MAT 281E - Linear Algebra and Applications

Fall 2010

Instructor: Iilker Bayram
EEB 1103
ibayram@itu.edu.tr
Class Meets : 13.30 - 16.30, Friday
EEB 4104
Office Hours : $10.00-12.00$, Friday
Textbook: G. Strang, 'Introduction to Linear Algebra', $4^{\text {th }}$ Edition, Wellesley Cambridge.
Grading: Homeworks (10\%), 2 Midterms (25% each), Final (40\%).
Webpage: http://web.itu.edu.tr/ibayram/Courses/MAT281E/

Tentative Course Outline

- Solving Linear Equations via Elimination

Linear system of equations, elimination, LU Decomposition, Inverses

- Vector Spaces

The four fundamental subspaces, solving $A x=b$, rank, dimension.

- Orthogonality

Orthogonality, projection, least squares, Gram-Schmidt orthogonalization.

- Determinants

Determinant, cofactor matrices, Cramer rule.

- Eigenvalues and Eigenvectors

Eigenvalues, eigenvectors, diagonalization, application to differential/difference equations, symmetric matrices, positive definite matrices, singular value decomposition.

MAT 281E - Homework 1

Due 08.10.2010

1. Consider the linear system of equations,

$$
\underbrace{\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1 \\
-1 & 0 & 1 & 1 \\
1 & -1 & 0 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{c}
\pi \\
\pi \\
\pi \\
\pi
\end{array}\right]}_{\mathbf{b}}
$$

(a) For A, what is the sum of the elements in row 1 ? row 2 ? row 3 ? row 4 ?
(b) Find an x that satisfies the system above.
2. Consider the linear system of equations,

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64
\end{array}\right] \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{\mathbf{x}}=\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

Find an \mathbf{x} that satisfies the system above.
3. Let us say that an $n \times n$ matrix with integer entries has property- M if all its rows, columns and diagonals add to the same number and all of its entries are distinct. For example, for $n=3$, a matrix that has property- M is,

$$
\left[\begin{array}{lll}
8 & 3 & 4 \tag{1}\\
1 & 5 & 9 \\
6 & 7 & 2
\end{array}\right]
$$

Notice that all of its rows, columns and diagonals add to 15 .
Suppose now that A is a 4×4 matrix with entries $\{2,3, \ldots, 17\}$ and it has property- M. What is the sum of one of its rows?
4. Let A be a 5×5 matrix. Write down the matrix B (multiplying A on the left) that subtracts $3 \times$ row $_{2}$ from row 4 and leaves the rest of the rows unchanged. What is B^{-1} ?
5. Consider the equation $A B=C$ where

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right], \quad C=\left[\begin{array}{ccc}
3 a & 4 b & 5 c \\
3 d & 4 e & 5 f \\
3 g & 4 h & 5 i
\end{array}\right]
$$

(a) Find B.
(b) Compute $B A$.
(c) Write, in words, the action of B when it multiplies A on the right (i.e. how $A B$ relates to A); on the left (i.e. how $B A$ relates to A).

MAT 28IE-HWN solutions
(1.) (a) $\sum_{\text {row }} 1=1+1+(-1)+0=1$.

Similarly $\quad \sum_{\text {row }} 2=\sum_{\text {row }} 3=\sum_{\text {row }} 4_{1}=1$.
(b) Recall from one of the examples we did in close that

$$
A\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
\sum_{\text {row 1 }} \\
\sum_{\text {row } 2} \\
\sum_{\text {row } 3} \\
\sum_{\text {row } 4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \Rightarrow \underbrace{\text { Multiply } 60 \text { th }}_{x} \begin{array}{l}
\text { sides by } \\
\pi
\end{array}] \Rightarrow\left[\begin{array}{c}
\pi \\
\pi \\
\pi
\end{array}\right]=\left[\begin{array}{c}
\pi \\
\pi \\
\pi \\
\pi
\end{array}\right]
$$

(2.) Think about the matrix-vector multiplication as a linear combination of the columns of the matrix ("column picture").

$$
\Rightarrow x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
4 \\
9 \\
16
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
8 \\
27 \\
64
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1}=1 \\
x_{2}=1 \\
x_{3}=0 \\
x_{4}=0
\end{array}\right)
$$

solves the gre
(3.) Because A has prperty-M (it is a "magic matrix"), we have $A\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}\sum_{\text {row }} 1 \\ \sum_{\text {row } 2}\end{array}\right]=\left[\begin{array}{l}c \\ c \\ c\end{array}\right]$ for some ' c '.

Now $\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right] A\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\sum_{i=1}^{4} \sum_{j=1}^{4} a_{i j} \quad$ But it is aloe equal $\left[\begin{array}{lll}1 & 11\end{array}\right]\left[\begin{array}{l}c \\ c \\ c \\ c\end{array}\right]=4 c$.

Even though we don't know $a_{i j}$ for a particular ijj, we know that $\sum_{i} \sum_{j} a_{i j}=2+3+4+\ldots+17=\frac{17 \cdot 18}{2}-1=152=4 c$

$$
\Rightarrow c=38
$$

(7.) $B=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right] \quad B^{-1}=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \text { (add bach } \\ \text { 3 row 2 } \\ \text { to row 4) }\end{array}\right)\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0\end{array}\right]$
(5.) (a) $B=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5\end{array}\right]$

$$
\text { (b) } B A=\left[\begin{array}{ccc}
3 a & 3 b & 3 c \\
4 d & 4 e & 4 f \\
5 g & 5 h & 5 i
\end{array}\right]
$$

(c) B on the right $(A B)$: Multiplies the $k^{\text {th }}$ colum of A by the $k^{\text {th }}$ diagonal entry of B
B on the left $(B A)$: Multiplies the $k^{\text {th }}$ row of A by the $k^{\text {th }}$ diagonal entry of B.

MAT 281E - Homework 2

Due 22.10.2010

1. Let

$$
A=\left[\begin{array}{cccc}
-1 & -2 & 0 & 1 \\
0 & 1 & 1 & -3 \\
-2 & 3 & 1 & 2 \\
0 & -1 & -1 & 6
\end{array}\right]
$$

Find the $L U$ decomposition of A.
2. Let

$$
A=\left[\begin{array}{ccc}
0 & -2 & 0 \\
-2 & 1 & -1 \\
2 & -3 & 2
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & -3 & -4 \\
-3 & 7 & -1
\end{array}\right] \quad C=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & -1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

(a) Using Gauss-Jordan elimination, find the inverse of A.
(b) Using Gauss-Jordan elimination, find the matrix D such that $B D=C$.
(Hint : Do not use the inverse of B. Use an augmented matrix of the form $\left[\begin{array}{ll}B & V\end{array}\right]$ where V is a 3×3 matrix. What should V be?)
3. Let

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

(a) Find two permutation matrices P_{1}, P_{2} such that,

$$
P_{1} A P_{2}=\left[\begin{array}{lll}
g & h & i \\
a & b & c \\
d & e & f
\end{array}\right]
$$

(b) Find two permutation matrices $\tilde{P}_{1}, \tilde{P}_{2}$ such that,

$$
\tilde{P}_{1} A \tilde{P}_{2}=\left[\begin{array}{lll}
b & c & a \\
e & f & d \\
h & i & g
\end{array}\right]
$$

4. (a) Suppose we are given a matrix A and $B=\left[\begin{array}{ll}A & b\end{array}\right]$ where b is a column vector (B has one more column than A). Let $C(A)$ and $C(B)$ denote the column spaces of A and B.
Which is true in general - ' $C(A) \subset C(B)$ ' or ' $C(B) \subset C(A)$ '? (If both are true in general, write so.) Please explain your answer.
(b) Let A, B be given matrices and $D=\left[\begin{array}{ll}A & A B\end{array}\right]$ (the matrix $A B$ is augmented to A). Let $C(A)$ and $C(D)$ denote the column spaces of A and D.
Which is true in general - ' $C(A) \subset C(D)$ ' or ' $C(D) \subset C(A)$ '? (If both are true in general, write so.) Please explain your answer.
5. Let x, y, z be vectors such that $x+y+z=0$. Show that x and y span the same space as y and z. (Hint : Let A denote the space spanned by x and y and B denote the space spanned by y and z. Pick an element from A, show that it is in B. This implies that $A \subset B$ (Why?). Then pick an element from B, show that it is in A. This implies that $B \subset A$. If $A \subset B$ and $B \subset A$ then it must be that $A=B$.)

MAT $281 E-$ HW2 solutions

$$
\begin{aligned}
& \text { (1.) }
\end{aligned}
$$

$$
\begin{aligned}
& L_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& L_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -7 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(This multipication can netually
A be performed without multiplyin

$$
L_{1} L_{1}^{-1} L_{2}^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 7 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 7 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$ angthing-see the book for - discusion.)

(2.) (0) Augmented

$$
\text { Motrix : } \left.\begin{array}{lll}
A & I
\end{array}\right]=\left[\begin{array}{ccc:ccc}
0 & -2 & 0 & 1 & 0 & 0 \\
-2 & 1 & -1 & 0 & 1 & 0 \\
2 & -3 & 2 & 0 & 0 & 1
\end{array}\right] \underset{\substack{\text { row } \\
\text { exchange }}}{ } \rightarrow\left[\begin{array}{ccc:ccc}
-2 & 1 & -1 & 0 & 1 & 0 \\
0 & -2 & 0 & 1 & 0 & 0 \\
2 & -3 & 2 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left.\begin{array}{l}
\underset{r_{3}+r_{1}}{ }\left[\begin{array}{ccc:cccc}
-2 & 1 & -1 & 0 & 1 & 0 \\
0 & -2 & 0 & 1 & 0 & 0 \\
0 & -2 & 1 & 1 & 0 & 1 & 1
\end{array}\right] \xrightarrow[r_{3}-r_{2}]{ }\left[\begin{array}{ccccccccc}
-2 & 1 & -1 & 0 & 1 & 0 \\
0 & -2 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & 1 & 1
\end{array}\right] \\
\\
0
\end{array}\right]\left[\begin{array}{ccc:ccc}
-2 & 1 & 0 & -1 & 2 & 1 \\
0 & -2 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 1
\end{array}\right] \xrightarrow[r_{1}+\frac{r_{2}}{2}]{ }\left[\begin{array}{ccc:ccc}
-2 & 0 & 0 & -1 / 2 & 2 & 1 \\
0 & -2 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 1
\end{array}\right] \xrightarrow[r_{1} /(-2)]{r_{2} /(-2)}\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & 1 / 4 & -1 & -1 / 2 \\
0 & 1 & 0 & -1 / 2 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

(b) Since $B D=C$, we have $B^{-1} B D=B^{-1} C \Rightarrow D=B^{-1} C$.

Elimination on the augmented matrix $[B V]$ is equivalent to multiplying it on the left by B^{-1}, which gives $B^{-1}\left[\begin{array}{ll}B & V\end{array}\right]=\left[\begin{array}{ll}I & B^{-1} V\end{array}\right]$ so if we set $V=C$, we canobtain D by Gaus-Jordan elimination.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
B & C
\end{array}\right]=\left[\begin{array}{ccc:ccc}
1 & -1 & 1 & 0 & 1 & 1 \\
-1 & -3 & -4 & 1 & -1 & 0 \\
-3 & 7 & -1 & \vdots & -2 & 0 \\
1
\end{array}\right] \xrightarrow[\substack{r_{2}+r_{1} \\
r_{3}+3 r}]{ }\left[\begin{array}{ccc:ccc}
1 & -1 & 1 & 0 & 1 & 1 \\
0 & -4 & -3 & 1 & 0 & 1 \\
0 & 4 & 2 & -2 & 3 & 4
\end{array}\right]} \\
& \xrightarrow[r_{3}+r_{2}]{ }\left[\begin{array}{ccc:cc}
1 & -1 & 1 & 0 & 1 \\
0 & -4 & -3 & 1 & 0 \\
0 \\
0 & 0 & -1 & -1 & 3 \\
\hline
\end{array}\right] \xrightarrow[\substack{r_{2}+r_{3}}]{r_{2}-3 / 3}\left[\begin{array}{ccc:cc}
1 & -1 & 0 & -1 & 4 \\
0 & -4 & 0 & 4 & -9 \\
0 & 0 & -1 & -1 & 3 \\
\hline
\end{array}\right] \underset{r_{1}-\frac{r_{2}}{4}}{\longrightarrow}\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & -2 & \frac{25}{4} & \frac{38}{4} \\
0 & -4 & 0 & 4 & -9 & -14 \\
0 & -1 & -1 & 3 & 5
\end{array}\right] \\
& \xrightarrow[\substack{r_{2} /(-4) \\
r_{1} /(-1)}]{ }\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & -2 & 25 / 4 & 19 / 2 \\
0 & 1 & 0 & -1 & 9 / 4 & 7 / 2 \\
0 & 0 & 1 & \vdots & \begin{array}{c}
1 \\
-3
\end{array} & \underbrace{}_{D}
\end{array}\right]
\end{aligned}
$$

(3.) PA permutes rows of A; $A P$ permute columns of A.
(a) $P_{1}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right], P_{2}=I$. (b) $\tilde{P}_{1}=I, P_{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
(4.) (a) $C(A) \subset C(B)$. Because $C(A)=$ al vector of the form $\alpha_{1} a_{1}+\alpha_{2} a_{2}+\ldots+\alpha_{n} a_{n}$ where k_{i} are real numbers and $a_{j} j$ are the columns of A. But $C(B)=a l l$ vectors of the form $\alpha_{1} a_{1}+\alpha_{2} a_{2}+\ldots+\alpha_{n} a_{n}+\alpha b$ (setting $\alpha=0$, we can recover any rector from $C(A)$. 5 Let $\rho \in A \Rightarrow$ we can find α, β (b) Both are true. $C(A)=C(D)$. Because sech that $p=\alpha x+\beta y$. But $x=-y-z$, the columns of $A B$ are linear so $p=\alpha(-y-z)+\beta y=(-\alpha) z+(\beta-\alpha) y$ combinations of the columns of $\Rightarrow p \in B$. So $B \supset A$.

Now let $q \in B$. We can find γ, η sit. $q=\gamma y+i z$. A. But $z=-y-x \Rightarrow q=(-2) x+(\gamma-\eta) y \Rightarrow q^{\in A}$ The: $A>B . \quad A \supset B$ together with $B \supset A$ implies $A=B$.

MAT 281E - Homework 3

Due 01.11.2010

1. Which of the following subsets of \mathbb{R}^{3} also form subspaces of \mathbb{R}^{3} ? Please explain your answer.
(a) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{2}=0$.
(b) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{1}=1$.
(c) The vector ($\left.\begin{array}{lll}0 & 0 & 0\end{array}\right)$ alone.
(d) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{2} x_{3}=0$.
(e) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{2}+x_{3}=1$.
(f) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{1}+2 x_{3}=0$.
2. Consider the system of equations

$$
\underbrace{\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
0 & 0 & 3 & 1 \\
1 & 3 & 1 & 3
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{l}
6 \\
2 \\
5
\end{array}\right]}_{b}
$$

(a) Describe $N(A)$, the nullspace of A (find the special solutions).
(b) What is the rank of A ?
(c) What is the dimension of $N(A)$?
(d) Describe the solution set of $A x=b$ (find a particular solution and use $N(A)$).
3. Find a 2×3 system $A x=b$ (i.e. find a 2×3 matrix A and a vector b) whose set of solutions is described by

$$
\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+\alpha\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

where α can be any real number.
4. Let A be an $m \times n$ matrix with full row rank. If the nullspace of A consists of

$$
\alpha\left[\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right],
$$

where α is an arbitrary scalar, what is m and n ? Provide such a matrix A.
5. Suppose A is a $5 \times k$ matrix with $k \neq 5$ and it has full column rank. In this case, $C(A)$ is a subset of \mathbb{R}^{5}. Is it possible, for some choice of A and k, that actually $C(A)=\mathbb{R}^{5}$? If you think it is possible, provide an example. If not, explain why not.

MAT $251 E$ - HW3 Solutions
(1.) (a) It is a subopace.(i) Sum of two vectors remain within the set. (ie. $\left.\left(x_{1} 00 x_{3}\right)+\left(\begin{array}{lll}y_{1} & 0 & y_{3}\end{array}\right)=\left(\begin{array}{lll}z_{1} & 0 & z_{3}\end{array}\right)\right)$
(ii) Multiplying by a rook $\alpha\left(x_{1}, 0 \quad x_{3}\right)=\left(\begin{array}{lll}\alpha x_{1} & 0 & \alpha x_{3}\end{array}\right)$ does not give a vector outside the described set.
(b) Not a subspace. Take $x=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right), 2 x=\left(\begin{array}{lll}2 & 2 & 2\end{array}\right)$, not in the described set.
(c) Forme o subspace. (discussed in claus).
(d) Not a sulpace. Take $\begin{cases}y=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right) \quad \Rightarrow y+z=\left(\begin{array}{lll}2 & 1 & 1\end{array}\right) \\ z=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right) \quad(y+z)_{2} \cdot(y+z)_{3}=1 \neq 0 .\end{cases}$
(e) Not o subspace. Same counterexample as (d) works for this case too.
(f) It : a subspace. (It is the null-space of the $1 x^{3}$ matrix $\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]$).
(2.) (a) Let wo do elimination on the augmented matrix (we 'll need this in (dI)). anj"az

$$
\left[\begin{array}{cccc:c}
1 & 0 & 3 & -2 & 6 \\
0 & 0 & 3 & 1 & 2 \\
1 & 3 & 1 & 3 & 5
\end{array}\right] \xrightarrow[r_{3}-r_{1}]{T}\left[\begin{array}{cccc:c}
1 & 0 & 3 & -2 & 6 \\
0 & 0 & 3 & 1 & 2 \\
0 & 3 & -2 & 5 & -1
\end{array}\right]\left[\begin{array}{cccc:c}
1 & 0 & 3 & -2 & 6 \\
0 & 3 & -2 & 5 & -1 \\
0 & 0 & 3 & 1 & 2
\end{array}\right]
$$

1 free column $\Rightarrow 1$ species ah: I $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\left[\begin{array}{c}-3 \\ 17 / 9 \\ 1 / 3\end{array}\right] \quad x_{4}=0$ set $x_{9}=1$ to obtain

$$
\Rightarrow N(A)=\left(\begin{array}{l}
\text { Set of all vectors of the form } \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
17 / 9 \\
1 / 3
\end{array}\right] \cdot x_{4}=0 \Rightarrow y_{s}=\left[\begin{array}{c}
3 \\
-17 / 9 \\
-1 / 3 \\
1
\end{array}\right]
$$

$$
=\left\{\alpha \cdot y_{0}:<\in \mathbb{R}\right\}
$$

$X_{\text {where }} \alpha$ is on arbitiory setter
(b) Rank of $A=\#$ of pivot columns $=3$.
(c) Dimension of $N(A))=1$. (1 free variable $\Rightarrow 1$ special worth.)
(d) Find the particular soon. by setting $x_{4}=0$ in

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 17 / 9 \\
0 & 0 & 1 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 / 9 \\
2 / 3
\end{array}\right] \Rightarrow y_{p}=\left[\begin{array}{c}
4 \\
-1 / 9 \\
2 / 3 \\
0
\end{array}\right]
$$

Solution bet $=\left(\right.$ All vectors of the form $\partial_{p}+\alpha y_{3}$ where α is an arbitrary scalar $)$
(3.) Set of solution: $=\left[\begin{array}{l}1 \\ 2 \\ -1\end{array}\right]+\frac{1}{2} \cdot\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]+\gamma\left[\begin{array}{l}1 / 2 \\ 1 / 2 \\ 1\end{array}\right]=\left[\begin{array}{c}3 / 2 \\ 5 / 2 \\ 0\end{array}\right]+\gamma\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ 1\end{array}\right]$
where γ is an orbitrary soolur: \Rightarrow partialarsoth $=\left[\begin{array}{c}3 / 2 \\ 5 / 2 \\ 0\end{array}\right]$, special sol: $\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ 1\end{array}\right]$ $\Rightarrow\left[\begin{array}{ccc}1 & 0 & -1 / 2 \\ 0 & 1 & -1 / 2 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}3 / 2 \\ 5 / 2 \\ 0\end{array}\right]$ is such o sootem.
(4.) $N(A) \subset \mathbb{R}^{4} \Rightarrow \#$ of column $=4=n$.

There: only 1 special solution \Rightarrow \# if free variables $=1$.
But \# of free variables $=$ \# of variables -rank $=4$-rank \Rightarrow rank $=3=\#$ of row, (heave A hoes full now rank) $\Rightarrow m=3$. (Think of of the null-spece os such an $\left.\begin{array}{c} \\ y \\ \left.\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ 0 \\ 1\end{array}\right]\right)\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & -1 / 2 \\ 0 & 1 & 0 & -1 / 2 \\ 0 & 0 & 1 & 0\end{array}\right]$
(5.) It in not possible that $C(A)=\mathbb{R}^{5}$.

Since monk $\leq \min (\#$ of row, \# of column), $k \neq 5$ and rank $=k$, we get $k<5$. A basin for \mathbb{R}^{5} is implies that \mathbb{R}^{5} is 5 -dimensional. It cannot be spanned by $k<5$ vectors.

MAT 281E - Homework 4

Due 03.12.2010

1. Let V be a k-dimensional subspace of \mathbb{R}^{n}. Show that V^{\perp} is a subspace.
2. Does there exist a matrix whose row space contains $\left(\begin{array}{lll}1 & -2 & 1\end{array}\right)$ and whose null-space contains $\left(\begin{array}{lll}-1 & 2 & 1\end{array}\right) ?$ If there exist such matrices, provide one. If not, explain why not.
3. In \mathbb{R}^{2}, describe two subspaces V_{1}, V_{2} that are not orthogonal but such that any $x \in \mathbb{R}^{2}$ can be written as $x=x_{1}+x_{2}$ where $x_{1} \in V_{1}$ and $x_{2} \in V_{2}$.
4. Let x, y be any two vectors. Show that

$$
\begin{equation*}
\left(x^{T} y\right)^{2} \leq\left(x^{T} x\right)\left(y^{T} y\right) \tag{1}
\end{equation*}
$$

Hint: Consider $\left\|x-\frac{y^{T} x}{y^{T} y} y\right\|^{2}$.
Note : This inequality is usually written as $\langle x, y\rangle \leq\|x\|\|y\|$, is very useful to know and is called
\qquad inequality.
5. Find the matrix that projects every point in \mathbb{R}^{3} to the intersection of the planes $x+y+2 z=0$ and $x+z=0$.
6. Let P be the projection matrix that projects any vector onto a subspace V. What is the projection matrix for the subspace V^{\perp} ? Please explain your answer.
7. (a) Let A be a $k \times k$ matrix whose rank is equal to k. If $A^{2}=A$, show that actually $A=I$.
(b) Let P be the projection matrix for a subspace V of \mathbb{R}^{n}. What is the condition on V such that P is invertible?

MAT 281 E - Homework 4 Solutions
(1.) We need to show (i) for any $x, y \in V^{\perp}, \quad x+y \in V^{\perp}$
(ii) for any $x \in V^{\perp}, \alpha x \in V^{\perp}$ for org real α.
(i) $x, y \in v^{\perp}$ mean that $\langle x, v\rangle=\langle y, v\rangle=0$ for an g $v \in V$.

$$
\begin{aligned}
& \Rightarrow\langle x+y, v\rangle=(x+y)^{\top} v=x^{\top} v+y^{\top} v=\langle x, v\rangle+\langle y, v\rangle=0 \\
& \Rightarrow x+y \in v \perp
\end{aligned}
$$

(ii) $x \in v^{\perp} \Rightarrow\langle x, v\rangle=x^{\top} v=0$, where v can be any element of V. Take an arbitron $\alpha, \Rightarrow\langle\alpha x, v\rangle=\alpha x^{\top} v=0 \Rightarrow \alpha x \in V^{\perp}$.
(2.) $C\left(A^{\top}\right)$ and $N(A)$ are orthogood, = but $\left[\begin{array}{lll}1 & -2 & 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right] \neq 0$ \Rightarrow there a no such matrix.
 They ane not or theyonal spaces but, we con write any vector in $\mathbb{R}^{2}\left[\begin{array}{l}x \\ y\end{array}\right]$ os, $\left[\begin{array}{l}x \\ j\end{array}\right]=\alpha\left[\begin{array}{l}1 \\ 0\end{array}\right]+\gamma\left[\begin{array}{l}1 \\ 1\end{array}\right]$

(4.) $0 \leqslant\left\|x-\frac{j^{\top} x}{y^{\top} y} y\right\|^{2}=\left(x-\frac{y^{\top} x}{y^{\top} y} y\right)^{\top}\left(x-\frac{y^{\top} x}{y^{\top} y} y\right)=$ "Sohwerz Inequality" $=x^{\top} x-\frac{\left(x^{\top} y\right)\left(y^{\top} x\right)}{y^{\top} y}-\frac{\left(y^{\top} x\right)\left(y^{\top} x\right)}{y^{\top} y}+\frac{\left(y^{\top} x\right)\left(y^{\top} x\right)}{y^{\top} y} \Rightarrow\left(x^{\top} y\right)^{2} \leq\left(x^{\top} x\right)\left(y^{\top} y\right)$
(6.) We know that for arg x, the error vector $e=\left(x-P_{x}\right) \in V^{+}$.

In foot e is the projection of x to V^{\perp} because $(x-e)=P_{x} \in V$.
\Rightarrow The projection of any x to V^{\perp} is $x-P_{x}=(I-P) x$.
$(I-P)$ must be the projection matrix. (Notice that $(I-P)^{\top}=I-P$

$$
\begin{aligned}
& (I-P)^{1}=I-P \\
& (I-P)^{2}=I-P
\end{aligned}
$$

(5.) We ned to find the projection matrix to the null -space of $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 0 & 1\end{array}\right]$. We can do it in 2 wags.
(i) Instead of finding the projection 1 for $N(A)$, find the projection for $(N(A))^{+}=C\left(A^{T}\right)$ and take $I-P_{1}$ (using the result of $Q 6$). Let $V=A^{\top} \Rightarrow P_{1}=V\left(V^{\top} V\right)^{-1} V_{\bar{l}}^{\top}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & 1 \\ \text { computation } \\ 1 & 1 & 2\end{array}\right] / B \quad P=I-P_{1}=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right] / 3$ But ore so hatched! not!!!

Compute the projection antothe column space of $B=\left[b_{1}\right]$.

$$
P=B\left(B^{\top} B\right)^{-1} B^{\top}=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right] \cdot\left(\frac{1}{3}\right)
$$

(7.).) A i: Lull rank \Rightarrow invertible. $A^{-1}\left(A^{2}\right)=A^{-1} A \Rightarrow A=I$.
(b) If P ir invertible, since $P^{2}=P$ we have $P=I$.

Take an arbitron $x \in \mathbb{R}^{n} \Rightarrow P_{x=x} \in V \Rightarrow V \supset \mathbb{R}^{n} \Rightarrow V=\mathbb{R}^{n}$.

MAT 281E - Homework 5

Due 10.12.2010

1. (a) Find a vector x that minimizes $\|A x-b\|$ where

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 5 \\
0 & 2 & 2
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

(b) Is the vector x you found in part (a) unique or can you find $\tilde{x} \neq x$ such that $\|A \tilde{x}-b\|=$ $\|A x-b\|$? If x is not unique, provide such a \tilde{x}. If it is unique, explain why.
2. Consider two lines l_{1}, l_{2}, described by $l_{1}=(x, 2 x, x), l_{2}=(y, 3 y,-1)$.
(a) Find two points p, q where $p \in l_{1}, q \in l_{2}$ such that $\|p-q\|$ is minimized.
(b) Are the points you found in part (a) unique - that is, can you find $\tilde{p} \in l_{1}, \tilde{q} \in l_{2}$ such that $\tilde{p} \neq p$ or $\tilde{q} \neq q$ but $\|\tilde{p}-\tilde{q}\|=\|p-q\|$? Please explain your answer.
3. If Q_{1} and Q_{2} are orthogonal matrices, show that $Q_{1} Q_{2}$ is also orthogonal.
4. We showed in class that if Q has orthonormal columns, then it preserves the lengths of vectors, i.e. $\|Q x\|=\|x\|$ for every x. Show that the converse is also true. That is, show that if $\|Q x\|=\|x\|$ for every x, then Q has orthonormal columns.
Hint : Suppose that $Q=\left[\begin{array}{llll}q_{1} & q_{2} & \ldots & q_{k}\end{array}\right]$ does not have orthonormal columns and construct an x such that $\|Q x\| \neq\|x\|$. (Why is this equivalent to what you are trying to show?)
5. Find the $Q R$ decomposition of

$$
A=\left[\begin{array}{cccc}
1 & -1 & 0 & -3 \\
1 & 1 & 2 & 1 \\
1 & -1 & -2 & 1 \\
1 & 1 & 0 & -3
\end{array}\right]
$$

MAT 281 E - HWS Solutions
(1.) (a) I dost know beforehand whether A has independent column or not, so $I \operatorname{trg} A^{\top} A x=A^{\top} b$.

$$
\left.\begin{array}{rl}
\Rightarrow A^{\top} A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
2 & 5 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 5 \\
0 & 2 & 2
\end{array}\right]=\left[\begin{array}{ccc}
5 & 2 & 12 \\
2 & 5 & 9 \\
12 & 9 & 33
\end{array}\right], \quad A^{\top} b=\left[\begin{array}{l}
3 \\
3 \\
9
\end{array}\right] \\
{\left[\begin{array}{cccc}
5 & 2 & 12 & 3 \\
2 & 5 & 9 & 3 \\
12 & 9 & 33 & 9
\end{array}\right]} & \longrightarrow\left[\begin{array}{cccc}
5 & 2 & 12 & 3 \\
0 & 24 / 5 & 21 / 5 & 9 / 5 \\
0 & 2 / 5 & 21 / 5 & 9 / 5
\end{array}\right] \longrightarrow\left[\begin{array}{ccc:}
5 & 2 & 12
\end{array}\right] \\
0 & 21 / 5 \\
2 / 5 & 1 / 5 \\
0 & 0
\end{array} 010\right]\left[\begin{array}{lll}
1
\end{array}\right] .
$$

$$
\Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 / 7 \\
3 / 7 \\
0
\end{array}\right] \quad \text { solver the system and minimizes }\|A x-b\| \text {. }
$$

$$
\left(\text { To check: }(A x-b) \text {, hold be in } N\left(A^{\top}\right)\right. \text {) }
$$

(b) x is not unique. There are other vectors that satisfy $A^{\top} A \tilde{x}=A^{\top} b$ because the echelon form of $A^{\top} A$ has a zero-row (and theerobre it is not fall-rank.)
For instance, the special solution $y=\left[\begin{array}{c}-11 / 7 \\ -4 / 7 \\ 1\end{array}\right]$ can be added to x in (a) to find another vector. That is, for $\tilde{x}=x+y=\left[\begin{array}{c}-8 / 7 \\ -1 / 7 \\ 1\end{array}\right]$, $\left\|A \tilde{x}-b_{0}\right\|=\|A x-b\|$.
(2.) (a) We with to minimize Nell where $e=\left[\begin{array}{c}x \\ 2 x \\ x\end{array}\right]-\left[\begin{array}{c}y \\ 3 y \\ -1\end{array}\right]=\underbrace{\left[\begin{array}{cc}1 & -1 \\ 2 & -3 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]-\underbrace{\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]}_{b} \Rightarrow \text { Minimizing } \| A(x) \text { En } \begin{array}{c}x\end{array}]-b \| . ~ . ~ . ~ . ~}_{A}$
Columns of A ane independent $\left(\Leftrightarrow\left(A^{\top} A\right)\right.$ is invertible. $)$

$$
\left.A^{\top} A\left[\begin{array}{l}
x \\
y
\end{array}\right]=A^{\top} b \Rightarrow\left[\begin{array}{cc}
6 & -7 \\
-7 & 10
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \Rightarrow \begin{array}{c}
7 x=10 y \\
6 x-7 \cdot \frac{10}{7} x=-1
\end{array}\right\} \begin{aligned}
& x=1 / 4 \\
& y=\frac{7}{40}
\end{aligned}
$$

Check: $\left(A\left[\begin{array}{l}x \\ y\end{array}\right]-6\right) \in N\left(A^{\top}\right)$
(b) $\left(A^{\top} A\right)$ is invertible, so
$\left[\begin{array}{l}x \\ y\end{array}\right]$ is unique $\Rightarrow P, y$ are unique.
(3.) $\left(Q_{1} Q_{2}\right)^{\top}\left(Q_{1} Q_{2}\right)=Q_{2}^{\top} Q_{1}^{\top} Q_{1} Q_{2}=Q_{2}^{\top} Q_{2}=I \Rightarrow Q_{1} Q_{2}$ is orth.
(4.) Suppose that $Q=\left[q_{1}, q_{2} \cdots q_{k}\right]$ does not have or thenormal columns.

Then, either (i) One of q_{j} 's have $\left\|q_{j}\right\|^{2} \neq 1$, or
(ii) $\left\|q_{i}\right\|_{1}$ but. $\left\langle q_{j}, q_{l}\right\rangle=q_{j}^{\top} q_{l} \neq 0$ for some (j, l) pair. In either we can construct $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{k} \\ x_{k}\end{array}\right]$ rectors such that $\|Q \times\| \neq\|x\|$.
(i) Take $x_{j}=1$ and $x_{i}=0$ if if; Then $\|\times\|=1$, but $\left\|Q_{x}\right\|=\left\|q_{j}\right\| \neq 1$.
(ii) Take $x_{j}=1, x_{l}=1$ and $x_{i}=0$ if $\begin{gathered}i \neq j \\ \text { or } \\ i \neq l\end{gathered}$. Then $\|x\|^{2}=2$

But $Q x=q_{j}+q_{l} \Rightarrow\left\|Q_{x}\right\|^{2}=\left(q_{j}+q_{l}\right)^{\top}\left(q_{j}+q_{l}\right)=q_{j}^{\top} q_{j}+q_{l}^{\top} q_{l}+2 q_{j}^{\top} q_{l}$ $=2+q_{j}^{\top} q_{l} \neq 2=\|\times\|^{2}$.

MAT 281E - Homework 6 Solutions

1. True or False? (Notice the correction in (c).)
(a) An $n \times n$ matrix always has n distinct eigenvalues. (F)
(b) An $n \times n$ matrix always has n, possibly repeating, eigenvalues. (T)
(c) An $n \times n$ matrix always has n eigenvectors that span \mathbf{R}^{n}. (F)
(d) Every matrix has at least 1 eigenvector. (T)
(e) If A and B have the same eigenvalues, they always have the same eigenvectors. (F)
(f) If A and B have the same eigenvectors, they always have the same eigenvalues. (F)
(g) If Q has $1 / 2$ as an eigenvalue, then it cannot be orthogonal. (T)
(h) If $A=S \Lambda S^{-1}$ where Λ is diagonal, then the rows of S have to be the eigenvectors of A. (F)
(i) If $A=S \Lambda S^{-1}$ where Λ is diagonal, then the columns of S have to be the eigenvectors of A. (T)
(j) An arbitrary matrix A can always be diagonalized as $A=S \Lambda S^{-1}$ where Λ is diagonal. (F)
2. Let A be an $n \times n$ matrix with all entries equal to 1 (i.e. $a_{i, j}=1$). For $n=2$, 3 , find the eigenvalues and eigenvectors of A.

Here is one way to proceed :
For $n=2$ we have,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right] .
$$

We recognize the last expression as the scaled version of the projection matrix to the subspace S that contains (α, α). Thus, $\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ must be an eigenvector. We note that $A\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}=2\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ so the eigenvalue is 2 . The other eigenvector $\left[\begin{array}{ll}1 & -1\end{array}\right]^{T}$ comes from the orthogonal complement of S, with eigenvalue 0 .

For $n=3$ we have,

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

We recognize the last expression as the scaled version of the projection matrix to the subspace S that contains (α, α, α). Thus, $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ must be an eigenvector. We note that $A\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}=3\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ so the eigenvalue is 3 . The other two eigenvectors $\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]^{T},\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]^{T}$ come from the orthogonal complement of S, with eigenvalue
0 .

Remark : Since A is symmetric, we know without computing anything that we can find n independent (even orthogonal if we like) eigenvectors. Once we do find n such eigenvectors,
we can stop, since there can be no more. By the way, for $n=3$, the eigenvectors (even if we require them to have unit energy) are not unique. Why not?
3. Suppose that A is a 3×3 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ where the corresponding eigenvectors are x_{1}, x_{2}, x_{3}. What are the eigenvalues and eigenvectors of $2 A-I$?

We have,

$$
A x_{1}=\lambda_{1} x_{1}, \quad A x_{2}=\lambda_{2} x_{2}, \quad A x_{1}=\lambda_{3} x_{3}
$$

Multiplying by 2 and subtracting multiples of x_{i} from both sides of the equations, we have,

$$
2 A x_{1}-x_{1}=\left(2 \lambda_{1}-1\right) x_{1}, \quad 2 A x_{2}-x_{2}=\left(2 \lambda_{2}-1\right) x_{2}, \quad 2 A x_{3}-x_{3}=\left(2 \lambda_{3}-1\right) x_{3}
$$

Thus the eigenvalues are $\left(2 \lambda_{1}-1\right),\left(2 \lambda_{2}-1\right),\left(2 \lambda_{3}-1\right)$ with associated eigenvectors x_{1}, x_{2}, x_{3}.
4. Find the eigenvalues of the following matrices.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 0 \\
4 & 5 & 6
\end{array}\right], \quad B=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
0 & 0 & 4 & 5 & 6 \\
0 & 0 & 0 & 7 & 8 \\
0 & 0 & 0 & 0 & 9
\end{array}\right]
$$

The eigenvalues are given by the diagonal entries. For A, these are $1,3,6$. Check that $A-\lambda I$ is singular if λ is equal to an eigenvalue (these are all the eigenvalues because a 3×3 matrix cannot have more than 3 eigenvalues). Similarly, for B, the eigenvalues are $1,3,4,7,9$.
5. Let $y(n)=2 y(n-1)+3 y(n-2)$. Suppose that $y(1)=4, y(0)=0$. Compute $y(101)$.

Define

$$
u_{n}=\left[\begin{array}{c}
y(n) \\
y(n-1)
\end{array}\right]
$$

Then we have,

$$
u_{n}=\underbrace{\left[\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right]}_{A} u_{n-1}
$$

We can now write

$$
u_{101}=\left[\begin{array}{l}
y(101) \\
y(100)
\end{array}\right]=A^{100}\left[\begin{array}{l}
y(1) \\
y(0)
\end{array}\right]=A^{100}\left[\begin{array}{l}
4 \\
0
\end{array}\right] .
$$

Let us diagonalize A to compute A^{100}. To find the eigenvalues, we compute the roots of $\operatorname{det}(A-\lambda I)$. That is,

$$
\left|\begin{array}{cc}
2-\lambda & 3 \\
1 & -\lambda
\end{array}\right|=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)
$$

So the eigenvalues are 3 and -1 .
To compute the eigenvector for $\lambda=3$, we look at the nullspace of $A-3 I$:

$$
A-3 I=\left[\begin{array}{cc}
-1 & 3 \\
1 & -3
\end{array}\right]
$$

From this we see that $(3,1)$ is an eigenvector for $\lambda=3$.
To compute the eigenvector for $\lambda=-1$, we look at the nullspace of $A+I$:

$$
A+I=\left[\begin{array}{ll}
3 & 3 \\
1 & 1
\end{array}\right]
$$

From this we see that $(1,-1)$ is an eigenvector for $\lambda=-1$.
Thus, we can write A as,

$$
A \underbrace{\left[\begin{array}{cc}
3 & 1 \\
1 & -1
\end{array}\right]}_{S}=\underbrace{\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right]}_{\Lambda} S
$$

We see that

$$
S\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{l}
y(1) \\
y(0)
\end{array}\right]
$$

or

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=S^{-1}\left[\begin{array}{l}
y(1) \\
y(0)
\end{array}\right]
$$

Since $A^{100}=S \Lambda^{100} S^{-1}$, we obtain

$$
\left[\begin{array}{l}
y(101) \\
y(100)
\end{array}\right]=\left[\begin{array}{cc}
3 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
3^{100} & 0 \\
0 & (-1)^{100}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3^{101}+1 \\
3^{100}-1
\end{array}\right] .
$$

MAT 281E - Homework 7

Due 11.01.2011

1. Construct a 3×3 matrix whose column space contains $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$ and $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ but not $\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$.
2. Consider the line l described as the intersection of the planes $x+y+z=0$ and $x+2 y+z=0$. Construct, if you can, a 3×3 matrix A where $C(A)=l$.
3. Consider the line $l=\left(\begin{array}{lll}\alpha & \alpha-1 & 2 \alpha\end{array}\right)$. Construct, if you can, a 3×3 matrix A where $C(A)=l$.
4. Let $A=E_{1} R$ and $B=E_{2} R$ where E_{1} and E_{2} are invertible. We do not have further information about R. Below are four questions regarding the four fundamental subspaces. If you think that the information is not sufficient to answer the questions, write so.
(a) Can you find a relation between $C(A)$ and $C(B)$?
(b) Can you find a relation between $C\left(A^{T}\right)$ and $C\left(B^{T}\right)$?
(c) Can you find a relation between $N(A)$ and $N(B)$?
(d) Can you find a relation between $N\left(A^{T}\right)$ and $N\left(B^{T}\right)$?
5. (This was the last question in HW5) Find the $Q R$ decomposition of

$$
A=\left[\begin{array}{cccc}
1 & -1 & 0 & -3 \\
1 & 1 & 2 & 1 \\
1 & -1 & -2 & 1 \\
1 & 1 & 0 & -3
\end{array}\right]
$$

6. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$, be the distinct non-zero eigenvalues of a 3×3 matrix B, where the associated eigenvectors are x_{1}, x_{2}, x_{3}. What are the eigenvalues and eigenvectors of B^{-1} ?
7. Consider the plane P_{1} in \mathbb{R}^{4} described by $x_{1}+x_{2}-x_{3}=2$ and the line $l=(\alpha, \alpha+1, \quad-2 \alpha,-\alpha)$. Find the points $p \in P_{1}, q \in l$ that minimize $\|p-q\|$. Are these points unique?
8. Let A be a 17×17 matrix where $A_{i j}=i-j$. Notice that $A^{T}=-A$. Let $x=$ $\left[\begin{array}{llll}1 & 2 & \ldots & 17\end{array}\right]^{T}$. What is $x^{T} A x$?

9 . Let B be a 3×3 matrix and suppose that the eigenvectors x_{1}, x_{2}, x_{3}, with associated eigenvectors $\lambda_{1}, \lambda_{1}, \lambda_{2}$, span \mathbb{R}^{3}. Consider the matrix

$$
A=\left[\begin{array}{ll}
B & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right]
$$

Find four vectors y_{1}, y_{2}, y_{3} and y_{4} that span \mathbb{R}^{4} and are also eigenvectors of A.
10. Consider the matrix

$$
A=\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 2 & 1
\end{array}\right]
$$

Find a decomposition of A as $A=Q \Lambda Q^{T}$ where Q is orthogonal and Λ is diagonal.

MAT 281E - HWY Solutions
(1) (1 0011 cannot be written os liker combination of $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$ and $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ so, $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ does it.
(2.) l is the nollspace of $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1\end{array}\right]$.

To find the nullopase $:\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$\left.\Rightarrow\left[\begin{array}{c}1 \\ 0 \\ 1\end{array}\right] \begin{array}{c}\text { is in the null-spoce } \\ \text { of } B\end{array} \begin{array}{lll}\text { (it alto spars } & N(B) & \text { since } N(B) \\ \text { 1-dimensional }\end{array}\right)$
$\Rightarrow A=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{lll}1 & \text { a } & b\end{array}\right] \quad$ for orbitiory ,b in o matrix with $C(A)=l$.
(3.) The line is not a subspace because it doesn't par through the origin. We cannot find A with $C(A)=l$, since (A) ho to be a subspace.
(4.) (a) We can only sag that their dimension will be the some.
(c) If $A_{x}=0 \Rightarrow R_{x}=E_{1}^{-1} A x=0 \Rightarrow B x=E_{2} R x=0 \Rightarrow N(A) C N(B)$ If $B x=0 \Rightarrow A x=0$ similarly $\Rightarrow N(B) \in N(A) \quad N(A)=N(B)$
(b) $C\left(A^{\top}\right)=N(A)^{\perp}=N(B)^{\perp}=C\left(B^{\top}\right)$.
(d) $\operatorname{dim} N\left(A^{\top}\right)=\operatorname{dim} N\left(B^{\top}\right)$. No further conclusion from the information given.

$$
\begin{aligned}
& \text { (5.) } A=\left[\begin{array}{llll}
c_{1} & c_{2} & c_{3} & c_{4}
\end{array}\right] \\
& q_{1}=\frac{c_{1}}{\sqrt{\left\langle c_{1}, c_{1}\right\rangle}}=\frac{c_{1}}{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right] \\
& \tilde{q}_{2}=c_{2}-\left\langle c_{2}, q_{1}>q_{1}=c_{2} ; \quad q_{2}=\frac{\tilde{q}_{2}}{\sqrt{\left\langle q_{2}, q_{2}\right\rangle}}=\frac{c_{2}}{2}=\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right]\right. \\
& \tilde{q}_{3}=c_{3}-\left\langle c_{3}, q_{1}\right\rangle q_{1}-\left\langle c_{3}, q_{2}\right\rangle q_{2}=\left[\begin{array}{c}
0 \\
2 \\
-2 \\
0
\end{array}\right]-0 \cdot q_{1}-2 \cdot q_{2}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right] \\
& q_{3}=\frac{\tilde{q}_{3}}{\sqrt{\left\langle\tilde{q}_{3}, \tilde{q}_{j}\right\rangle}}=\tilde{q}_{3} / 2=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right] \\
& \tilde{q}_{4}=c_{4}-\left\langle c_{4}, q_{1}\right\rangle q_{1}-\left\langle c_{4}, q_{2}\right\rangle q_{2}-\left\langle c_{4}, q_{3}\right\rangle q_{3} \\
& =\left[\begin{array}{r}
-3 \\
1 \\
1 \\
-3
\end{array}\right]-(-2) \cdot q_{1}-0 \cdot q_{2}-O \cdot q_{3}=\left[\begin{array}{r}
-2 \\
2 \\
2 \\
-2
\end{array}\right] \\
& \text { Now } c_{1}=2 q_{1} ; \quad c_{2}=2 q_{2} ; \quad c_{3}=2 q_{3}+2 q_{2} \\
& q_{4}=\frac{\tilde{q}_{4}}{\sqrt{\left\langle\tilde{q}_{4}, \tilde{q}_{4}\right\rangle}}=\tilde{q}_{4} / 4 \\
& =\left[\begin{array}{llll}
-1 / 2 & 1 / 2 & 1 / 2 & -1 / 2
\end{array}\right]^{\top} . \Rightarrow A=\underbrace{\left[\begin{array}{llll}
q_{1} & q_{2} & q_{3} & q_{4}
\end{array}\right]}_{Q} \begin{array}{llll}
& & q_{1} & q_{2} \\
2 & 0 & 0 & -2 \\
0 & 2 & 2 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4
\end{array}]
\end{aligned}
$$

(6.) $B x_{i}=\lambda_{i} x_{i}$ for $i=1,2,3$.

$$
\Rightarrow \frac{1}{\lambda_{i}} x_{i}=\beta^{-1} x_{i} \Rightarrow \text { eijvectors: } x_{1}, x_{2}, x_{3}
$$

eigvalues $\left.=\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \frac{1}{\lambda_{3}} \quad \begin{array}{c}\text { Notice } \lambda_{i} \neq 0 \\ \text { since } B \text { is invert title }\end{array}\right)$
(7) P1, is the solution set of $\underbrace{\left[\begin{array}{llll}1 & 1 & -1 & 0\end{array}\right]}_{C}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=2$
The sold. est is described as $y_{p}+y_{s_{1}}-\alpha_{1}+y_{s_{2}}-\alpha_{2}+y_{s_{3}}-\alpha_{3}$ where $y_{s_{;}}$; $\bar{x}_{\text {are }}$ special solutions, y_{p} is a particular sola. and $\alpha_{i}^{\prime \prime}$'s are sonatas.

Free variables : x_{2}, x_{3}, x_{4}
Pivot var: x_{1}.
$\Rightarrow y_{p}=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right]$ (Set free var to zee A solve).

$$
y_{s_{1}}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right] \quad\left(\begin{array}{ll}
\text { Set } & \begin{array}{l}
x_{3}=x_{2}=0 \\
x_{2}=1
\end{array} \\
& \text { and solve }
\end{array} \quad c x=0\right)
$$

$$
y_{s_{2}}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], y_{s_{3}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

similorly.
$\Rightarrow A$ pt. on the plane is given by $\left[\begin{array}{ccc}-1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]+\underbrace{\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right] . ~}_{e}$

$$
p-q=D\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]+e-\left(\left[\begin{array}{c}
1 \\
1 \\
-2 \\
-1
\end{array}\right] \alpha_{4}+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right)=\underbrace{\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & -1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
-\alpha_{4}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]}_{b}=e
$$

Solve $A^{\top} A x=A^{\top} b$.

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{rrrr}
2 & 1 & 0 & 2 \\
1 & 2 & 0 & -1 \\
0 & 0 & 1 & -1 \\
2 & -1 & -1 & 7
\end{array}\right], \quad A^{\top} b=\left[\begin{array}{r}
-1 \\
-2 \\
0 \\
-1
\end{array}\right] \\
& {\left[\begin{array}{cccc:c}
2 & 1 & 0 & 2 & -1 \\
1 & 2 & 0 & -1 & -2 \\
0 & 0 & 1 & -1 & 0 \\
2 & -1 & -1 & 7 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
2 & 1 & 0 & 2 & -1 \\
0 & 3 / 2 & 0 & -2 & -3 / 2 \\
0 & 0 & 1 & -1 & 0 \\
0 & -2 & -1 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
2 & 1 & 0 & 2 & -1 \\
0 & 1 & 0 & -4 / 3 & -1 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & -1 & 7 / 3 & -2
\end{array}\right]} \\
& \longrightarrow\left[\begin{array}{cccc:c}
1 & 1 / 2 & 0 & 1 & -1 / 2 \\
0 & 1 & 0 & -4 / 3 & -1 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 4 / 3 & 1
\end{array}\right] \\
& -\alpha_{4}=-3 / 2 \\
& \Rightarrow \quad \alpha_{3}=-3 / 2 \\
& \alpha_{2}=-1+4 / 3 \alpha_{4}=-3 \\
& \alpha_{1}=\frac{-1}{2}-\alpha_{4}-\frac{\alpha_{2}}{2}=5 / 2 \\
& \Rightarrow p=D\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]+\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
5 / 2 \\
-3 \\
-3 / 2
\end{array}\right], \quad q=\left[\begin{array}{c}
1 \\
1 \\
-2 \\
-1
\end{array}\right] \alpha_{4}+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
5 / 2 \\
-3 \\
-3 / 2
\end{array}\right]=p
\end{aligned}
$$

p \& q are unique because $A^{\top} A$ is invertible (4 pivots).
(8.)

$$
\begin{aligned}
& x^{\top} A x=x^{\top}(A x)=x^{\top} c=c^{\top} x \\
& x^{\top} A x=\left(x^{\top} A\right) x=\left(A^{\top} x\right)^{\top} x=(-A x)^{\top} x=-c^{\top} x \\
& \Rightarrow x^{\top} A x=-x^{\top} A x \Rightarrow 2\left(x^{\top} A x\right)=0
\end{aligned}
$$

(9.)

$$
\begin{aligned}
& \Rightarrow y_{1}=\left[\begin{array}{l}
x_{1} \\
0
\end{array}\right], y_{2}=\left[\begin{array}{l}
x_{2} \\
0
\end{array}\right], y_{3}=\left[\begin{array}{l}
x_{3} \\
0
\end{array}\right], y_{4}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
& \Rightarrow A y_{1}=\left[\begin{array}{l}
b x_{1} \\
1=0
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
x_{1} \\
0
\end{array}\right]=\lambda_{1} y_{1}
\end{aligned}
$$

similarly $\quad A_{2}=\lambda_{2} y_{2}, \quad A_{3}=\lambda_{2} y_{3}$
and $A J_{4}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]=y_{4}$.
$y_{1}, y_{2}, J_{3}, y_{4}$ span \mathbb{R}^{4} (why?)
(10) $A=\left[\begin{array}{ll}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ where $A_{1}=\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$

Eigv of A_{1} are the solutions of $\lambda^{2}-L_{1}=0 \Rightarrow \lambda_{1}=2, \lambda_{2}=-2$

$$
\begin{aligned}
& A_{1}-2 I=\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right] \Rightarrow \begin{array}{l}
\text { associated } \\
\text { eivector } \\
\text { of } A_{1}
\end{array}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=c_{1} \text { Notice that }
\end{aligned}
$$

Similarly $e_{2}=\left[\begin{array}{c}c_{2} \\ 0 \\ 0\end{array}\right]$ is an eigrector $\left.\begin{array}{c}\text { with eigualue }=-1\end{array}\right\} \Rightarrow e_{1}$ is an eigenvector of A with eigenvalue $=2$.

Eigrectors of A_{2} are the solutions of $\operatorname{det}\left(A_{2}-\lambda I\right)=0$

$$
\begin{aligned}
& \Rightarrow(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)=0 \Rightarrow \lambda_{3}=3, \lambda_{4}=-1 \\
& \left.A_{2}-3 I=\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right] \Rightarrow \begin{array}{c}
\begin{array}{c}
\text { aspociated } \\
\text { eijector } \\
\text { of } A_{2}
\end{array} \\
C_{3}
\end{array}\right] \\
& A_{2}+I=\left[\begin{array}{ll}
1 \\
1 & 2 \\
2 & 2
\end{array}\right] \Rightarrow \begin{array}{c}
\text { ersociated } \\
c_{4}
\end{array}
\end{aligned}
$$

$$
\Rightarrow \underbrace{A\left[\begin{array}{cccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0 \\
0 & 0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & 0 & 1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]}_{Q}=\underbrace{Q}_{\Lambda} \underbrace{\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]}_{\Lambda}
$$

$$
\Rightarrow A=Q \bar{\Lambda} Q^{\top}
$$

Remark: We can viork with submatrices if A is bloch-diagoral.

MAT 281E - Linear Algebra and Applications
 Midterm Examination I

$$
05.11 .2010
$$

(20 pts) 1. (a) Find the matrix X that satisfies the equation $A X=B$ where,

$$
A=\left[\begin{array}{ccc}
-2 & 3 & 0 \\
4 & -6 & -1 \\
6 & -3 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
2 & 3 & 5 \\
-3 & -7 & -11 \\
-6 & -3 & -9
\end{array}\right]
$$

(b) Find the matrix Y that satisfies the equation $Y C=D$ where,

$$
C=\left[\begin{array}{ccc}
-2 & 4 & 6 \\
3 & -6 & -3 \\
0 & -1 & 0
\end{array}\right], \quad D=\left[\begin{array}{ccc}
2 & -3 & -6 \\
3 & -7 & -3 \\
5 & -11 & -9
\end{array}\right] .
$$

(Hint for part (b) : Take a good look at the matrices in both parts. Also notice that you are not asked to solve $C Y=D$.)
(20 pts) 2. Find the LU decomposition of

$$
A=\left[\begin{array}{ccc}
-4 & 0 & -2 \\
0 & 2 & 3 \\
16 & -4 & 1
\end{array}\right]
$$

(30 pts) 3. Consider the system of equations

$$
\underbrace{\left[\begin{array}{ccccc}
1 & 1 & -2 & 1 & 0 \\
2 & 2 & -4 & 1 & -1 \\
1 & 1 & -1 & 2 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{l}
4 \\
7 \\
4
\end{array}\right]}_{b} .
$$

(a) Describe $N(A)$, the nullspace of A.
(b) What is the rank of A ?
(c) What is the dimension of $N(A)$?
(d) Describe the solution set of $A x=b$.
(15 pts)
4. (a) Let C be the set of vectors of the form $\left[\begin{array}{l}x \\ y\end{array}\right]$ where $x \geq 0, y \geq 0$. Is C a subspace of \mathbb{R}^{2} ? Please explain your answer.
(b) Is it possible to find a 3×2, non-zero matrix A such that, the set of vectors of the form ' $A\left[\begin{array}{l}x \\ y\end{array}\right]$ ', where $x \geq 0, y \geq 0$, form a subspace of \mathbb{R}^{3} ? If it is possible, provide such a matrix. If you think it is not possible, explain why not.
(15 pts) 5. True or False? The following subsets of \mathbb{R}^{3} are also subspaces of \mathbb{R}^{3}.
(a) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{2}=1$.
(b) The vector $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$ alone.
(c) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{2}-2 x_{3}=x_{1}$.
(d) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{3}=x_{2} / x_{1}$.
(e) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{2}^{2}-x_{3} x_{2}=0$.
(f) All vectors of the form ' $\alpha\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ ' where $\alpha \geq 0$.
(g) All vectors of the form ' $\alpha\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ ' where $-1 \leq \alpha \leq 1$.
(h) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{1}=x_{2}$.
(i) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{1}^{2}=x_{2}^{2}$.
(j) All vectors $\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ with $x_{1}^{3}=x_{2}^{3}$.

MAT 281E - Linear Algebra and Applications
 Midterm Examination II
 17.12.2010

Student Name : \qquad

Student Num. : \qquad

5 Questions, 120 Minutes
Please Show Your Work!
(10 pts) 1. Consider the space S, spanned by

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

(a) Construct a matrix A such that $C(A)=S$ (here $C(A)$: the column space of A).
(b) Find a vector from the orthogonal complement of S.
(20 pts) 2. Suppose that A is a 3×3 matrix, whose rank is 2 (i.e. it has 2 independent columns) and

$$
\begin{aligned}
& \mathbf{v}_{1}^{T} A=\left[\begin{array}{lll}
0 & 2 & 0
\end{array}\right], \\
& \mathbf{v}_{2}^{T} A=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],
\end{aligned}
$$

where

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] .
$$

(a) What is the dimension of $N\left(A^{T}\right)$, the left nullspace of A ?
(b) Find a basis for $N\left(A^{T}\right)$.
(c) Find the matrix P that projects any point to $N\left(A^{T}\right)$.
(d) Find the matrix Q that projects any point to $C(A)$, the column space of A.
(15 pts) 3. Consider the lines $l_{1}=(x, 2 x, x+3,-x), l_{2}=(1-y,-2 y,-1-y, 2)$ in \mathbb{R}^{4}. Find two points $p \in l_{1}, q \in l_{2}$ that minimize $\|p-q\|$.
(25 pts) 4. Let V be a subspace in \mathbb{R}^{3} spanned by

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

and l, a line described as $l=(x, 1,-x)$.
(a) Find two points $p \in V, q \in l$ that minimize $\|p-q\|$.
(b) Find two more points $\tilde{p} \in V, \tilde{q} \in l$, such that $\tilde{p} \neq p, \tilde{q} \neq q$ and $\|p-q\|=\|\tilde{p}-\tilde{q}\|$.
(30 pts) 5. (a) Suppose we are given

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

that span \mathbb{R}^{3}.
Let $\mathbf{q}_{1}=\alpha \mathbf{a}_{1}$ where α is a scalar. Select α and find two more vectors $\mathbf{q}_{2}, \mathbf{q}_{3}$, using the Gram-Schmidt procedure, such that $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$ is an orthonormal basis for \mathbb{R}^{3}.
(b) Consider the plane P described by the equation $x+y+z=3$. Find the closest point of P to $(1,2,3)$.

MAT 281E - Linear Algebra and Applications
 Final Examination

18.01.2011

Student Name : \qquad
Student Num. : \qquad

5 Questions, 120 Minutes
Please Show Your Work!
(20 pts) 1. Consider the system of equations

$$
\underbrace{\left[\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & -1 & -1 & -3 \\
1 & 3 & -5 & -3
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
0 \\
2 \\
-6
\end{array}\right]}_{b} .
$$

(a) Describe the solution set of $A x=b$.
(b) What is the rank of A ? What are the dimensions of the four fundamental subspaces, $N(A), C(A), N\left(A^{T}\right), C\left(A^{T}\right)$?
(15 pts) 2. Consider the plane P in \mathbb{R}^{3} described by the equation $x+y+2 z=0$.
(a) Find two vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, that span P.
(b) Find a 3×3 matrix A such that $N(A)=P$.
(c) Find a 3×3 matrix B such that $C(B)=P$.
$(20 \mathrm{pts}) \quad 3$. Let P be a plane in \mathbb{R}^{3}. Suppose we are given three points on P as,

$$
p_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \quad p_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad p_{3}=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right] .
$$

Let A, b be such that the solution set of $A x=b$ is P.
(a) What is the dimension of $N(A)$?
(b) Find a basis for $N(A)$.
(c) Let

$$
q=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

Find $p \in P$ that minimizes $\|p-q\|$.
(20 pts)
4. Let

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right]
$$

(a) Find the eigenvalues and eigenvectors of A.
(b) Find an orthogonal Q and a diagonal Λ such that $A=Q \Lambda Q^{T}$.
(c) Compute A^{20}.
(25 pts) 5. Suppose we are given

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]
$$

that span \mathbb{R}^{3}.
Also, let

$$
A=\underbrace{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]}_{\mathbf{u}} \underbrace{\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]}_{\mathbf{a}_{1}^{T}}
$$

(a) Apply the Gram-Schmidt procedure to the vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ to find three vectors $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$ which form an orthonormal basis for \mathbb{R}^{3}.
(b) What are the dimensions of $N(A)$ and $C(A)$?
(c) Find three eigenvectors, $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, of A that span \mathbb{R}^{3}. What are the associated eigenvalues?

