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Let y, A be given. Consider the minimization of :

J(x) =
1

2
‖y −Ax‖22 + λ ‖x‖1. (1)

Also let the matrix A satisfy AT A < αI for some scalar α.
Majorization-minimization idea goes as follows. Suppose we have an estimate of the minimizer of J(·),

namely x̄. We would like to find another point x∗ such that J(x∗) < J(x̄). Let

M(x̄, x) =
1

2
(x̄− x)T (α I −AT A) (x̄− x), (2)

and consider the function
J̄(x) = J(x) +M(x̄, x). (3)

Notice that

(i) M(x̄, x) ≥ 0,

(ii) M(x̄, x̄) = 0.

These two conditions imply that, [
min
x
J̄(x)

]
≤ J(x). (4)

Therefore if we set
x∗ = arg min

x
J̄(x), (5)

then J(x∗) ≤ J(x̄) – that is, we achieved descent in the cost function. We can now apply this trick again on x∗

to further decrease the cost function.
Let us now look at the minimization of J̄(x). First, we note that the new function J̄(x) is separable in its

entries, i.e.,

J̄(x) =
∑
i

α

2
x2i − ci xi + λ |xi|+ const. (check this!) (6)

where
c = α x̄+AT y −AT A x̄ (7)

and the term ‘const.’ is independent of x. We also note that the minimizer of the scalar function

f(x) =
1

2
(x− w)2 + γ |x| (8)

is given as
z = soft(w, γ) (9)

where
soft(w, γ) = sign(w) max(|w| − γ, 0). (10)

This motivates the following descent algorithm for minimizing of J(·).

Algorithm 1 Iterated Shrinkage Thresholding Algorithm

Initialize x. Set γ ← λ/α.
repeat
c← x+ 1

α A
T (y −Ax).

xi ← soft(ci, γ).
until convergence
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