MAT 281E - Linear Algebra and Applications

Fall 2011

Instructor: Iilker Bayram
EEB 1103
ibayram@itu.edu.tr
Class Meets : 13.30-16.30, Friday
EEB 4104
Office Hours: 10.00-12.00, Friday
Textbook: G. Strang, 'Introduction to Linear Algebra', $4^{\text {th }}$ Edition, Wellesley Cambridge.
Grading : Homeworks (10\%), Midterm Exam (30\%), 2 Quizzes (10\% each), Final (40\%).
Webpage: http://ninova.itu.edu.tr/Ders/1039/Sinif/3380

Tentative Course Outline

- Solving Linear Equations via Elimination

Linear system of equations, elimination, LU Decomposition, Inverses

- Vector Spaces

The four fundamental subspaces, solving $A x=b$, rank, dimension.

- Orthogonality

Orthogonality, projection, least squares, Gram-Schmidt orthogonalization.

- Determinants

Determinant, cofactor matrices, Cramer rule.

- Eigenvalues and Eigenvectors

Eigenvalues, eigenvectors, diagonalization, application to difference equations, symmetric matrices, positive definite matrices, iterative splitting methods for solving linear systems, singular value decomposition.

MAT 281E - Homework 1

Due 07.10.2011

1. Let

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

(a) Find two matrices C_{1}, C_{2} so that,

$$
C_{1} A C_{2}=a+b+c+d+e+f+g+h+i
$$

(b) Find two matrices P_{1}, P_{2} so that,

$$
P_{1} A P_{2}=\left[\begin{array}{ccc}
g & h & i \\
2 a & 2 b & 2 c \\
d & e & f
\end{array}\right]
$$

(c) Find two matrices $\tilde{P}_{1}, \tilde{P}_{2}$ so that,

$$
\tilde{P}_{1} A \tilde{P}_{2}=\left[\begin{array}{lll}
b & c & 2 a \\
h & i & 2 g \\
e & f & 2 d
\end{array}\right]
$$

2. Suppose we know that

$$
A\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad A\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad A\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
5 \\
2
\end{array}\right] .
$$

Find x_{1}, x_{2}, x_{3}.
3. Find the solution of

$$
\left[\begin{array}{llll}
2 & 1 & 2 & 3 \\
4 & 2 & 1 & 0 \\
6 & 5 & 0 & 1 \\
0 & 2 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
1 \\
8 \\
15 \\
2
\end{array}\right]
$$

Apply elimination on the augmented matrix to find the solution (show your steps). Express the elimination matrices you used for each step. Also, write down the pivots you used.
4. Suppose we know that,

$$
\left[\begin{array}{lll}
3 & 0 & 1 \\
1 & 3 & 2 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=2\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

Find x_{1}, x_{2}, x_{3} so that at least one of them is non-zero.

MAT 2 BIE - HWI Solutions
(1.) (a) Notice that we need to find the sum of the entries of A. To. get the sum of the rows: $\left.A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}\operatorname{sum}(\text { row } 1) \\ \operatorname{sum}(\text { row }\end{array}\right)\right]\left[\begin{array}{l}a+b+c \\ \operatorname{sum}(\text { rows }\end{array}\right]\left[\begin{array}{l}d+e+f \\ g+h+i\end{array}\right]$
Multiply this with $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
we. .btion: $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=[\operatorname{sum}($ row 1 $)+\operatorname{san}($ row 2$)+\sin ($ row 3$)]$

$$
=[a+b+c+d+e+f+y+h+i] .
$$

(b) To jet the matrix or the right hand side, we move

- now 1 of A to $2^{\text {rd }}$ row position ard multiry by 2 row opoations
- now 2 of A to $3^{\text {rd }}$ position
-row 3 of A to $1^{\text {st position }}$
\Rightarrow if $P_{1}=\left[\begin{array}{lll}0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \Rightarrow P_{1} A$ does it. Set $P_{2}=I$.
(c) Both now \& column operations...

$$
\tilde{P}_{1}=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}_{\text {exohoge row } 2} ;
$$

with row 3

$$
\tilde{\rho}_{n}=\underbrace{\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]}_{\begin{array}{c}
\text { move } \\
\operatorname{coll} 1 \rightarrow \operatorname{col} 3 \\
\operatorname{col} 2 \rightarrow \operatorname{coll} \\
\operatorname{col} 3 \rightarrow \operatorname{col} 2
\end{array}} \underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]}_{\left.\begin{array}{ccc}
\text { multi } 2 p
\end{array}\right]}
$$

(2.) Notice $A\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]-A\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=A\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

$$
\begin{gathered}
\Rightarrow \underbrace{A\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{B}=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow B=A^{-1}}_{I} \begin{array}{l}
x=A^{-1} b=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
5 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right]
\end{array} . . \$ \text {. }
\end{gathered}
$$

$$
\begin{aligned}
& \text { (3.) }\left[\begin{array}{ccccc}
2 & 1 & 2 & 3 & 1 \\
4 & 2 & 1 & 0 & 8 \\
6 & 5 & 0 & 1 & 15 \\
0 & 2 & 3 & 2 & 2
\end{array}\right] \xrightarrow[r_{2}-2_{1}]{\longrightarrow}\left[\begin{array}{ccccc}
2 & 1 & 2 & 3 & 1 \\
0 & 0 & -3 & -6 & 6 \\
6 & 5 & 0 & 1 & 15 \\
0 & 2 & 3 & 2 & 2
\end{array}\right] \xrightarrow[3_{3}-3_{1}]{\longrightarrow}\left[\begin{array}{ccccc}
2 & 1 & 2 & 3 & 1 \\
0 & 0 & -3 & -6 & 6 \\
0 & 2 & -6 & -8 & 12 \\
0 & 2 & 3 & 2 & 2
\end{array}\right] \\
& \xrightarrow[r_{2} \leftrightarrow r_{3}]{\longrightarrow}\left[\begin{array}{ccccc}
2 & 1 & 2 & 3 & 1 \\
0 & 2 & -6 & -3 & 12 \\
0 & 0 & -3 & -6 & 6 \\
0 & 2 & 3 & 2 & 2
\end{array}\right] \xrightarrow[r_{4}-r_{2}]{\longrightarrow}\left[\begin{array}{ccccc}
2 & 1 & 2 & 3 & 1 \\
0 & 2 & -6 & -8 & 12 \\
0 & 0 & -3 & -6 & 6 \\
0 & 0 & 9 & 10 & -10
\end{array}\right] \xrightarrow[a_{4}+3 r_{3}]{ }\left[\begin{array}{ccccc}
2 & 1 & 2 & 3 & 1 \\
0 & 2 & -6 & -8 & 12 \\
0 & 0 & -3 & -6 & 6 \\
0 & 0 & 0 & -8 & 8
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow x_{4}=-1
$$

$$
-3 x_{3}+6=6 \Rightarrow x_{3}=0
$$

$$
2 x_{2}-6 \cdot 0-8 \cdot(-1)=12 \Rightarrow x_{2}=2
$$

$$
2 x_{1}+1 \cdot 2+2 \cdot 0+3 \cdot(-1)=1 \Rightarrow x_{1}=1
$$

Elimination Matrices:

$$
\begin{array}{ll}
r_{2}-2 r_{1}:\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] & r_{3}-3 r_{1}:\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
r_{2} \leftrightarrow r_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] & r_{4}-r_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \\
r_{4}+3 r_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \phi & 0 \\
0 & 0 & 3 & 1
\end{array}\right]
\end{array}
$$

(4.) This is an equality of the form $A_{x}=2 x$. Rewrite it os $(A-2 I) \times=0$. Apply elimination $\because A-2 I$:

$$
\underbrace{\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right]}_{A-2 I} \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\left.\begin{array}{l}
\text { we are looking for } \\
x_{1}+x_{3}=0 \\
x_{2}+x_{3}=0
\end{array}\right\} \Rightarrow \text { set } x_{3}=1 \Rightarrow x_{1}=-1, x_{2}=-1 \text {. }
$$

MAT 281E - Homework 2

Due 28.10.2011

1. Let

$$
A=\left[\begin{array}{cccc}
2 & 1 & 3 & -1 \\
4 & 3 & 7 & 0 \\
0 & 2 & -1 & 3 \\
2 & 1 & 3 & 1
\end{array}\right]
$$

Find the $L U$ decomposition of A.
2. Which of the following subsets of \mathbb{R}^{3} also form subspaces of \mathbb{R}^{3} ? Please explain your answers.
(a) All vectors $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$ with $x_{1}=0$.
(b) All vectors $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$ with $x_{2}=1$.
(c) The vector $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ alone.
(d) The vector $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ alone.
(e) All vectors $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$ with $x_{2}^{2}-x_{3}=0$.
(f) All vectors $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$ with $x_{1}+2 x_{3}=1$.
(g) All vectors $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$ with $2 x_{1}+x_{3}=0$.
(h) All vectors $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$ with $x_{1}=x_{2}=2 x_{3}$.
3. (a) Find a 3×4 matrix A whose column space is the span of

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{c}
7 \\
-10 \\
1
\end{array}\right] .
$$

(b) Find a 3×2 matrix A whose null space is the span of

$$
v=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

4. (a) Suppose we are given a matrix A and a column vector b such that $A x=b$ has no solution. Let us define the augmented matrix $B=\left[\begin{array}{ll}A & b\end{array}\right]$ (B has one more column than A). Let $C(A)$ and $C(B)$ denote the column spaces of A and B.
Which is true in general - ' $C(A) \subset C(B)$ ' or ' $C(B) \subset C(A)$ '? (If both are true in general, write so.) Please explain your answer.
(b) Suppose we are given a matrix A and we define the augmented matrix $D=\left[\begin{array}{ll}A & A\end{array}\right]$ (the matrix A is augmented to A). Let $C(A)$ and $C(D)$ denote the column spaces of A and D.
Which is true in general - ' $C(A) \subset C(D)$ ' or ' $C(D) \subset C(A)$ '? (If both are true in general, write so.) Please explain your answer.
5. Let

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
2 & 2 & 3 & 1 \\
1 & 1 & 2 & 1 \\
3 & 3 & 8 & 3
\end{array}\right]
$$

Describe $N(A)$, the nullspace of A (i.e. find the special solutions to $A x=0$).

MAT281E-HW2 Soln.
(1.)

$$
\begin{aligned}
& \left.\left[\begin{array}{cccc}
2 & 1 & 3 & -1 \\
4 & 3 & 7 & 0 \\
0 & 2 & -1 & 3 \\
2 & 1 & 3 & 1
\end{array}\right]\right]\left[\begin{array}{cccc}
2 & 1 & 3 & -1 \\
0 & 1 & 1 & 2 \\
0 & 2 & -1 & 3 \\
2 & 1 & 3 & 1
\end{array}\right] \xrightarrow{\left.\left[\begin{array}{cccc}
2 & 1 & 3 & -1 \\
0 & 1 & 1 & 2 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 2
\end{array}\right] \rightarrow \frac{\left[\begin{array}{cccc}
2 & 1 & 3 & -1 \\
0 & 1 & 1 & 2 \\
0 & 0 & -3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right]}{u}+1 \begin{array}{lll}
1 & 0 & 0
\end{array}\right]} \\
& E_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right] \\
& E_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \Rightarrow E_{3} E_{2} E_{1} A=U \Rightarrow A=\underbrace{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}}_{L} U \\
& L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(2.) $0, d, g, h$ form subipoces. The rest do not.
(3) (a) $A=\left[\begin{array}{cccc}1 & 7 & 0 & 0 \\ -1 & -10 & 0 & 0 \\ 2 & 1 & 0 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{ll}5 & 5 \\ 2 & 2 \\ 7 & 7\end{array}\right] \quad\binom{A=\left[\begin{array}{ll}c & c\end{array}\right]}{$ in zeneral. }
(C.) $(a) \subset(A) \subset C(B)$. To eee this, tabe $d \in C(A)$. This meme, $d=A y$ forn some y. But then, $\underbrace{[A}_{B} b]\left[\begin{array}{l}y \\ 0\end{array}\right)=d \Rightarrow d \in C(B)$ abo. To see $C(A) \not p C(B)$, notice that $B \in C(B)$ but $b \notin C(B)$ otherwis $A x=b$ would have a solution.
(b) $C(A)=C(D)$ (i.e. Loth $C(A) \subset C(D)$ and $C(D) \subset C(A)$ ae true). Since $\left[\begin{array}{ll}A & A\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=A x_{1}+A x_{2}=A\left(x_{1}+x_{2}\right)$.

$$
\begin{aligned}
& \text { (5) }\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
2 & 2 & 3 & 1 \\
1 & 1 & 2 & 1 \\
3 & 3 & 8 & 3
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 2 & 1 \\
3 & 3 & 8 & 3
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
9 & 3 & 8 & 3
\end{array}\right] \\
& {\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 5 & 3
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 5 & 3
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Free variblle: x_{2}
pivot varialles: x_{1}, x_{3}, x_{4}
Set $x_{2}=1 \Rightarrow x_{4}=0, x_{3}=0, x_{1}=-1$

$$
\begin{aligned}
& \text { Set } x_{2}=1 \Rightarrow x_{4}=0, x_{3}=1, x_{1}=1 \\
& \Rightarrow \text { Special ioln: }\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right] \Rightarrow N(A)=\left\{\alpha\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right]\right\}_{\alpha \in \mathbb{R}} .
\end{aligned}
$$

MAT 281E - Homework 3

Due 18.11.2011

1. Is it possible to find a 3×2, non-zero matrix A such that, the set of vectors of the form ' $A\left[\begin{array}{l}x \\ y\end{array}\right]$, , where $x \geq 0, y \geq 0$, form a subspace of \mathbb{R}^{3} ? If it is possible, provide such a matrix. If you think it is not possible, explain why not.
2. Consider the system of equations

$$
\underbrace{\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
0 & 0 & 3 & 1 \\
2 & -1 & 9 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
-2 \\
2 \\
-3
\end{array}\right]}_{b}
$$

(a) Describe $N(A)$, the nullspace of A (find the special solutions).
(b) What is the rank of A ?
(c) What is the dimension of $C(A)$, the column space of A ?
(d) What is the dimension of $N(A)$?
(e) Describe the solution set of $A x=b$ (find a particular solution and use $N(A)$).
3. Find a 3×3 system $A x=b$ (i.e. find a 3×3 matrix A and a vector b) whose set of solutions is described by

$$
\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]+\alpha\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right]
$$

where α can be any real number.
4. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
1 & 1 & 3 & 5 \\
2 & -1 & 0 & 4
\end{array}\right]
$$

Let r be its rank.
(a) Find r.
(b) Find a $3 \times r$ matrix B and an $r \times 4$ matrix C such that $B C=A$.
5. (a) Find a basis for the plane $x+2 y-z=0$ (i.e. find n linearly independent vectors that span the plane - what is n ?).
(b) Recall that two column vectors v, w are said to be orthogonal if $v^{T} w=0$. Find a vector u that is orthogonal to any vector in the plane described above.
6. A hyperplane is essentially a 'high-dimensional plane'. For instance, the set of solutions to ' $x_{1}+2 x_{2}-x_{3}+x_{4}=0$ ' describes a hyperlane in \mathbb{R}^{4}. Let us call this set P.
(a) Is P a subspace or not? (Please explain your answer)
(b) What is the maximum number of linearly independent vectors you can find in P ? Provide such a set of vectors.
(1.) Ye, any $A=\left[\begin{array}{ll}c & -c\end{array}\right]$ work. For ex: $A=\left[\begin{array}{cc}1 & -1 \\ 1 & -1 \\ 0 & 0\end{array}\right]$.
(k) if $d=A\left[\begin{array}{l}x \\ y\end{array}\right]$ with $\begin{aligned} & x \geq 0, \\ & y \geq 0\end{aligned} \Rightarrow$ for $\alpha>0 \Rightarrow \alpha d=A\left[\begin{array}{l}\alpha x \\ \alpha y\end{array}\right]$
(*) Also, if $d_{1}=A\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$,
for $\alpha<0 \Rightarrow \alpha d=A\left[\begin{array}{ll}|\alpha| y \\ |\alpha| & x\end{array}\right]$
$d_{2}=A\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$ with $x_{1}, x_{2}, y_{1}, y_{2} \geq 0$,
Notice: $|\alpha| y>0$ $|\alpha| x>0$
then $d_{1}+d_{2}=A\left[\begin{array}{l}x_{1}+x_{2} \\ y_{1}+y_{2}\end{array}\right] \begin{array}{r}\text { and } x_{1}+x_{2} \geq 0 \\ y_{1}+y_{2} \geq 0\end{array}$
(2.) Let'! work. with the augmented matrix. $\left[A_{i}^{\prime} b\right]$.

$$
\begin{aligned}
& \text { (2.) Let! work. with the augmented maincrer } \\
& {\left[\begin{array}{ccccc}
1 & 0 & 3 & -2 & -2 \\
0 & 0 & 3 & 1 & 2 \\
2 & -1 & 9 & 0 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & 3 & -2 & -2 \\
0 & 0 & 3 & 1 & 2 \\
0 & -1 & 3 & 4 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & 3 & -2 & -2 \\
0 & -1 & 3 & 4 & 1 \\
0 & 0 & 3 & 1 & 2
\end{array}\right]}
\end{aligned}
$$

$$
\Rightarrow \text { special ion: } s_{1}=\left[\begin{array}{c}
3 \\
3 \\
-1 / 3 \\
1
\end{array}\right] \quad N(A)=\left\{\alpha \cdot s_{1}\right\}_{\alpha \in \mathbb{R}}
$$

(b) Rank $=r=$ \# of pioot variables $=3$.
(c) $\operatorname{dim}(C(A))=3=\#$ of pist columno
(d) $\operatorname{dim}(N(A))=1=\#$ of free columns.
(e) To find a porticular voln, solve $\left[\begin{array}{cccc}1 & 0 & 3 & -2 \\ 0 & -1 & 3 & 4 \\ 0 & 0 & 3 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ 0\end{array}\right]=\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right]$.

$$
\Rightarrow x_{3}=2 / 3
$$

$$
\begin{aligned}
& x_{3}=2 / 3 \\
& x_{2}=1 \\
& x_{1}=-4
\end{aligned} \quad \Rightarrow \text { particular osln: } y_{p}=\left[\begin{array}{c}
-4 \\
1 \\
2 / 3 \\
0
\end{array}\right]
$$

Soln $x t=$

$$
\left\{\left[\begin{array}{c}
-4 \\
1 \\
2 / 3 \\
0
\end{array}\right]+\alpha \cdot\left[\begin{array}{c}
3 \\
3 \\
-1 / 3 \\
1
\end{array}\right]\right\}_{\alpha \in \mathbb{R}}
$$

(3.) We need a matrix whose nall-space is spanned hy $\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$.

$$
\text { Take } A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \Rightarrow A \cdot\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=\underbrace{\left[\begin{array}{l}
4 \\
3 \\
0
\end{array}\right]}_{b}
$$

\Rightarrow Soln of $A x=b$ is the set described in the question.
(4.)

$$
\left.\begin{array}{rl}
{\left[\begin{array}{rrrr}
1 & 0 & 1 & 3 \\
1 & 1 & 3 & 5 \\
2 & -1 & 0 & 4
\end{array}\right]} & {\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
0 & 1 & 2 & 2 \\
2 & -1 & 0 & 4
\end{array}\right]}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
0 & 1 & 2 & 2 \\
0 & -1 & -2 & -2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 1 & 3 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

$r=$ of pivat olumens $=2$.

$$
\begin{gathered}
E_{3} E_{2} E_{1} A=\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{llll}
1 & 0 & 1 & 3 \\
0 & 1 & 2 & 2
\end{array}\right] \Rightarrow A=\left(E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} \cdot D\right) \cdot C}_{C}=B
\end{gathered}
$$

(5.) (a) We need to find . busio for the mull-spece of The special solutions provide such a basis.

$$
y_{3}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right], y_{3_{2}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

(b) The vector $\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]$ is arthogeral to thase.
(6)(a)P is the null-spoce of $A=\left[\begin{array}{llll}1 & 2 & -1 & 1\end{array}\right]$. It is therefore a subspace.
(b) \#of free columin of $A=3 \Rightarrow 3$ specin /alution:

$$
y_{j_{1}}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], \quad y_{s_{2}}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], y_{s_{3}}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

MAT 281E - Homework 4

Due 09.12.2011

1. Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1 \\
1 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
2 & 1 \\
1 & 4 \\
-1 & 2
\end{array}\right]
$$

(a) What are the dimensions of $C(A)$ and $C(B)$?
(b) Is $C(A) \cap C(B)=0$? If so, explain why. If not, find a non-zero vector in $C(A) \cap C(B)$.
2. (a) Let S_{1} be the plane described by the equation $x_{1}+x_{2}+x_{3}=0$. Find a basis for S_{1}^{\perp}.
(b) Let S_{2} be the plane described by the equation $x_{1}+x_{2}-x_{3}=0$. Let $S=S_{1} \cap S_{2}$. Find a basis for S^{\perp}.
3. Let S be the subspace of \mathbb{R}^{3} spanned by $\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]$.
(a) Find the projection of $b=\left[\begin{array}{lll}2 & 3 & 3\end{array}\right]$ onto S.
(b) Find the projection matrix P that projects any vector onto S.
4. Let S be the plane described by the equation $x_{1}+2 x_{2}-x_{3}=0$.
(a) Find the projection matrix P that projects any vector onto S.
(b) Find the projection matrix P that projects any vector onto S^{\perp}.

MAT $281 E$-HWG solutions
(1) (o) $\operatorname{dim} C(A)=2 \rightarrow$ (the columers are independent)

$$
\operatorname{dim} C(B)=2
$$

(b) The question should have shed to find a non-zero vector in $C(A) \cap C(B)$. Tale the matrix $D=[A B]$. D is $3 \times 4 \Rightarrow$ then is a nonzero vector in its nullspace. If $D_{x}=0 \Rightarrow \underbrace{A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]}_{\epsilon(A)}=\underbrace{-B\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]}_{\in C(B)}$ So let', find a vector in $N(D)$.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
1 & 1 & 1 & 4 \\
1 & 2 & -1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & -1 & -1 & 3 \\
0 & 0 & -3 & 1
\end{array}\right] \Rightarrow \text { special soln: }\left[\begin{array}{c}
a \\
b \\
1 / 3 \\
1
\end{array}\right]} \\
& +B\left[\begin{array}{l}
1 \\
3
\end{array}\right]=-3 A\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
5 \\
13 \\
+5
\end{array}\right] \in C(A) \cap C(B)
\end{aligned}
$$

(2.) (a) S, is the nult-space of $A=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$.

$$
\left.S_{1}^{\perp}=C\left(A^{\top}\right) \Rightarrow A^{\top}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \Rightarrow \text { a boil for }
$$

(b) S io the mall jove of $B=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1\end{array}\right]$
$S^{+}=C\left(B^{T}\right) \Rightarrow$ Since the ale of B^{\top} are inge pervert,

$$
\text { - buried for } 5 \frac{1}{1}
$$

(3.) The projection ir $\left[\begin{array}{c}1 \\ 3\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]=\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ 2 / 1\end{array}\right]$

This is the projection matrix.
(4.) (a) Find a boos for $S: S$ is the millop,owe of $A=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right.$.
special sole for $A: \frac{\left[\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]}{\text { a basis for } S .}$
Let $V=\left[\begin{array}{cc}-1 / 2 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. Then, the projection matrix is

$$
\begin{aligned}
P_{S} & =V\left(V^{\top} V\right)^{-1} V^{\top} \\
(\text { Check }) & \left.=\frac{1}{6}\right)
\end{aligned}
$$

(b) $P_{S \perp}=I-P_{S}$

But we car alow compute it directly: $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ form a boss for s^{1}

$$
\Rightarrow P_{s} \pm=\frac{1}{6}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & -1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & -2 \\
-1 & -2 & 1
\end{array}\right]
$$

Note: It is easier to do part (b) first!

MAT 281E - Homework 5

Due 16.12.2011

1. (a) Find a vector x that minimizes $\|A x-b\|$ where

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 5 & 2 \\
2 & 4 & 2
\end{array}\right], \quad b=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] .
$$

(b) Let x^{*} be the vector you found in part (a). Find a vector, \tilde{b} (other than b or $A x^{*}$) so that $\|A x-\tilde{b}\|$ achieves its minimum when $x=x^{*}$.
2. Consider the line l that passes through $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$. Find the closest point of l to $\left.\begin{array}{ccc}2 & 1 & -1\end{array}\right]$.
3. Consider the plane P described by the equation $x_{1}-x_{2}+x_{3}=3$. Find the closest point of P to $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$.
4. Find the $Q R$ decomposition of

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
2 & 2 & 0 \\
2 & 1 & -3
\end{array}\right]
$$

MAT28IE- HW5 Sole.
(1). (A) We need to sole $A^{\top} A x=A^{\top} b . \Rightarrow A^{\top} A=\left[\begin{array}{ccc}14 & 25 & 11 \\ 25 & 45 & 20 \\ A^{\top} b= & \left.\begin{array}{c}11 \\ 21\end{array}\right] \text { No } 20 & 9\end{array}\right]$ $A^{\top} b=\left[\begin{array}{l}11 \\ 21 \\ 10\end{array}\right]$. Normally, Id do elimination (if I were a computer - I should hove 'chosen the number more carefully!)
Here'; an alternative solution: Find $N\left(A^{\top}\right)$, project 6 onto $N\left(A^{\top}\right)$, subtract that from b to find \hat{b} and solve $A_{x}=\hat{b}$.

$$
\begin{aligned}
& \text { For } N\left(A^{\top}\right) \Rightarrow\left(A^{\top}=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 5 & 4 \\
1 & 2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & -1 & 0 \\
0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]\right. \\
& N\left(A^{\top}\right)=\left\{\alpha\left[\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right]\right\}_{\alpha \in \mathbb{R}} .
\end{aligned}
$$

$$
\begin{aligned}
& \hat{b}={ }_{c(A)} b=b-\frac{-6}{5}\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
8 / 5 \\
1 \\
16 / 5
\end{array}\right] \\
& \text { Now solve } A x=\hat{b}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 28 / 5 \\
3 & 5 & 2 & 1 \\
2 & 4 & 2 & 16 / 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 1 & 8 / 5 \\
0 & -1 & -1 & 19 / 5 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & 46 / 5 \\
0 & 1 & 1 & -19 / 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
x=\left[\begin{array}{c}
46 / 5 \\
-19 / 5 \\
0
\end{array}\right] \text { mirimizes }\|A x-6\|
$$

(b) It's not urigue. We can add ang vector in $N(A)$ to x.

Since $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right] \in N(A) \Rightarrow \tilde{x}=\left[\begin{array}{c}46 / 5 \\ -19 / 5 \\ 0\end{array}\right]+\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right] \quad$ works.
(2) l is descibed as $p_{1}+\alpha \cdot\left(p_{2}-p_{1}\right)$ where $p_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], p_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ Whe need to mirimize $\left\lvert\, \rho_{1}+\alpha\left(\rho_{2}-\rho_{1}\right)-\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]\right. \|$
\Rightarrow minimize II $\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right][\alpha]-\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right] \| \Rightarrow$ The miniming α sotiofies

$$
\begin{array}{cc}
c_{c}^{T} \cdot \alpha=c_{1 / d}^{11} \\
11 & -4 \\
5 & -\frac{4}{5}
\end{array} \Rightarrow \alpha=-\frac{4}{2}
$$

The point in: $p_{1}+\alpha \cdot\left(p_{2}-p_{1}\right)=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+\frac{-4}{5}\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{c}1 \\ 1 / 5 \\ -3 / 5\end{array}\right]$
(3.) ρ is the solution ot of $\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=3$.
$\Rightarrow P$ corists of vectori of the form

$$
\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]
$$

We need to minimize

$$
\begin{aligned}
& \left\|\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]+\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] / I=\right\| / \underbrace{\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]}_{C}-\underbrace{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]}_{d} I I \\
& \text { Solve } C^{\top} C \alpha=C^{\top} d \quad
\end{aligned}
$$

Solve $\quad C^{\top} C \alpha=C^{\top} d$

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
2 & 1 & 2 \\
0 & 3 / 2 & 2
\end{array}\right] \Rightarrow \begin{aligned}
& \alpha_{2}=4 / 3 \\
& \alpha_{1}=1 / 3
\end{aligned}
$$

The point on $\rho \therefore\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}4 / 3 \\ 1 / 3\end{array}\right]=\left[\begin{array}{c}8 / 3 \\ 4 / 3 \\ 5 / 3\end{array}\right]$

$$
\begin{aligned}
& \text { (4.) } u_{1}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right), \quad u_{2}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], \quad u_{3}=\left[\begin{array}{l}
0 \\
0 \\
-3
\end{array}\right] \\
& q_{1}=u_{1} /\left\|u_{1}\right\|=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] / \sqrt{3} \\
& \hat{q}_{2}=u_{2}-\left(u_{2}^{\top} q_{1}\right) \cdot q_{1}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]-\frac{1}{3} \cdot 3 \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
& q_{2}=\hat{q}_{2} /\left\|\hat{q}_{2}\right\|=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] / \sqrt{2} \\
& \hat{q}_{3}=u_{3}-\left(u_{3}^{\top} q_{1}\right) q_{1}-\left(u_{3}^{\top} q_{2}\right) q_{2}=\left[\begin{array}{c}
0 \\
0 \\
-3
\end{array}\right]-\frac{1}{3}(-3)\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-0 \cdot q_{2}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right] \\
& q_{3}=\hat{q}_{3} / / \hat{q}_{3} \|=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right] / A=\left[\begin{array}{ccc}
q_{1} q_{2} q_{3}
\end{array}\right]\left[\begin{array}{ccc}
2 \sqrt{3} & \sqrt{3} & -\sqrt{3} \\
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{6}
\end{array}\right]
\end{aligned}
$$

MAT 281E, Fall 2011, Quiz 1

Student Name : \qquad

Student Num. : \qquad

1. Consider the linear system of equations :

$$
\underbrace{\left[\begin{array}{cccc}
1 & 1 & -1 & 3 \\
2 & 2 & 0 & 4 \\
0 & 2 & 0 & 1 \\
-2 & 2 & 2 & -3
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{c}
1 \\
4 \\
-1 \\
-3
\end{array}\right]}_{\mathbf{b}}
$$

Solve for \mathbf{x} using elimination and back-substitution. Use the augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$. Show your steps clearly.
2. Let

$$
A=\left[\begin{array}{ccc}
2 & 1 & 0 \\
4 & 1 & 2 \\
0 & -3 & 5
\end{array}\right]
$$

Find the inverse of A by Gauss-Jordan elimination on the augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$.
(Optional Bonus : Write down the elimination matrix E you used in the first step of elimination. Also, write down E^{-1}.)

MAT 281E - Linear Algebra and Applications
 Midterm Examination

25.11.2011

5 Questions, 120 Minutes
(20 pts) 1. Find the LU decomposition of

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
3 & -7 & 3 \\
0 & 2 & -4
\end{array}\right]
$$

(30 pts) 2. Consider the system of equations

$$
\underbrace{\left[\begin{array}{ccccc}
1 & 2 & -1 & 1 & 1 \\
2 & 3 & -1 & 0 & 1 \\
1 & 2 & -1 & 1 & 1 \\
-1 & 1 & -2 & 1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
2 \\
3 \\
2 \\
-3
\end{array}\right]}_{b} .
$$

(a) Describe $N(A)$, the nullspace of A.
(b) What is the rank of A ?
(c) What is the dimension of $N(A)$?
(d) Describe the solution set of $A x=b$.
(15 pts) 3. Consider the set of solutions to ' $2 x_{1}-x_{2}+x_{3}+3 x_{4}=0$ ' in \mathbb{R}^{4}. Let us call this set P.
(a) Is P a subspace or not? (Please explain your answer)
(b) Find a basis for P.
(15 pts) 4. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be a collection of linearly independent column vectors in \mathbb{R}^{n}. Also let the vectors \mathbf{b}, \mathbf{d} be defined as,

$$
\begin{aligned}
& \mathbf{b}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k}, \\
& \mathbf{d}=\left(-\alpha_{1} \mathbf{v}_{1}\right)+\left(-\alpha_{2} \mathbf{v}_{2}\right)+\ldots+\left(-\alpha_{k} \mathbf{v}_{k}\right),
\end{aligned}
$$

where each of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ is a non-zero real number. Suppose we form the matrices V and U as,

$$
V=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{k}
\end{array}\right], \quad U=\left[\begin{array}{llllll}
\mathbf{b} & \mathbf{d} & \mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{k}
\end{array}\right]
$$

so that V is an $n \times k$ matrix and U is an $n \times(k+2)$ matrix.
(a) What are the dimensions of the nullspace, column space, row space and the left nullspace of V ?
(b) What are the dimensions of the nullspace, column space, row space and the left nullspace of U ?
(c) Which columns of V are pivot columns?
(d) Which columns of U are pivot columns?

Please briefly explain your answers for full credit.
(20 pts) 5. Find a 3×3 matrix A, whose nullspace is the span of

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] .
$$

MAT 281E, Fall 2011, Quiz 2

Student Name : \qquad

Student Num. : \qquad

1. (a) Find a vector x that minimizes $\|A x-b\|$ where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -1 & -1 \\
1 & 0 & 1
\end{array}\right], \quad b=\left[\begin{array}{c}
-2 \\
-1 \\
3
\end{array}\right] .
$$

(b) Let x^{*} be the vector you found in part (a). Find a vector c (other than b or $\left.A x^{*}\right)$ so that $\|A x-c\|$ achieves its minimum when $x=x^{*}$.
2. Find the $Q R$ decomposition of

$$
A=\left[\begin{array}{ccc}
3 & -6 & 2 \\
0 & 2 & -3 \\
4 & -8 & 11
\end{array}\right]
$$

MAT 281E - Linear Algebra and Applications
 Final Examination

12.01.2012

Student Name : \qquad

Student Num. : \qquad

5 Questions, 120 Minutes
Please Show Your Work!

(25 pts) 1. Consider the system of equations

$$
\underbrace{\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
2 & 4 & 3 & -2 \\
-1 & -2 & 1 & -4
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{c}
1 \\
1 \\
-3
\end{array}\right]}_{\mathbf{b}} .
$$

(a) Describe the solution set of $A \mathbf{x}=\mathbf{b}$.
(b) What is the rank of A ? What are the dimensions of the four fundamental subspaces, $N(A), C(A), N\left(A^{T}\right), C\left(A^{T}\right)$?
(20 pts) 2. Consider the system of equations $A \mathbf{x}=\mathbf{b}$, where

$$
\mathbf{b}=\left[\begin{array}{c}
2 \\
1 \\
0 \\
-1
\end{array}\right] .
$$

Suppose that the solution set consists of all vectors of the form ' $\mathbf{y}+\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}{ }^{\prime}$, where α_{1} and α_{2} are arbitrary real numbers and

$$
\mathbf{y}=\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right], \quad \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

(a) Find a basis for $N(A)$, the nullspace of A.
(b) What are the dimensions of the four fundamental subspaces, $N(A), C(A), N\left(A^{T}\right)$, $C\left(A^{T}\right)$?
(c) Determine A.
(20 pts) 3 . Let S be the subspace of \mathbb{R}^{4} described by the equation ' $x_{1}-x_{2}+x_{3}-2 x_{4}=0$ '.
(a) Find a basis for S.
(b) Find an orthonormal basis for S.
(20 pts) 4. Let S be a 2-dimensional subspace of \mathbb{R}^{3}. Also, let P_{S} be the projection matrix for S. Suppose that, for

$$
\mathbf{x}=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

we have $P_{S} \mathbf{x}=\mathbf{y}$ (i.e. \mathbf{y} is the projection of \mathbf{x} onto S).
(a) Find a basis for S^{\perp}, the orthogonal complement of S.
(Hint : What is the dimension of S^{\perp} ?)
(b) Find a basis for S.
(c) Find three linearly independent eigenvectors and the associated eigenvalues for P_{S}. Briefly explain your reasoning for full credit.
(15 pts) 5. Let A be a matrix with eigenvalues 1,2 , and associated eigenvectors

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Also, let I denote the 2×2 identity matrix. Compute $(A-I)^{10}$.
(Hint : Think about the eigenvalues and eigenvectors of $A-I$.)

