MAT 281E – Linear Algebra and Applications Fall 2012

- Instructor : Ilker Bayram EEB 1103 ibayram@itu.edu.tr
- Class Meets : 13.30 16.30, Friday EEB 5202
- Office Hours : 10.00 12.00, Friday
- Textbook : G. Strang, 'Introduction to Linear Algebra', 4th Edition, Wellesley Cambridge.

Grading : 2 Quizzes (15% each), Midterm Exam (30%), Final (40%).

Webpage: http://ninova.itu.edu.tr/Ders/1039/Sinif/6402

Tentative Course Outline

- Solving Linear Equations via Elimination Linear system of equations, elimination, LU Decomposition, Inverses
- Vector Spaces The four fundamental subspaces, solving A x = b, rank, dimension.
- Orthogonality Orthogonality, projection, least squares, Gram-Schmidt orthogonalization.
- Determinants
- Eigenvalues and Eigenvectors

Eigenvalues, eigenvectors, diagonalization, application to difference equations, symmetric matrices, positive definite matrices, iterative splitting methods for solving linear systems, singular value decomposition.

05.10.2012

1. Consider the linear system of equations

$$\begin{bmatrix} 2 & 3 \\ 3 & a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ b \end{bmatrix}$$

- (a) Find a pair (a, b) so that the system has a unique solution.
- (b) Find a pair (a, b) so that the system has no solutions.
- (c) Find a pair (a, b) so that the system has infinitely many solutions.
- 2. Consider the linear system of equations

$$\begin{bmatrix} 3 & -3 & 2 & 0 \\ -3 & 3 & 1 & -3 \\ -15 & 10 & -10 & -3 \\ -12 & 17 & -2 & -4 \end{bmatrix} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}}_{\mathbf{x}} = \begin{bmatrix} 6 \\ 0 \\ -19 \\ -21 \end{bmatrix}.$$

Solve for \mathbf{x} using Gaussian elimination and back-substitution.

3. Suppose A is an $n \times n$ matrix with inverse A^{-1} . Using A, we form the $2n \times 2n$ matrix C as,

$$C = \begin{bmatrix} A & A \\ A & A \end{bmatrix}$$

Is C invertible? If so, find the inverse. If not, explain why not.

- 4. (a) Consider the matrix $M = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$. Find M^{-1} using the Gauss-Jordan procedure.
 - (b) Let A be an $n \times n$ matrix. Also, let I denote the $n \times n$ identity matrix. Using A and I we form the $2n \times 2n$ matrix C as,

$$C = \begin{bmatrix} I & A \\ 0 & I \end{bmatrix}$$

Is C invertible? If so, find the inverse. If not, explain why not.

MAT231E- HW1 Solutions

1) Apply on climination step to the sugmented matrix: $\begin{bmatrix} 2 & 3 & 4 \\ 3 & a & b \end{bmatrix} \xrightarrow{(r,3)-\frac{3}{2}(r,1)} \begin{bmatrix} 2 & 3 & 4 \\ 0 & a - \frac{9}{2} & b - 6 \end{bmatrix} =$ (a) $A_{ny}(a, b)$ pair with $a \neq \frac{9}{2}$ works. (b) Pick $a = \frac{q}{2}$, $b = 0 \Rightarrow 2^{nd} equation gives$ $<math>10 \cdot y = -5 \Rightarrow no solution.$ (c) Pick $a = \frac{7}{2}$, b = 6. \Rightarrow the solution set is 2x + 3y = 4. 2.) form the Augmented Matrix and apply elimination: $\begin{bmatrix} 3 & -3 & 2 & 0 & 6 \\ -3 & 3 & 1 & -3 & 0 \\ -15 & 10 & -10 & -3 & -19 \\ -12 & 17 & -2 & -4 & -21 \end{bmatrix}$ $\begin{bmatrix} (n2) - (-n1) & (3) & -3 & 2 & 0 & 6 \\ (n2) - (-n1) & (0) & 0 & 3 & -3 & 6 \\ -15 & 10 & -10 & -3 & -19 \\ -12 & 17 & -2 & -4 & -21 \end{bmatrix}$

$$\frac{r_{4}-2r_{3}}{r_{0}} \begin{bmatrix} 3 & -3 & 2 & 0 & 6 \\ 0 & -5 & 0 & -3 & -11 \\ 0 & 0 & 3 & -3 & 6 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix} \qquad \text{Mow do back-substitution.}$$

$$\frac{r_{4}-2r_{3}}{r_{0}} \begin{bmatrix} 0 & 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

$$\frac{r_{4}}{r_{0}} = \frac{r_{1}}{r_{0}} = \frac{r_{1}}{r_{$$

.

12.10.2012

- 1. A student was asked to compute the inverse of A by Gauss-Jordan elimination. She formed the augmented matrix and started elimination. Below is the augmented step she reached at an intermediate step.
 - $\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -3 & 6 & -4 & 1 & 0 \\ 0 & 0 & 7 & -4 & 1 & 1 \end{bmatrix}.$

Find A.

- 2. Suppose A and B are invertible matrices. Assume also that all of their rows sum to 1. Suppose we form a new matrix as C = A B. Is C invertible? If so, find its inverse in terms of A^{-1} and B^{-1} . If not, explain why not.
- 3. Suppose X A = B, where

$$A = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -3 \\ 1 & -4 \end{bmatrix}.$$

Find X.

4. Find the LU decomposition of

$$A = \begin{bmatrix} a & a & a \\ a & b & b \\ a & b & c \end{bmatrix}.$$

Under what conditions (on a, b, c) is A invertible?

5. Write down a square matrix and find its LU decomposition. If invertible, find its inverse.

MAT2BIE- HW2 Solutions

(1) Let B be the given matrix. From the description, we deduce that $\vec{B} = \vec{E} (A \vec{I})$, where \vec{E} is a 3x3 matrix. In order to find \vec{A} , we reduce the right half of B to I, wing nor operations. This is equivalent to multiplying B on the left by E. $\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -3 & 6 & -4 & 1 & 0 \\ 0 & 0 & 7 & -4 & 1 & 1 \end{bmatrix} \xrightarrow{n^2 + 4(n)} \begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0 \\ 4 & 8 & 7 & 0 & 1 & 1 \end{bmatrix}$ = A Of each row of A and B sum to 1, then, Since $v \neq 0$, A-B cannot be invertible.

(3) Note that if XA=B, then ATXT=BT. Let us solve for X. Form the augmented matrix as [AT BT] and reduce the left half to I, using now operations. $\begin{bmatrix} 1 & -1 & 1 & 1 \\ -2 & 1 & -3 & -4 \end{bmatrix} \xrightarrow{r^2+2r} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & -1 & -1 & -2 \end{bmatrix}$ $\frac{n!-n!}{\binom{n}{2}} \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & -1 & -1 & -2 \end{bmatrix} = \frac{1}{\binom{n}{2}} \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 2 \end{bmatrix}$ $\Rightarrow X = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ In order for A' to exist, U should be invertible =) c + b, b + q, a + O.

02.11.2012

1. Let A be a matrix with rank 1. We are given four vectors from the nullspace of A as,

$$\begin{bmatrix} a \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} b \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}.$$

(a) Find a and b.

- (b) If the first column of A is $\begin{bmatrix} 2\\ 3 \end{bmatrix}$, determine A.
- 2. Let A be a matrix with rank 2. Also, let y be a vector in the column space of A. We are given three solutions from the solution set of Ax = y as,

$$\begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\a\\b \end{bmatrix}.$$

Find a and b.

3. Consider the planes P_1 , P_2 in \mathbb{R}^3 , described by the equations

$$(P_1) \ 2 x_1 + x_2 - x_3 = 1, (P_2) \ x_2 = 3x_3$$

Let the set of intersection of these planes be called S. Notice that S is actually a line. Find a matrix A and a vector b such that the solution set of Ax = b is S.

4. Let S be the line in \mathbb{R}^3 described as the set of points of the form

$$\begin{bmatrix} 1\\2\\0 \end{bmatrix} + \alpha \begin{bmatrix} 2\\-1\\1 \end{bmatrix},$$

where $\alpha \in \mathbb{R}$. Find a matrix A and a vector b such that the solution set of Ax = b is S.

MAT281E HW3 Solutions

(1) (a) Notice that A should have 3 columns. Since rank=1, there one 2 free variables (3-rank=2). In fact the first two vectors are in the form of special solutions (they are lin. indep.). In that case, we should have, $1 \cdot \begin{bmatrix} a \\ l \\ 0 \end{bmatrix} + 2 \cdot \begin{bmatrix} b \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ l \\ 2 \end{bmatrix}, \implies a+2b = 5 \qquad \begin{bmatrix} l & 2 \\ 2 & l \end{bmatrix} \begin{bmatrix} a \\ l \\ b \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ $2 \cdot \begin{bmatrix} a \\ l \\ 0 \end{bmatrix} + 2 \cdot \begin{bmatrix} b \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ l \end{bmatrix}, \implies 2a+b = 4$ $\begin{bmatrix} ef & us & solve & for & a, b : \\ 1 & 2 & 5 \\ 2 & 1 & 4 \end{bmatrix} \xrightarrow{-3} \begin{bmatrix} 1 & 2 & 5 \\ 0 & -3 & -6 \end{bmatrix} \xrightarrow{b=2} b=2, \\ a+2\cdot 2=5 \Rightarrow a=1.$ (b) $A = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} c_2 \\ c_3 \end{bmatrix}$. Since $A \begin{bmatrix} q \\ 0 \end{bmatrix} = 0 \implies c_2 = -q \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $= \begin{pmatrix} -2 \\ -3 \end{pmatrix}$ $A \cdot \begin{bmatrix} 6 \\ 0 \end{bmatrix} = 0 \implies c_1 = -6 \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $= \begin{bmatrix} -4\\ -6 \end{bmatrix} = A = \begin{bmatrix} 2 & -2 & -4\\ 3 & -3 & -6 \end{bmatrix}.$

(2.) A has 3 columns. Since rank=2, dim N(A) = 1. In this case, N(A) consists of vectors of the form x.s where s is a special solution. The solution set of Ax=b is of the form $p + x \cdot s$, where p is a particular solution. Therefore, $\begin{bmatrix} 3\\2\\1 \end{bmatrix} - \begin{bmatrix} 2\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ is a multiple of s. It should be that $\begin{bmatrix} 2\\1\\0 \end{bmatrix} + B \cdot \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} 4\\1\\0 \end{bmatrix}$. =) From the first line, we obtain B=-1 = a=0, b=-1. $\begin{array}{c} (3) \\$ $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. (b) It suffices to find A with rank=2 s.t. $A \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 0$, and set $b = \overline{A} \cdot \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$. Take $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, set $b = A \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$.

30.11.2012

- 1. Let ℓ be the intersection of the planes
 - $(P_1) \quad x_1 x_2 + x_3 = 1,$
 - $(P_2) \quad x1 + x_2 2x_3 = 2.$

Find the closest point of ℓ to $y = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$.

2. Let S be the set of vectors described as

$$\begin{bmatrix} 1\\ -2\\ -1 \end{bmatrix} + \alpha \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix},$$

where α is a real number. Find the closest point of S to $y = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$.

3. Let A be a matrix given as

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 0 \end{bmatrix}.$$

- (a) Find the projection matrix that projects any vector onto C(A), the column space of A.
- (b) Find the projection matrix that projects any vector onto N(A), the nullspace of A.
- 4. Suppose S and V are subspaces of \mathbb{R}^n and $S \subset V$. Show that $V^{\perp} \subset S^{\perp}$.
- 5. Consider a linear system of equations as Ax = b. Let S denote the (non-empty) solution set of this system. Also, let P denote the projection operator onto N(A). Finally, suppose $x_0 \in S$ i.e., x_0 is a solution of the given system. Find a function f(z), in terms of P and x_0 , that maps the vector z to the vector in S that is closest to z.

MAT 281E - HWG Solution (1) l is the solution set of $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Let us find an explicit description of t: $\begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -2 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & -3 & 1 \end{pmatrix}$ $\Rightarrow special solution: \begin{bmatrix} 1/2 \\ 3/2 \\ 1 \end{bmatrix} \quad particular sola: \begin{bmatrix} 3/2 \\ 1/2 \\ 0 \end{bmatrix}$ $\exists l \text{ consist of } \begin{bmatrix} \frac{3}{2} \\ V_2 \\ 0 \end{bmatrix} + \alpha \cdot \begin{bmatrix} \frac{1}{2} \\ \frac{3}{2} \\ 1 \end{bmatrix}, \text{ where } \alpha \in \mathbb{R}.$ Our good is to minimize (over a) $\left\| \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} - \begin{pmatrix} 3/2\\ 1/2\\ 0 \end{pmatrix} + \alpha \begin{bmatrix} 1/2\\ 3/2\\ 1\\ 1 \end{bmatrix} \right\|^{2} = \left\| \begin{bmatrix} 1/2\\ 1/2\\ -1/2\\ -1 \end{bmatrix} - \alpha \cdot \begin{bmatrix} 1/2\\ 3/2\\ 1\\ 1 \end{bmatrix} \right\|^{2}$ $\frac{1}{2} = \left(\frac{1}{2} \cdot \frac{1}{2} - \frac{3}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} \right)$ $\begin{array}{c} \text{the x value} \\ \text{the t minimizes} \\ \text{the cast function} \end{array} \qquad \begin{pmatrix} \frac{1}{2} \end{pmatrix}^2 + \begin{pmatrix} \frac{3}{2} \end{pmatrix}^2 + \begin{pmatrix} 2 \\ 2 \end{pmatrix}^2 + \begin{pmatrix} 2 \\ 2 \end{pmatrix}^2 \\ \begin{pmatrix} \frac{1}{2} \end{pmatrix}^2 + \begin{pmatrix} \frac{3}{2} \end{pmatrix}^2 \\ \frac{1}{2} \end{pmatrix}^2 + \begin{pmatrix} \frac{3}{2} \end{pmatrix}^2 \\ \frac{1}{2} \end{pmatrix}^2 \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \text{the cast function} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \ \{the cast function} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \ \{the cast function} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \ \{the cast function} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} \text{the cast function} \\ \ \{the cast function} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \end{array} \\ \begin{array}{c} \text{the cast function} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\

(2.) We need to find the & value, which minimites $\| \begin{bmatrix} 2\\2\\-1 \end{bmatrix} - \left(\begin{bmatrix} -2\\-1 \end{bmatrix} + \left. \frac{1}{2} \right\} \right) \| \|^{2} = \| \begin{bmatrix} 0\\4\\-1 \end{bmatrix} - \left. \frac{1}{2} \right\|^{2}$ $\frac{1 \cdot 0 + 1 \cdot 4 + 2 \cdot 1}{1^2 + 1^2 + 2^2} = 1.$ $\Rightarrow p = \begin{bmatrix} -2 \\ 1 \end{bmatrix} + \hat{\alpha} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$ is the closest point in S to y. (3.) (a) One way to find this matrix is to find a busis for C(A) and then obtain the projection matrix. Recall that the pirot column of A form a basic for C(A). =) The first two columns of 0 $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & -1 \end{bmatrix}$ A are the pirot columns. $\exists Let D = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 1 & 1 \end{bmatrix}.$ $P = D \left(D^T D \right)^{-1} D^T$

(3.) (b) Let us first find a basis for N(A): Using the elimination from (d): $\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} = \begin{cases} \begin{pmatrix} -3 \\ 1 \\ 1 \\ 1 \end{cases} for N(A).$ $\implies P_{N(A)} = \frac{1}{11} \begin{pmatrix} -3 \\ 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}$ (4.) Let x be an arbitrary element of VI If we can show that xEst then it follows that Vtcst Since xEVL, we have <X, J> for any yEV. But since VDS, we also have that < X, to for any tES. Therefore xEST. (5.) Notice that S-x_ = N(A). So if we translate every vector by -xo, the closest point can be found by projecting onto N(A). If we shift back by + xo, the resulting point will be the closest point in S to 2. Therefore $f(z) = P(z - x_0) + x_0$.

28.12.2012

- 1. Let A be a 3×3 matrix with three eigenvalues, λ_1 , λ_2 , λ_3 . Suppose also that the eigenvalues are distinct (i.e., $\lambda_1 \neq \lambda_2$, $\lambda_2 \neq \lambda_3$, $\lambda_1 \neq \lambda_3$). Also, let x_1 , x_2 , x_3 be the associated eigenvectors. Show that x_1 , x_2 , x_3 are linearly independent.
- 2. Consider the matrix

$$A_2 = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}.$$

In order to find the eigenvalues for this matrix, we know that we can look for the roots of $|A - \lambda I|$. For matrices in this special form (notice that incidence matrices derived from difference equations are of this form), an alternative is the following. Suppose $\begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ is an eigenvector with eigenvalue λ . In that case, we should have,

$$A_2 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a \, x_1 + b \, x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} \lambda \, x_1 \\ \lambda \, x_2 \end{bmatrix}$$

The second line in the last equality says that $x_1 = \lambda x_2$. Plugging this into the first equality,

$$a x_1 + b x_2 = \lambda x_1,$$

we obtain,

$$a\,\lambda\,x_2 + b\,x_2 = \lambda^2\,x_2.$$

Dividing by x_2 , we get

 $\lambda^2 - a\,\lambda - b = 0.$

- (a) Suppose we solve for the roots of the last equation to obtain an eigenvalue λ^* . Find an eigenvector associated with this eigenvalue.
- (b) Consider the matrix

$$A_3 = \begin{bmatrix} a & b & c \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

By generalizing the procedure outlined above for the 2×2 case, find a polynomial, whose roots give the eigenvalues of A_3 .

3. Consider the linear difference equation

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{4}y_{n-2} + \frac{1}{4}y_{n-3},$$

which is valid for $n \geq 3$.

- (a) Define the vector $u_n = \begin{bmatrix} y_n & y_{n-1} & y_{n-2} \end{bmatrix}^T$. Find the incidence matrix A which links u_n to u_{n-1} through $u_n = A U_{n-1}$.
- (b) Observe that if $y_n = \alpha$ for all $n \ge 0$ (i.e., if y_n is constant for all n), then it satisfies the difference equation above. What does this imply about the incidence matrix?

MAT231E - HW5 Solutions

(1) We first show that x, and x2 are linearly independent, that is, $X_1 \neq \propto X_2$, where $\alpha \in \mathbb{R}$. To see this, suppose $X_1 = x \times x_2$. Multiplying both sides of this equation by A on the left, Le obtain $A_{x_1} = \lambda_1 x_1 = \alpha \lambda_1 x_2 = A \cdot (\alpha x_2)$ = $\alpha \lambda_2 x_2$. But since $\lambda_1 \neq \lambda_2$, this connect happen $\Rightarrow x_1 \neq x \times z_2$. $(x = 0 \text{ is not allowed because } x_1 \neq 0.)$ Now let us show that x, , x 2, x 3 are lin. indep. Suppose not. That is, suppose $X_3 = [X_1, X_2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x$ for some KI, K. CR. Notice that KI #0, K2 #0, because x3 + R x1, x3 + xx2, by the reasoning Multiplying (*) by A on the left, we obtain a bove. $\lambda_3 \times_3 = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & x_1 \\ \lambda_2 & x_2 \end{bmatrix}.$ Therefore from (#), we obtain: $\begin{pmatrix} \lambda_1 & K_1 \\ \lambda_2 & K_2 \end{pmatrix} = \begin{bmatrix} \lambda_3 & K_1 \\ \lambda_3 & K_2 \end{bmatrix}$. This cannot be $\Rightarrow X_1, X_2, X_3$ are lin, indep.

(2.) (a) Suppose $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the corresponding eigenvector. Then, $A\begin{pmatrix}x_1\\x_2\end{pmatrix} = \begin{pmatrix}ax_1 + bx_2\\x_1\end{pmatrix} = \begin{pmatrix}ax_1 + bx_2\\x_1\end{pmatrix} = \begin{pmatrix}ax_1\\ax_2\end{pmatrix}$ $\Rightarrow x_1 = A^* x_2 \Rightarrow Since \propto \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = n eigenvector$ with the same eigenvalue, take $\alpha = \frac{1}{x_2} \left(\begin{array}{c} Why is \\ X_2 \end{array} \right)$ $\Rightarrow \begin{bmatrix} \pi^* \\ 1 \end{bmatrix}$ is such an eigenvector. $\begin{array}{c} (6) \quad A_{3} \int_{x_{2}}^{x_{1}} \int_{x_{2}}^{z} = \left[\begin{array}{c} ax_{1} + bx_{2} + cx_{3} \\ x_{1} \\ x_{2} \end{array} \right] = \left[\begin{array}{c} Ax_{1} \\ Ax_{2} \\ x_{2} \end{array} \right] = \left[\begin{array}{c} Ax_{1} \\ Ax_{2} \\ Ax_{3} \end{array} \right]$ $\Rightarrow x_2 = \lambda x_3, \quad x_1 = \lambda x_2 = \lambda (\lambda x_3)$ $\Rightarrow A x_1 = A^3 x_3 = a \cdot A^2 x_3 + b A x_1 + c x_3$ =) Divide by x, (why is x, = 0?) to obtain 23-a2-b2-c=0. = routs give the eigenvalues. $\begin{array}{c} \textcircled{3}(a) & u_n = \int \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \begin{array}{c} u_{n-1} \\ u_{n-1} \\ \end{array}$ (b) "1' is an eigenvalue of A with eigenvector (x) $\left(or \left(\begin{array}{c} 1\\ 1 \end{array} \right) \right)$.

MAT 281E, Fall 2012, Quiz 1

Student Name : _____

Student Num. : _____

1. Consider the linear system of equations :

$$\underbrace{\begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 4 \\ 2 & -2 & 4 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} 1 \\ 2 \\ -6 \end{bmatrix}}_{\mathbf{b}}$$

Solve for **x** using elimination and back-substitution. Use the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$. Show your steps clearly.

2. Let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 7 \\ 0 & 12 & 8 \end{bmatrix}.$$

Find a lower triangular matrix L and an upper triangular matrix U such that A = LU.

MAT 281E – Linear Algebra and Applications

Midterm Examination

23.11.2012

Student Name : _____

Student Num. : _____

5 Questions, 120 Minutes

(25 pts) 1. We are given the equation

$$x_1 \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} + x_2 \begin{bmatrix} 4 & 1 & 5 \end{bmatrix} + x_3 \begin{bmatrix} 1 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -2 \end{bmatrix},$$

where x_1 , x_2 , x_3 are real numbers. Find x_1 , x_2 , x_3 .

(25 pts) 2. Consider the system of equations A x = b, where,

$$A = \begin{bmatrix} 1 & -1 & 3 & 0 & 1 \\ -1 & 1 & -2 & 1 & -1 \\ 2 & -2 & 5 & 1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} -3 \\ 1 \\ -4 \end{bmatrix}.$$

- (a) Find a basis for N(A), the nullspace of A.
- (b) What are the dimensions of the row space (i.e. $C(A^T)$) and the left-nullspace of A (i.e. $N(A^T)$)?
- (c) Describe the solution set of A x = b.

(20 pts) 3. Consider the plane P, in \mathbb{R}^3 , described by the equation

$$x_1 - 2x_2 + 3x_3 = 0.$$

Note that this is a subspace of \mathbb{R}^3 . Notice also that

$$z = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$

is in the plane P. Find another vector y, in the plane P, that is orthogonal to z.

(15 pts) 4. Let A be a matrix given as

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 4 & 1 & 6 \end{bmatrix}$$

Find a real number α , so that,

•

$$\begin{bmatrix} 4 \\ \alpha \\ 3 \end{bmatrix}$$

is in the column space of A.

(15 pts) 5. Let A be a matrix given as

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 3 \\ 1 & 3 & 5 \end{bmatrix}.$$

Find a vector x that is <u>not</u> in the column space of A.

MAT 281E, Fall 2012, Quiz 2

Student Name : _____

Student Num. : _____

1. Let S be the set of vectors described as

[2]	[1]		[1]
$0 + \alpha_1$	1	$+ \alpha_2$	0
	0		$\lfloor -1 \rfloor$

where α_1 and α_2 are real numbers. Find the closest point of S to $y = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$.

- 2. Let A be a matrix whose columns are not linearly independent. Also, let b be a vector, that is not in C(A) (i.e., the column space of A). Suppose also that z is another vector for which $A^T A z = A^T b$.
 - (a) What is the closest vector in C(A) to b? Express it in terms of A, b and/or z.
 - (b) Let P be the projection matrix onto C(A). Also, let Q be the projection matrix onto the left nullspace of A, i.e. $N(A^T)$. Express (P Q)b' in terms of A, b and/or z.

Please briefly explain your answers for full credit.

MAT 281E – Linear Algebra and Applications

Final Examination

09.01.2013

Student Name : _____

Student Num. : _____

5 Questions, 120 Minutes Please Show Your Work!

(25 pts) 1. Consider the system of equations

$$\underbrace{\begin{bmatrix} 1 & 2 & 1 & 3 \\ 1 & 3 & -1 & 2 \\ 2 & 1 & -1 & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} 1 \\ -4 \\ -1 \end{bmatrix}}_{\mathbf{b}}.$$

- (a) Describe the solution set of $A \mathbf{x} = \mathbf{b}$.
- (b) Write down a basis for the nullspace of A.
- (c) What is the rank of A? What are the dimensions of the four fundamental subspaces, $N(A), C(A), N(A^T), C(A^T)$?
- (20 pts) 2. Let V be the subspace of \mathbb{R}^3 spanned by the vectors v_1 and v_2 , where

$$v_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

- (a) Find a vector that is orthogonal to both v_1 and v_2 .
- (b) Let V^{\perp} denote the set of all vectors that are orthogonal to V. Notice that V^{\perp} is a subspace. Find a basis for V^{\perp} .
- (c) Let S be the subspace of \mathbb{R}^3 spanned by

$$s_1 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \quad s_2 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}.$$

Find a <u>non-zero</u> vector z that lies in both S and V.

(15 pts) 3. Let P be a plane in \mathbb{R}^3 . Suppose we are given three points on P as

$$p_1 = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}, \quad p_2 = \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix}, \quad p_3 = \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}.$$

Find the point on P that is closest to the origin.

(20 pts) 4. Consider the vectors

$$v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2\\2\\0\\0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1\\-1\\3\\1 \end{bmatrix}.$$

- (a) Find the projection of v_2 onto the space spanned by v_1 .
- (b) Find two orthogonal, <u>unit norm</u> vectors z_1 , z_2 that span the same space as v_1 and v_2 .
- (c) Find three orthogonal, <u>unit norm</u> vectors z_1 , z_2 , z_3 that span the same space as v_1 , v_2 and v_3 .
- (20 pts) 5. Let A be a matrix with eigenvalues 1, 1/2, and associated eigenvectors

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

(a) Write down the eigenvalues and eigenvectors of A^{10} .

(b) Compute
$$A^{10}v$$
, where $v = \begin{bmatrix} (2^9 - 1) \\ (2^{10} - 1) \end{bmatrix}$

(c) Find A.