}\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

where α_{1} and α_{2} are real numbers. Also let p be the vector

$$
p=\left[\begin{array}{c}
0 \\
4 \\
-2
\end{array}\right] .
$$

Find the closest point of S to p.
(25 pts) 2. Let S be the solution set of

$$
2 x_{1}+x_{2}+x_{3}=0 .
$$

Also let V be the solution set of

$$
x_{1}+2 x_{2}-x_{3}=0 .
$$

Notice that both S and V are subspaces of \mathbb{R}^{3}.
(a) Find a non-zero vector from S^{\perp}, the orthogonal complement of S.
(b) Let $U=S \cap V$. That is, U is the intersection of S and P. Find a non-zero vector from U.
(20 pts) 3 . Let S be a plane in \mathbb{R}^{3}. Also, let the projection matrix onto S be given as

$$
P=\left[\begin{array}{ccc}
5 / 6 & -2 / 6 & 1 / 6 \\
-2 / 6 & 2 / 6 & 2 / 6 \\
1 / 6 & 2 / 6 & 5 / 6
\end{array}\right]
$$

Find a set of coefficients a_{1}, a_{2}, a_{3}, such that the solution set of the equation

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0
$$

is equivalent to S.
(10 pts) 4. Compute the determinant of

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & -1 & 1 & -1 & 1
\end{array}\right]
$$

(25 pts) 5. Let A be a matrix with eigenvalues $\lambda_{1}=-1 / 2, \lambda_{2}=3 / 4, \lambda_{3}=1$, where the associated eigenvectors are given as,

$$
x_{1}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad x_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Notice that the eigenvectors are orthogonal, but they are not normalized (i.e. $\left\|x_{i}\right\| \neq 1$).
(a) Compute $A^{-1} x_{1}$.
(b) Determine A^{-1}. (Check your answer!)
07.01.2014

Student Name: \qquad
Student Num. : \qquad

5 Questions, 120 Minutes
Please Show Your Work!
(20 pts) 1. Consider the system of equations

$$
\underbrace{\left[\begin{array}{llll}
1 & 1 & 3 & 1 \\
2 & 2 & 5 & 1 \\
1 & 2 & 1 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]}_{b} .
$$

(a) Describe the solution set of $A x=b$.
(b) Write down a basis for $N(A)$, the nullspace of A.
(c) What is the rank of A ? What are the dimensions of the four fundamental subspaces, $N(A)$, $C(A), N\left(A^{T}\right), C\left(A^{T}\right)$?
(20 pts) 2. Consider the system of equations $A \mathbf{x}=\mathbf{b}$, where

$$
\mathbf{b}=\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right] .
$$

Suppose that the solution set consists of all vectors of the form ' $\mathbf{y}+\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}$ ', where α_{1}, α_{2} can be any real number and

$$
\mathbf{y}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right], \quad \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right]
$$

(a) Find a basis for $N(A)$, the nullspace of A.
(b) What are the dimensions of the four fundamental subspaces, $N(A), C(A), N\left(A^{T}\right), C\left(A^{T}\right)$?
(c) Find a basis for $C\left(A^{T}\right)$, the row space of A.
(20 pts) 3. For an unknown set of coefficients a_{1}, a_{2}, a_{3}, let S be the solution set of

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0 .
$$

Also, let U be the solution set of

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=1
$$

Notice that S is a subspace of \mathbb{R}^{3} but U is not. Let P denote the projection matrix for S. Suppose we are given that

$$
P\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
-1 / 3
\end{array}\right]
$$

(a) Find a non-zero vector $s \in S$.
(b) Find a non-zero vector $v \in S^{\perp}$.
(c) Find a matrix A such that the nullspace of A is equivalent to S - that is, $N(A)=S$.
(d) Suppose $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \in U$. Determine a_{1}, a_{2}, a_{3}.
(20 pts) 4. Suppose that S is a subspace of \mathbb{R}^{4}, spanned by the vectors s_{1}, s_{2}, where

$$
s_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad s_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

(a) Find an orthonormal basis for S.
(b) Find two vectors $p \in S$ and $q \in S^{\perp}$ such that

$$
p+q=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

(20 pts) 5. Let A be a matrix and x_{1}, x_{2}, column vectors, that satisfy the equations,

$$
\begin{aligned}
& A x_{1}=4 x_{1}-2 x_{2} \\
& A x_{2}=x_{1}+x_{2}
\end{aligned}
$$

(a) Find the eigenvalues and the eigenvectors of the matrix B, given as,

$$
B=\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]
$$

(b) Find the eigenvectors of A and express the associated eigenvectors as linear combinations of x_{1} and x_{2}. That is, if v is an eigenvector of A, find c, d such that $v=c x_{1}+d x_{2}$.

