Vibration of single degree of
freedom systems

Assoc. Prof. Dr. Pelin Gundes Bakir
gundesbakir@yahoo.com
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A short review on the dynamic behaviour of the single degree of freedom systems
A short review on the dynamic behaviour of multi-degree of freedom structures
Objectives for vibration monitoring

Fourier Series Expansion, Fourier Transforms, Discrete Fourier Transform

Digital signal processing, problems associated with analog-to-digital conversion, sampling,
aliasing, leakage, windowing, filters

Steps in instrumenting a structure, selection and installation of instruments,maintenance,
vibration instrumentation, exciters, transducers, performance specification, data acquisition
systems, strong-motion data processing
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Random variables, stochastic processes, statistical analysis, correlation and convolution,
coherence, time and frequency domain representation of random dynamic loads
Dynamic response of single and multi degree of freedom systems to random loads
Modal analysis

Applications in bridges, buildings, mechanical engineering and aerospace structures

MATLAB exercises

Term Projects
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Modal analysis:

Heylen W., Lammens S. And Sas P., ‘Modal Analysis Theory and Testing’, Katholieke
Universiteit Leuven, 1997.

Ewins D.J., ‘Modal Testing, Theory, Practice, and Application’ (Mechanical Engineering
Research Studies Engineering Design Series), Research Studies Pre; 2 edition (August 2001)
ISBN-13: 978-0863802188

Maia, N. M. M. and Silva, J. M. M.Theoretical and Experimental Modal Analysis, Research
Studies Press Ltd,, Hertfordshire, 1997, 488 pp.,ISBN 0863802087

Signal processing:

Blackburn, James A, Modern instrumentation for scientists and engineers, New York :
Springer, 2001

Stearns S. D. and David, R. A., Signal Processing Algorithms in Matlab, Prentice-Hall Inc, 1996

Mitra S.K., ‘Digital Signal Processing’, A Computer based approach, Mc-Graw Hill, 3rd Edition,
2006.

Heylen W., Lammens S. And Sas P., ‘Modal Analysis Theory and Testing’, Katholieke
Universiteit Leuven, 1997.

Keith Worden ‘Signal Processing and Instrumentation’, Lecture Notes,
http://www.dynamics.group.shef.ac.uk/people/keith/mec409.htm
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Signal processing:

 Lynn, P. A. Introductory Digital Signal processing With Computer Applications. John Wiley &
Sons, 1994.

e Stearns D. D. and David, R. A., Signal Processing Algorithms in Matlab, Prentice-Hall Inc, 1996

e Ifeachor E.C. and Jervis B.W. Digital Signal Processing: A Practical Approach, Addison-Wesley,
1997

General vibration theory

e RaoS.S., ‘Mechanical vibrations’, Pearson, Prentice Hall, 2004.

* Inman D.J,, ‘Engineering Vibration’, Prentice Hall, 1994.

e  Meirovitch L., ‘Fundamentals of vibrations’, McGrawHill, 2001.
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Random vibrations:

Bendat J.S. and Piersol A.G., ‘Random data analysis and measurement procedures’, Wiley Series in
Probability and Statistics, 3rd Edition, 2004.

. Lutes L.D. and Sarkani S., ‘Random Vibrations: Analysis of structural and mechanical systems’, Elsevier, 631
pp, 2004.

e Newland D.E., 'An introduction to random vibrations, spectral and wavelet analysis’, Longman,
1975/1984/1993.

e Soong T.T. and Grigoriu, ‘Random vibration of mechanical and structural systems’, Prentice Hall, 1993.

e Wirsching P.H. and Paez T.L. and Ortiz K. ‘Random vibrations: Theory and Practice’, John Wiley and sons,
1995.

e Bendat J.S. and Piersol A.G. ‘Engineering applications of correlation and spectral analysis’, John Wiley and
Sons, 2" Edition, 1993.
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Vibration Instrumentation:

Vibration, monitoring, testing and instrumentation handbook, CRC Press, Taylor and Francis,
Edited by: Clarence W. De Silva.

e Aszkler C., ‘Acceleration, shock and vibration sensors’, Sensors handbook, Chapter 5, pages
137-159.

e McConnell K.G., ‘Vibration testing, theory and practice’, John Wiley and Sons, 1995.

* Prerequisites: Basic knowledge on structural analysis.
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Basic Information:

Instructor: Assoc. Prof. Dr. Pelin Gundes Bakir
(http://atlas.cc.itu.edu.tr/~gundes

Email: gundesbakir@yahoo.com

Office hours TBD by email appointment

Website:
http://atlas.cc.itu.edu.tr/~gundes/lectures

e Lecture time: Wednesday 14.00-17.00

e Lecture venue: NH 404
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‘Vibration based structural health monitoring’ is a multidisciplinary
research topic. The course is suitable both for undergraduate and
graduate students as well as the following departments:

Civil engineering

Earthquake engineering
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ngineering
Aerospace engineering

Electrical and electronic engineering
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Basic Information:

e 70 % attendance is required.

Grading:

e Quiz+thomeworks: 35%
e Mid-term project:25%
* Final project:40%
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Introduction

*Concepts from vibrations
*Degrees of freedom
*Classification of vibration
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NEWTON'’S LAWS
First law:

If there are no forces acting upon a particle, then the particle will move in
a straight line with constant velocity.

Second law:
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the time rate of change of the linear momentum vector.

Third law:

When two particles exert forces upon one another, the forces lie along the
line joining the particles and the corresponding force vectors are the
negative of each other.
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The minimum number of independent coordinates required to determine
completely the positions of all parts of a system at any instant of time

defines the degree of freedom of the system. A single degree of freedom
system requires only one coordinate to describe its position at any instant

of time.
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Simple pendulum

B+ (g/f)g =0
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For the simple pendulum in the figure, the motion can be stated either in terms of 0 or x and y. If the
coordinates x and y are used to describe the motion, it must be recognized that these coordinates are not
independent. They are related to each other through the relation

2 2 2
X +y =1
where | is the constant length of the pendulum. Thus any one coordinate can describe the motion of the

pendulum. In this example, we find that the choice of 0 as the independent coordinate will be more
convenient than the choice of xand y.

U, S
I(1 — cos 8)
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Some examples of two degree of freedom systems are shown in the figure. The first figure shows a two
mass — two spring system that is described by two linear coordinates x1 and x2. The second figure denotes
a two rotor system whose motion can be specified in terms of 01 and 62. The motion of the system in the
third figure can be described completely either by X and 0 or by x,y and X.
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A large number of practical systems can be described using a finite number of degrees of freedom, such as
the simple system shown in the previous slides.

Some systems, especially those involving continuous elastic members, have an infinite number of degrees
of freedom as shown in the figure. Since the beam in the figure has an infinite number of mass points, we
need an infinite number of coordinates to specify its deflected configuration. The infinite number of
coordinates defines its elastic deflection curve. Thus, the cantilever beam has infinite number of degrees

of freedom.
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Systems with a finite number of degrees of freedom are called discrete or
lumped parameter systems, and those with an infinite number of degrees
of freedom are called continuous or distributed systems.

Most of the time, continuous systems are approximated as discrete
systems, and solutions are obtained in a simple manner. Although
treatment of a system as continuous gives exact results, the analytical
methods available for dealing with continuous systems are limited to a
narrow selection of problems, such as uniform beams, slender rods and
thin plates.

Hence, most of the practical systems are studied by treating them as finite
lumped masses, springs and dampers. In general, more accurate results
are obtained by increasing the number of masses, springs and dampers-
that is by increasing the number of degrees of freedom.
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Free vibration: If a system, after an initial disturbance is left to
vibrate on its own, the ensuing vibration is known as free vibration.
No external force acts on the system. The oscillation of a simple
pendulum is an example of free vibration.

Forced vibration: If a system is subjected to an external force (often
a repeating type of force), the resulting vibration is known as forced
vibration.

— If the frequency of the external force coincides with one of the natural
frequencies of the system, a condition known as resonance occurs,
and the system undergoes dangerously large oscillations. Failures of
such structures as buildings, bridges, turbines, and airplane wings
have been assoicated with then occurrence of resonance.
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Undamped vibration: If no energy is lost or dissipated in friction or other
resistance during oscillation, the vibration is known as undamped vibration.

If any energy is lost in this way however, it is called damped vibration.

Seal Hng

I \ 7

Mounting \ .
point Orifice [,— - ()

While the spring forms a physical model for storing kinetic energy and hence
causing vibration, the dashpot, or damper, forms the physical model for
dissipating energy and damping the response of a mechanical system. A
dashpot consists of a piston fit into a cylinder filled with oil. This piston is
perforated with holes so that motion of the piston in the oil is possible. The
laminar flow of the oil through the perforations as the piston moves causes a
damping force on the piston.
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Linear vibration: If all the basic components LLLl LS
of a vibratory system-the spring, the mass, ‘%‘“ %
and the damper, behave linearly, the on T
resulting vibration is known as linear ! m |
vibration. The differential equations that "
govern the behaviour of vibratory linear
systems are linear. Therefore, the principle of Z é L J
superposition holds. k3 S 2 2
Xy m--m--- o i - ?
l 1™ 1" x
Nonlinear vibration: If however, any of the ‘ —

basic components behave nonlinearly, the

vibration is called ‘nonlinear vibration’. The

differential equations that govern the

behaviour of vibratory non-linear systems 10° N
are non-linear. Therefore, the principle of

superposition does not hold.

0 20mm
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Linear and nonlinear vibrations contd:

The nature of the spring force can be
deduced by performing a simple static
experiment. With no mass attached, the
spring stretches to a position labeled as x0=0
in the figure.

As successively more mass is attached to the
spring, the force of gravity causes the spring

to stretch further. If the value of the mass is
recorded, along with the value of the
displacement of the end of the spring each
time more mass is added, the plot of the
force (mass denoted by m, times the
acceleration due to gravity, denoted by g),
versus this displacement denoted by x, yields

a curve similar to that shown in the figure.
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Linear and nonlinear vibrations contd: ) Lﬁ’g”
* Note that in the region of values for x ! kR
between 0 and about 20 mm, the curve is T m |
a straight line. This indicates that for o

deflections less than 20 mm and forces
less than 1000 N, the force that is applied % %

by the spring to the mass is proportional Ei
to the stretch of the spring.

—AAAAA

 The constant of proportionality is the slope
of the straight line.

1PN
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Deterministic vibration: If the value or magnitude of the excitation (force or
motion) acting on a vibratory system is known at any given time, the excitation is

Vi

called ‘deterministic’. The resulting vibration is known as ‘deterministic vibration’.

Nondeterministic vibration: In some cases, the excitation is non-deterministic or
random; the value of excitation at a given time cannot be predicted. In these
cases, a large collection of records of the excitation may exhibit some statistical
regularity. Itis possible to estimate averages such as the mean and mean square
values of the excitation.

Force &

\/\/\/\/\

0 \_J u U Time

. (a} A dﬂte!‘mmisiic (pEﬁDdtC} e}(l’:ltaﬁon (b) A random exc{tatign
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e Examples of random excitations are wind velocity, road roughness, and
ground motion during earthquakes.

e If the excitation is random, the resulting vibration is called random
vibration. In the case of random vibration, the vibratory response of the
system is also random: it can be described only in terms of statistical

guantities.

Force 4

\/\/\/\/\

0 \_J u U Time

(a) A deterministic (periodic) excitation (b) A random excitation



Mathematical background

*Homogeneous linear ODEs with
constant coefficients

*Nonhomogeneous ODEs
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The dynamic behaviour of mechanical systems is described by what
we call second order Ordinary Differential Equations.

The input to the mechanical structure appears on the right hand
side of the equation and is the Force and the solution of the
equation gives the output which is usually the displacement.

In order to be able solve these equations, it is imperative to have a
solid background on the solution of homogeneous and
nonhomogeneous Ordinary Differential Equations.

Homogeneous Ordinary Differential Equations represent the ‘Free
Vibrations’ and the non-homogeneous Ordinary Differential
Equations represent ‘Forced Vibrations'.



Homogeneous linear ODEs with
constant coefficients

We shall now consider second-order homogeneous linear ODEs whose
coefficients a and b are constant.

y'+ay'+by=0
The solution of a first order linear ODE:
v +ky=0

By separating variables and integrating, we obtain:

d
= —kdx  Iny|=—[kdx+c*
Y
faking exponents on both sides:
—| kd. _
y(x)=ce J =ce™

Let’s try the above solution in the first equation. Using a constant
coefficient k: N

y=e

Substituting its derivatives:y' = 1e™ and y"=A%e™

(1> +ad+b)e™ =0



Homogeneous linear ODEs with
constant coefficients

Hence if A is a solution of the important characteristic equation (or
auxiliary equation)

A +al+b=0
Then the exponential solution y =¢e™ is a solution of the

y'+ay'+by=0

Now from elementary algebra we recall that the roots of this quadratic
equation are: A :%(—a+\/az—74b)
A :%(—a—1/a2—4b)

The functions below are solutionsto " +ay'+by =0

y=e* and y,=e™



Homogeneous linear ODEs with
constant coefficients

From algebra we know that the quadratic equation below may have three

kinds of roots:
P +al+b=0

Case I: Two real roots if «*-4b>0
Case lI: A real double root if a>—4b=0
Case lll: Complex conjugate roots if a°-4b<0

st mim~ ~L N

— I.: M L 1 19” nns, l\19—
' I soiutions or Yy +ay +oy=v

AACE 0. lin £lic mmmm o~ ammlm
CAJOL 1. II1 LIS LdSE, d DJSIS O
in any interval is: y=¢™ and y,=e*

because y: and y: are defined and real for all x and their quotient is not
constant. The corresponding general solution is:

_ Ax Apx
y = Cle + Cze



Homogeneous linear ODEs with
constant coefficients

CASE II: Real double root A=-a/2
e Ifthe discriminant «°-4b is zero, we see from

A =%(—a+w/a2 —4p)
A =%(—a—w/a2 —4b)

that we get only one root: 4A=4=4=-a/2,
hence only one solution :

yl:e—(aIZ)x
To obtain a second independent solution y. needed for a basis, we use the
method of order of reduction. Setting

v, =uy;, Substituting this and its derivatives y,'=u"y, +uy," and y,"'into

y'+ay'+by=0



Homogeneous linear ODEs with
constant coefficients

CASE II: Real double root A=-a/2

We have : (u'y; +2u’y; +uy) +a(u'y, +uyy) +buy, =0

Collecting terms 'y, +u'(2y{ +ay,) +u(y{+ay; +by,) =0

This expression in the last paranthesis is zero, since yi is a solution of
y'+ay'+by=0

The expression in the second paranthesis is zero too since; =-ac'* =-ay,

We are thus left with
u"y, =0
Hence
u"=0
By two integrations

U=cxx+c,



Homogeneous linear ODEs with
constant coefficients

CASE II: Real double root A=-a/2

To get a second independent solution y2=uy1, we can simply choose ci=1
and c2=0 and take u=x. Then y2=xy1. Since these solutions are not
proportional, they form a basis. Hence in the case of a double root of

A +al+b=0
a basis of solutions of »"+ay'+by=0
on any interval is: o2 o2

* The corresponding general solution is: y =(c, +c,x)e '



Homogeneous linear ODEs with
constant coefficients

CASE Ill: Complex roots —a/2+i® and —a/2-i®

This case occurs if the discriminant of the characteristic equation 22 +al+b=0

is negative. In this case, the roots of the above equation and thus the solutions of the ODE
come at first out complex. However, we show that from them we can obtain a basis of real solutions:
y'+ay'+by=0

where yl _ e—ax/Z COS ox, yz — e—ax/Z SII’I DX

2 1 2
W =b——a
4
This is proved in the next slides. It can be verified by substitution that these are solutions in the present
case. They form a basis on any interval since their quotient cotwx is not constant. Hence, a real general

solution in Case lll is:
—ax /2

y=e “'*(4cos wx+ Bsin ox) (4, B arbitrary )



Homogeneous linear ODEs with
constant coefficients: Proof

e Complex number representation of harmonic motion: Since
X =0P
this vector can be represented as a complex number:
X =a+ib
where i=+-1 and a and b denote x and y components of X. Components
a and b are also called the real and the imaginary parts of the vector X. If A
denotes the modulus or the absolute value of the vector X, and 6 denotes

the argument of the angle between the vector and the x-axis, then X can

also be expressed as:
X = Acos ¢ + iA sin #

A= {a?. 4+ bz}uz

f = tan b
a



Homogeneous linear ODEs with constant coefficients:

Complex number representation of harmonic motion
Noting that 2 = —1,3 = —i, # =1, ..., cos #and i sin # can be expanded
in a series as

) e (i 92 (i 6)*

cos 8 =1 Y ZT—--'“*1+ 21 + y + - - (1.39)
o 0 6 . (i 6)3 (i )3
131n8—1l:0—"-3—!+§—"-]=19+ 31 + 3] + o

(1.40)

Equations (1.39) and (1.40) yield

. - . | §)? | #)3 .

(cos @ + isin ) =1+ i6 + (lgg) (l3!) + + - = £'9(1.41)

and

6 — isi =
(cos [ sin 6) 1 X

y (Imaginary)
4

plem e X=a+ib=Ae"

» x (Real)

(@)

]

FIGURE 1.40

N N
— g L0710 + - = e-i9(1.42)

3!

A = Acos § + iA zin # (1.38)

Thus Eq. (1.36) can be expressed as
¥ = A(cos § + isin §) = Ae'?



Homogeneous linear ODEs with
constant coefficients: Proof

As apparent we have two complex roots. These are:

1 1
=—a+iw and =—a—-iw
4 LAl A >

We know from basic mathematics that a complex exponential function can
be expressed as:

e =e'e" =e"(cost+isint)
Thus the roots of the second order Ordinary Differential Equation can be
expressed as: e = g (WA — o7 (WI2x (608 @x + i SiN @)

e/lzx _ e—(a/Z)x—iwx — e—(a/Z)x(COS X — isin a)x)

We now add these two lines and multiply the result by %. This gives:

y, = e “'? cos wx

Then we subtract the second line from the first and multiply the result by

1/2i. This gives: v, = /2 sin wx



Homogeneous linear ODEs with
constant coefficients

Distinct real

™, ™ Y= Cleﬂ1 T Ce &
A1, A2
Real double root 12
e—ax/2 , xe—ax/Z Y= (Cl 4 sz)e—ax
A=-a/2
Complex
conjugate
1 .
}Ll:—Ea+la) y,=e ~ax/2 COS wx _ —axl2

(A cos wx + Bsin wx)

~
I

1 o —axl2 4;
122——61—1'60 Y, =¢€ SIN wx
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e In this section, we proceed from homogeneous to nonhomogeneous

ODEs. , ,
> V' + p(x)y +q(x)y =r(x)

 The general solution consists of two parts:
y(x) =y, (x)+y,(x)
where y, =c, v, +c,y, isageneral solution of the homogeneous ODE.

ke” Ce™

kx" (n=012,..) Kx"+K _x""+.+Kx+K,
k cos ax K cos wx + M sin ox

k sin ax

ke™ COS wx

e” (K cos ax + M sin ax)
ke™ sin ax



V\L\ 'aYe e
1NOMOoge

Nl A
INU

c NNEc
O UULO

Choice rules for the method of undetermined coefficients

a) Basicrule: If r(x) is one of the functions in the first column in the Table,
choose yp in the same line and determine its undetermined coefficients
by substituting y, and its derivatives into

V'+p(x)y' +q(x)y =r(x)
b) Modification rule: If a term in your choice for y, happens to be a solution
of the homogeneous ODE corresponding to the above equation, multiply

your choice of yp by x (or x"2 if this solution corresponds to a double root
of the characteristic equation of the homogeneous ODE)

c) Sum rule: If r(x) is a sum of functions in the first column of the table,
choose for yp, the sum of the functions in the corresponding lines of the
second column.



Free Vibration of Single Degree
of Freedom Systems

eHarmonic Motion
*Free vibration of undamped SDOF systems
°Free vibration of damped SDOF systems
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e Oscillatory motion may repeat itself regularly, as
in the case of a simple pendulum, or it may
display considerable irregularity, as in the case of
ground motion during an earthquake.

e |f the motion is repeated after equal intervals of
time, it is called periodic motion.

 The simplest type of periodic motion is harmonic
motion.
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e Shown in the figure is a vector
OP that rotates
counterclockwise with
constant angular velocity o.

e Atanytimet, the angle that
OP makes with the horizontal
is O=mt.

 Lety be the projection of
OP on the vertical axis. Then
y=A sin ot. Herey, a
function of time is plotted
versus ot.
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A particle that experiences this
motion is said to have harmonic
motion.

The maximum displacement of a
vibrating body from its equilibrium
position is called the amplitude of
vibration. Amplitude A is shown in
the figure.

Range 2A is the peak to peak
displacement.

Now consider the units of 0. Let C
be the circumference of the circle
shown in the figure.

[

=

C Mo

Cne
cycle
of motion

Angular

displacement

f———
B=owf
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Thus C=21A. Or we can write C=A0,
where 0=2r for one revolution. Thus
defined, 0 is said to be in radians and is
equivalent to 360°. Therefore, one
radian is approximately equal to 58.3°.

In general, for any arc length,
One

s=A 0, where O is in radians. It follows ¢
that o in the figure would be in radians  “"™"
per second.

As seen in the figure, the vectorial
method of representing harmonic
motion requires the description of both
the horizontal and vertical components.

Angular

digplacement

f——
B =

The time taken to complete one cycle
of motion is known as the period of
oscillation or time period and is
denoted by 1. The period is the time for
the motion to repeat (the value of tin
the figure).
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Note that ® t=2 © where ® denotes the
angular velocity of the cyclic motion. The
angular velocity m is also called the
circular frequency.

The movement of a vibrating body from
its undisturbed or equilibrium position to
its extreme position in one direction, o
then to the equilibrium position, thento  eyele
its extreme position in the other oot
direction, and back to equilibrium
position is called a cycle of vibration.

One revolution (i.e., angular

displacement of 2r radians) of the pin P

in the figure or one revolution of the

vector OP in the figure constitutes a

cycle. Cycle is the motion in one period,

as shown in the figure. —

Angular
digplacement
———
B = wr
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Frequency is the number of cycles per unit time.

The most common unit of time used in vibration analysis is seconds.
Cycles per second is called Hertz.

The time the cycle takes to repat itself is the period T. In terms of the
period, the frequency is: ¥ 1
-

)
The frequency fis related to »: [ = 2—
T

w=2nf
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Phase angle: Consider two vibratory motions denoted by:

x, = A Sinwt
x, = A, sin(wt + @)

These two harmonic motions are called synchronous because they have

the same frequency or angular velocity ®. Two synchronous oscillations
need not have the same amplitude, and they need not attain their
maximum values at the same time as shown in the figure.

I-ﬂ:—r_u:
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* In this figure, the second vector OP: |leads the first one OP1 by an angle ¢
known as the phase angle. This means that the maximum of the second
vector would occur ¢ radians earlier than that of the first vector. These

two vectors are said to have a phase difference of ¢.

."E}i—r_u:
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From introductory physics and dynamics, the fundamental kinematical
guantities used to describe the motion of a particle are displacement,
velocity and acceleration vectors.

The acceleration of a particle is given by:

dv d’x i
dt dt’

a=

Thus, displacement, velocity, and acceleration have the following
relationships in harmonic motion:

x = ASIn wt
v=x= AwC0S wt

a=X=—Aw*sin ot
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Using complex number representation, the rotating vector X can be

written as:
X = 4 elor

where o denotes the circular frequency (rad/sec) of rotation of the vector X
in counterclockwise direction. The differentiation of the harmonics given

by the above equation gives:

X E[a fary = jgde'™ = fwX

ai dt
dﬁ = i(fﬂnl-‘it*"”"} = —wlAe™ = — wX
di? di

Thus the displacement, velocity and acceleration can be expressed as:

displacement = Re[Aef™] = A cos wt
velocity = Re[iwde'™] = —wd sin wr
= wA cos(ar + 90%)
acceleration = Re[ — w?de'™] = — 024 cos wr
= w?A cos(wr + 180%)
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It can be seen that the A
acceleration vector leads the N

{0 = Asin(wg +8) 04—

velocity vector by 90 degrees
and the velocity vector leads
the displacement vector by 90

-4 —

M —_—
Veloeity
#Hi =wdcos(wi+ ) 0
Im
rF
s - [ _I.IIA -
X = iwX —
iz X w'd -
m2
wi
Re "
B Acceleration
o — = —mEA 5im (luuf i+ u|ﬂ 0
A=—-w) e o . _

—m""ﬁ -
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Natural frequency: If a system, after an initial disturbance, is left to
vibrate on its own, the frequency with which it oscillates without external
forces is known as its natural frequency. As will be seen, a vibratory
system having n degrees of freedom will have, in general, n distinct
natural frequencies of vibration.

Beats: When two harmonic motions, with frequencies close to one
another, are added, the resulting motion exhibits a phenomenon known

as beats. For example if:
x,(t) = X cos wt

x,(t) = X cos(w+ O)t
where ¢ is a small quantity.
The addition of these two motions yield:

x(¢) = x,(¢) + x,(¢) = X[cos wt + cos(w + O)t]
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Beats:

x(¢) = x,(t) + x,(¢) = X[cos wt + cos(w + O)t]

ey

The first equation can be written as:
A A

x(t)=2X cos%cos(a) + é)t

Using the relation

COSA+COSB = Zcos{AJr

(1)
4
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Beats:

It can be seen that the resulting motion x(t) represents a cosine wave
with frequency o+ which is approximately equal to @ and with a varying
amplitude 2XCOS% . Whenever, the amplitude reaches a maximum it is
called a beat.

In machines and in structures,the beating phenomenon occurs when the
forcing frequency is close to the natural frequency of the system. We will
later return to this topic.
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e Octave: When the maximum value of a range of
frequency is twice its minimum value, it is known
as an octave band.

 For example, each of the ranges 75-150 Hz, 150-
300 Hz, and 300-600Hz can be called an octave
band.

* |In each case, the maximum and minimum values
of frequency, which have a ratio of 2:1, are said to
differ by an octave.



Free vibration of undamped SDOF
systems

Consider the single-degree-of-freedom (SDOF) system shown in the figure.
The spring is originally in the unstretched position as shown. It is assumed
that the spring obeys Hooke’s law. The force in the spring is proportional
to displacement with the proportionality constant (spring constant) equal

tok 1777770 77779 A S/ 147 i
Equilibrium
position
/f’ii___ ____r_/*_
Unstretched +x(t)_r
position

aellnd
=} -



Free vibration of undamped SDOF
systems

The stiffness in a spring can be related more directly to material and
geometric properties of the spring. A spring like behaviour results from a
variety of configurations, including longitudinal motion (vibration in the
direction of the length), transverse motion (vibration perpendicular to the
length), and torsional motion(vibration rotating around the length).

VIADIY 4 NI J LSS Ps

Equilibrium
position
/‘SstI____ _____I_/_____
Unstretched 'H{(t)_rr
position
kdg k(x+0g)




Free vibration of undamped SDOF
systems

 Aspringis generally made of an elastic material. For a slender elastic
material of length |, cross-sectional area A and elastic modulus E (or
Young’s modulus), the stiffness of the bar for vibration along its length is

given by: 74

[
e The modulus E has the units of Pascal (denoted Pa) which are N/m2.

k

Equilibrium
position

Unstretched +x(t)_T__
position
kBSl k(X+6St)

$

W w



Free vibration of undamped SDOF
systems

When the mass m (weight W) is applied, the spring will deflect to a static
equilibrium position Ost.

At this position, we find that:
W=mg=ko,

If the mass is perturbed and allowed to move dynamically, the
displacement x, measured from the equilibrium position, will be a function
of time. Here, x(t) is the absolute motion of the mass and the force in the
spring can be expresssed as:

_k(x+§st)

To determine the position as a function of time, the equations of motion
are employed; the free body diagrams are drawn as shown in the figure.
Note that x is measured positive downward.



Free vibration of undamped SDOF
systems

Applying Newton’s second law,
W—k(x+9,)=mx

But from the static condition, note that W=kost. Thus, the equation of
motion becomes:

mx+kx=0

With the standard form of: k
Xx+—x=0

m

Tt~ 1~ PR I | N P Sy [ B IR I R [ R .
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computed as

x=e “'?(A4cos wt + Bsin wt)

Since in the above equation:



Free vibration of undamped SDOF
systems

e Itis shown that
x(t)=Acosw, t+ Bsinw,t
where A and B are constants of integration and

o = |5 (adlsec)

m

Here on defines the natural frequency of the mass. This is the frequency at
which the mass will move regardless of the amplitude of the motion as
long as the spring in the system continues to obey Hooke’s law. The
natural frequency in Hertz is:

=25 ()

27t \'m



Free vibration of undamped SDOF
systems

e The initial conditionsx =xo att=0and x=x,  at =0 are used to evaluate
the constants of integration A and B. When substituted into the equation

x(t) = Acosw, t+ Bsinw, t

we get:
X
A=x, and B =—2
@, @,
° Tl A i 5mm :.. e edu oNn
111E SUITI 1T E cqu tion

x(t)=Acosw,t+ Bsinw,t

can also be combined to a phase shifted cosine with amplitude C =+ 4* + B*
and phase angle ¢=arctan(B/A). For this purpose let:

A=Ccos¢g and B=Csing



Free vibration of undamped SDOF
systems

Introducing the new values of A and B into
x(t)=Acosw,t+ Bsinw,t

we get: _ _
x(t) =Ccosgcosw t+Csingsinw, t

Since o
cos(x — y) =C0SxCOS y +Ssin xsin y

X(t) can be expressed as:
x(t) = Ccos(w,t — @)

Where ¢=arctan(B/A) and consequently:

. 2
¢:arctan( %o ]and C =+ A® + B? =\/x02+[x"]

X, 1)

n




Free vibration of undamped SDOF
systems

xO

The equation x(¢) = x, COS@w ¢t +—=SINnw, ¢ is a harmonic function of

Q

n

time. Thus, the spring-mass system is called a harmonic oscillator. The
nature of harmonic oscillation is shown in the figure. If C denotes a vector
of magnitude C, which makes an angle mnt-¢ with respect to the vertical x
axis, then the solution x(t) = C cos(w,t — @) can be seen to be the
projection of vector C on the x axis.

A1) = A coy (i, f=B)
{a) (b}
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Undamped and damped vibration: The response of a spring-mass model predicts
that the system will oscillate indefinitely. However, everyday observation indicates
that most freely oscillating systems eventually die out and reduce to zero motion.

The choice of representative model for the observed decay in an oscillating system
is based partially on physical observation and partially on mathematical
convenience. The theory of differential equations suggests that adding a term to
equation mi(7)+kx(r)=0 of the form cx , where c is a constant, will result in a
solution x(t) that dies out.

Physical observation agrees fair well with this model and it is used very
successfully to model the damping or decay in a variety of mechanical systems.

This type of damping is called the viscous damping.

Case Mounting

Seal 7 paint

1

Mounting \
point _ Orrifice

— x(t)
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The laminar flow of the oil through the perforations as the piston moves
causes a damping force on the piston.

The force is proportional to the velocity of the piston, in a direction
opposite that of the piston motion. This damping force has the form:

f. = cx(t)
where c is a constant of proportionality related to the oil viscosity. The
constant ¢, called the damping coefficient, has units of Ns/m, or kg/s.

- Casze Mounting
seal paint

Mounting "-, .
point Orifice e 4]
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Consider the spring-mass system with an energy dissipating mechanism
described by the damping force as shown in the figure. It is assumed that
the damping force Fo is proportional to the velocity of the mass, as shown;
the damping coefficient is c. When Newton’s second law is applied, this
model for the damping force leads to a linear differential equation,

mx+cx+kx=0 k(x+8) o

Bl bt

T |
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The ODE is homogeneous linear and has constant coefficients. The

characteristic equation is found by dividing the below equation by m:
c k

s’ +—s+—=0
m m

By the roots of a quadratic equation, we obtain:

=—a+pf, s,=-a-p,

where

o= and p=- o amk
2m 2m

It is now most interesting that depending on the amount of damping
(much, medium or little) there will be three types of motion
corresponding to the three cases |, Il and IlI.
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case | lRoots  loniton

Distinct real roots
I ¢ > Amk Overdamping
S1, S2

I c? = Amk Real double root Critical damping

1] c2 < Amk Complex conjugate roots Underdamping
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Define the critical damping coefficient cc as that value of c that makes the

radical equal to zero,

c, = 2m\/E =2mo,
m

Define the damping factor as:

éf__

C 2mo,

C

c

Introducing the above equation into

<2
%2=‘JL+Jﬁ£J'“E
' 2m 2m
We find: 5., = ( £t 2 )w

Then the solution can be written as:

x(¢) = Ae(_§+@)wnl

O

+ Be(

£ CNN
1 UV

—(—\/7—1)@,;

C
=

S

\ W}

Yy

S

4
L

e

'



Thre

| nree cases O

e Heavy damping when ¢ > cc

e Critical damping c = cc

e Light damping0<c<c

C)_

'CS

O'CJ



Heavy damping (c > cc or {>1)

The roots are both real. The solution to the differential equation is:
x(t) = Ae™ + Be™

where A and B are the constants of integration. Both s1 and s2 will be
negative because o >0, 3 >0, and Bi=a’—klm<a’® . Since
s, =—a+p, szz—a—ﬁ,wherea:% and ﬂzzi\/cz—mnk

m
Thus, given any initial displacement, the mass will decay to the

equilibrium position without vibratory motion. An overdamped system

does not oscillate but rather returns to its rest position exponentially.
N 2
x(t) = Ae(_§+ ¢ L) ay +Be(—§—\/§ 1wt

Displacement {mim)
0.4 _: 1. .?f|:|={1.3, Vﬂ'—D
1 2. Iu = ':l.. lF'|\| = ].

0.2 - 3. xy= 03, v=0

0.0

-2 4




Critical damping (¢ = cc,or C=1)

Since ﬂ=im is zero in this case, s1=S2=-01=-Cc/2M=-®n.
Both roots are equal and the general solution is: x(¢) = (A+Bt)e“""’
Substituting the initial conditions, x =xoatt=0and x = x_ at r =0

A=x,and B=x,+ o, x,

and the solution becomes:

x(0) =[x, + (%, +@,x, )™’

The motion is again not vibratory and decays to the equilibrium position.

x(1)
t Undamped (L = ()

Overdamped (L > 1)

Critically
‘-...,\ damped (€ = 1}

Underdamped ({ < 1)
(w, is smaller
thin m,)




Light damping (0 < ¢ < c. or C<1)

This case occurs if the damping constant c is so small that

¢’ < Amk
Then B is no longer real but pure imaginary.

2
B=iw* where o = - /4mk —c? :wfk— -
2m m 4m

The roots of the characteristic equation are now complex conjugate:

s, =—a +iw*, S, =—a—i0™
with
C
o=—
. 2m . .
Hence the corresponding general solution is:

x=e “(Acosw*t+ Bsinw*t)=Ce “ cos(w*t—¢,)
where

C?’=4°+B%and tan ¢, = B/A
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 The solution can also be expressed as:

x(t) = e (A COS1-C %@ t+ Bsin1-¢? a)nt)

 The roots are complex. It is easily shown, using Euler’s formula that the
general solution is: x(f) = [Ccos(w,t —¢,) e

where C and ¢ are the constants of integration. The damped natural
frequency d is given by @, = ®,4/1-&°

rlr_.r‘l
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* For the initial conditions

x(t=0)=x,
x(t=0)=x,

* The equation

x(t) = e (A Cos1-C*w t+ Bsina/1- gza)nt)

can be expressed as:

; . . \
tw X +Co x .
x(t) =e"| x, cosy1- P t + =2 Do gjn 1-Cat
aF
where fo©

2mo,



Nature of the roots in the complex
plane

For C=0, we obtain the imaginary roots
ioon and -ion and a solution of

Imaginary axis

x(t)=Acosw, t+ Bsinw,t

For 0<(<1, the roots are complex
conjugate and are located symmetrically
about the real axis.

Real axis

5, s,
fort>1 \fort> 1
As the value of C approaches 1,

both roots approach the point
-mn on the real axis.

If C is greater than 1, both roots lie on the
real axis, one increasing and the other decreasing.
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The logarithmic decrement represents the rate at which the amplitude of
a free damped vibration decreases. It is defined as the natural logarithm
of the ratio of any two successive amplitudes.

Let t1 and t2 denote the times corresponding to two consecutive
amplitudes (displacements) measured one cycle apart for an

underdamped system as shown in the figure.
x(1) -
A

/ i A2 /?ﬁ;’-\_ _______ e —b 1, f.

— e m —

:
(

=
—
—

=
\
\
\
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Using x(¢) = |4 cos(w,t — ¢)le " , we can form the ratio:
X, X,e " cos(w,t, —9,)

X, X,e " cos(w,t,—¢,)

But t2=t14Ta, hencecos(wyt, — ¢p) = cosQm + wyt; — ¢o) = cos(wyt; — ¢y).

— Wyl
= € = gf’-'-”an
E"" gmﬂ(r] -+ Tl‘.‘f)
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e The logarithmic decrement can be found from:

X
§ = In=t = w, Ty = £ = = = T
X2 $nTa \/1—{3&1,1 V1 - 2  wg 2m
* For small damping, the above equation can be approximated as:
& = 2a( if << 1

X __; | . e do / .
x R T T T pemg e — e = = —— S
XI ’ _li m h\-\.—/ —"","Ifj_.
0 f ' R \_‘/, """"""""""""" o
¢n l ,_,--"'"-—“.-.‘
P A
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e Figure shows the variation of the 14
logarithmic decrement 6 with ( 12 7
as shown in the equations: (2.85)
X 217_ 10 Eq. 2. /
§ =In=t = fw, 1y = {w,—F————=—- A
Xo { d g‘ A .J’I _ {2&}” E‘TE‘ . /
_ 2w 2w %
V-2 w; 2m © 6 1
3 N 2 f 'f J{ 1 T 4 » ,;,‘r.-"'
= 2q i < ‘{__'f" Eq. (2.86) —
* It can be noticed that for values up to ? ,./
rd
_ crre /
€ = 0.3, the two curves are difficult to 0 55 04 06 08 10
distinguish. - .
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 The logarithmic decrement is dimensionless and is actually another form

of the dimensionless damping ratio C. Once o is known, C can be found by

solving:
)

V(2m)? + 8

[ =

e |f weuse _
8 =2l if f<< 1

instead of § = In*L = fw,7, = 27

we have:
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If the damping in the given system is not known, we can determine it
experimentally by measuring any two consecutive displacements x1 and
x2. By taking the natural logarithm of the ratio x1 and x2, we obtain 9. By

using 5
£ = V(2m)? + 82

we can compute the damping ratio C.

In fact the damping ratio C can also be found by measuring two
displacements separated by any number of complete cycles. If x1 and xm+1
denote the amplitudes corresponding to times t:1 and tm+1=ti+m7td where m
is an integer, we obtain:

X, _ XXX Xn

X+ 1 Xa X3 Xy Lim+ 1
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e Since any two successive displacements separated by one cycle satisfy the
equation: x;

= g:man
Ajl
: X Xy Xo X X,
the equation L - l2223  om
Xm+1 Xy X3 X4 Am+1
becomes: XL (ptewtaym = pmieyTs

X+ 1

e The above equation yields & = 1in ( 1 )

mn Xm+1
which can be substituted into the either of the equations to obtain the

viscous damping ratio C:

8 8
V(2m)? + &2

{:




Forced Vibration

eHarmonic excitation
eBase excitation
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A mechanical or structural system is said to undergo forced vibration
whenever external energy is supplied to the system during vibration.
External energy can be supplied to the system through either an applied
force or an imposed displacement excitation.

The applied force or displacement excitation may be harmonic,
nonharmonic but periodic, nonperiodic or random in nature. The response
of a system to harmonic excitation is called harmonic response.

The nonperiodic excitations may have a long or short duration. The

response of a dynamic system to suddenly applied nonperiodic excitations
is called transient response.

In this part of the course, we shall consider the dynamic response of a
single degree of freedom system under harmonic excitations of the form

F(t)=F.e"“* or Ft)=F cos(wt+¢ or F(t)=F sin(ot+¢
where
F  is the amplitude, w is the frequency, and ¢ is the phase angle of the harmonic excitation.



Forced-Excited System: Harmonic
Excitation

Some single degree of freedom (SDOF) systems with an external force are
shown in the figure. Force can be applied both as an external force F(t), or
as a base motion y(t), as shown. The coordinate x(t) is the absolute motion
of the mass. The forces W and kost are ignored in the free-body diagrams
as we know they will add to zero in the equation of motion.

. rrva
kex cx +x +i

2 1 ,,,_JIj
=1 1! ]

M o) k(x —y) elx—y)

F(1)
(a) (b) Free-body diagram

A spring-ﬁ}ass—damper system.



Forced-Excited System: Harmonic
Excitation

* Consider the force-excited system of the figure, where the applied force is
harmonic, F(t)=F, sin ot
 Applying Newton’s second law, the equation of motion becomes:
mX+cx+kx=F sinwt
 The general solution for this second-order nonhomogeneous linear
differential equation is x(¢) = x, (¢) + x, ()

where xh is the complementary solution or solution to the homogeneous
equation. But this solution dies out soon . Our interest focuses on xp, the
particular solution. In vibration theory, the particular solution is also called
the steady-state solution. .

e




Forced-Excited System: Harmonic
Excitation

e The variations of homogeneous, particular, and general solutions with
time for a typical case are shown in the figure.

e |t can be seen that xn(t) dies out and x(t) becomes xp(t) after some time (t
in the figure).

e The part of the motion that dies out due to damping (the free vibration
part) is called transient. The particular solution represents the steady
state vibration and is present as long as the forcing function is present.
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x(1) = x,(1) + x,(1)
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Forced-Excited System: Harmonic
Excitation

The vertical motions of a mass-spring system subjected to an external
force r(t) can be expressed as:

mx" +cx' + kx = r(t)
Mechanically, this means that at each time instant t, the resultant of the
internal forces is in equilibrium with r(t). The resulting motion is called a
forced motion with forcing function r(t), which is also known as the input

force or the driving force, and the solution x(t) to be obtained is called the
output or the response of the system to the driving force.

Of special interest are periodic external forces, and we shall consider a
driving force of the form: r(t) = F. coswt

Then we have the nonhomogeneous ODE:

mx" +cx'+ kx = F, cos wt



Forced-Excited System: Harmonic
Excitation

Solving the nonhomogeneous ODE

To find yp, we use the method of undetermined coefficients:
x,(t) = acos wt + bsin wt

x', () = —wasin wt + wb cos wt
x"(t) = —w*a cos wt — w*bsin ot
Substituting the above equations into
mx" +cx'+ kx = F, cos wt
And collecting the cosine and the sine terms, we get
[(k—m?)a+ wcb]cos wt +[-wca + (k —mw®)b]sin wt = F, cos wt

The cosine terms on both sides must be equal, and the coefficient of the
sine term on the left must be zero since there is no sine term on the right.



Forced-Excited System: Harmonic
Excitation

e This gives the two equations: (¢-mo*)a+acb=F,
—wca+(k-mw*)b=0

for determining the unknown coefficients a and b. This is a linear system.

We can solve it by elimination to find:
_ 2
a=F, . 2mza) 2 2
(k—-mw°) +w°c

ac

C (k—ma?)? + @Pc?

—m RIS D I“'!-:"= 7 m(a)f_a)z)
=, , W ODLldlll. a=F, -

—h
S
™
w
()
~—r
=

m* (0> —0°)* +w°c’
@c

b=F
“m’ (0’ -0°) +o’c’

 We thus obtain the general solution of the nonhomogeneous ODE in the
form: x(t) = x, () +x (1)



Forced-Excited System: Harmonic
Excitation

Case I: Undamped forced oscillations:

* If the damping of the physical system is so small that its effect can be
neglected over the time interval considered, we can set c=0. Then

_ m(w, —o°)
a—FO 27 2 2\2 2 2
m (o —0°) +o°c

wcC
b=F
" m* (0 - 0°) +o°c’
reduces to R
m(w’ — w®)
b=0
Hence

x,(t) = acos wt + bsin wt

becomes F, F,
x,(f) = CoSwt = COS wrt

2 - ()

m(@, - ")



Forced-Excited System: Harmonic
Excitation

We thus have the general solution of the undamped system as:

x(t) =Ccos(m,t—9)+ f ——COS awt
m(w, — ")

We see that this output is a superposition of two harmonic oscillations of
the natural frequency wo/27 [cycles/sec] of the system, which is the
frequency of the undamped motion and the frequency /2 rt [cycles/sec]
of the driving force.
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Beats:

* As mentioned before, if the frequency of the forcing function and the

frequency of the system are very close to each other, then again beating effect
should be expected.

e |f we for example take the particular soluton:

x(t) = 5 —(cosmt—cosat) (0+o,)
m(w, —o°)

which can be rewritten as;

2F (o +w . (0 -0
x(t) = - Sin| ———1 |sin| ———1
m(w, — ") 2 2

* Since w is close to wo, the difference wo- ® is small. Hence the period of the last

sine function is large. This is because the greater the quantity under the sine,
the smaller the period is.




Beats:

Displacement (m)
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Beats:

This phenomenon is also frequently observed in lightly damped sytems with close coupling of the torsional
and translational frequencies.

A typical example is the thirteen storey steel framed Santa Clara County Office Building as reported in :

Celebi and Liu, ‘Before and after retrofit- response of a building during ambient and strong motions’,
Journal of Wind Engineering and Industrial Aerodynamics, 77&78 (1998) 259-268.

The proximity of the torsional frequency at 0.57 Hz to the translational frequency at 0.45 Hz causes the
observed coupling and beating effect in this structure.

RESPONSE AR ROOF OF SCCOB: CH6 (NS) - BEFORE RETROFIT

1000 NMWMMWWVWJWWWWWA """""""" N
; ; _ MOF!GAN HILL EQ.(1984)

MT. LEWIS EQ.(1986)

o bl _____ WWVWWJWWW\/WWW\AWW

; . LOMA F'HIETA EQ. 1989

0 20 40 60 80 100 120
TIME (S)

Fig. 2. Response at the roof of SCCOB during the three earthquakes.
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Comparison of the frequencies of the building

Thirteen storey steel framed Santa Clara County Office Building as reported in :

Celebi and Liu, ‘Before and after retrofit- response of a building during ambient and strong motions’,
Journal of Wind Engineering and Industrial Aerodynamics, 77&78 (1998) 259-268.

COMPARISON: BEFORE AND AFTER: AMBIENT

f\'!

—

o
o0
1

o
o
T

o
~
T

O
)
|

NORMALIZED AMPLITUDE

-

il

o

o

|
1.4 1.6 1.8
FREQ (HZ)

Fig. 12. Comparison of normalized amplitude spectra of motions before (solid lines) and after retrofit
(dashed lines).
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* If the damping of the system is so small that its effect can be neglected
over the time interval considered, we can set c=0. Then the particular
response can be expressed by:

F,
X, = —COSa)t —— = COS wt
m(a) - %)

k 1— —
e Putting cosmt=1, we see that the mix nl amplitude of the particular

solution is: .

a =—*>
0 kp

where p = 1 5
1-(0)j
a)O

If o— o, then pand a, tend to infinity.

* This excitation of large oscillations by matching input and natural
frequencies is called resonance.
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.. F
In the case of resonance and no damping, the ODE i + @’x = —>C0S @,

m
becomes: mX+cx+kx =F, cCoSwt
Then from the modification rule, the particular solution becomes:
x,(t)=t(acosw,t+bsinw,t)

By substituting this into the second equation, we find:

x ()= k, tsinm t
? 2ma, ’

We see that because of the factor t, the amplitude becomes larger and

~ s e s i e Lmm emu 2 2 o= oL

015 —

Cul fVU\/U

—0.15 | I | |
0

Displacement (m)

Time (s)



Forced-Excited System: Harmonic
Excitation

Case Il: Damped forced oscillations: If the damping of the mass-spring

system is not negligibly small, we have ¢>0 and a damping term cx’ in
mx+cx+kx=0 mx +cx + kx =r(t)

Then the general solution yn of the homogeneous ODE approaches zero as

t goes to infinity. Practically, it is zero after a sufficiently long time. Hence
the transient solution given by

y(t) =y, ) +y,()
approaches the steady state solution yp. This proves the following:

Steady state solution: After a sufficiently long time, the output of a
damped vibrating system under a purely sinusoidal driving force will
practically be a harmonic oscillation whose frequency is that of the input.



Response of a damped system under
harmonic force

e |Ifthe forcing function is given by F(r) = F, cos wt, the equation of motion

becomes:
mi + ¢x + kx = Fy cos wit

* The particular solution is also expected to be harmonic; we assume it in

the following form:
x, (1) = X cos (wt — ¢)

where X and ¢ are constants to be determined that denote the amplitude
and the phase angle of the response, respectively. By substituting the

second equation into the first:
X[ (k — mw*)cos(wt — ¢) — cowsin(wt — ¢)] = Fy cos wt

* Using the trigonometric relations below in the above equation
cos(wt — @) = cos wt cos ¢ + sin wr 8in ¢

sin(wr — ¢) = sin wt cos ¢ — cos wt sin ¢



Response of a damped system under
harmonic force

e \We obtain: X[(k ~ mw?)cos ¢ + cw sin qb] = Fy
X[(k — mw?)sin ¢ — cw cos d)] = 0

* |f we solve the above equation, we find:

F{j - C
X = = tan-! ( )
{(k — mmﬁ}g -+ czmz]lm ? k — ma?

e If we insert the above into the x, (1) = X cos (wf — ¢) we find the
particular solution. Using:

\/% = undamped natural frequency, _

w, =
@
=L € o _ ¢ C_ g, ",
c. 2mw, 2 Vmk m " "

Fo

= deflection under the static force Fy,



Response of a damped system under
harmonic force

e We obtai_n:

X 1 _
= 292 25 1/2 '\/#—_?

2 —
¢ = tan~! 4 i B S tan‘*l( 2¢r )

wz
N‘(w—,.)J

- v F(1), x,(1) 4
i N F)

/ %(1) .__;Mh“q}\\ {, s*s\/xp(:} , "'\\

P : k \ 3 7 \ / .
[ A

\A _'l, / )Tc' \ / \ If
\ \"--.i -_4 ___L i \\ ..-v// b -/,
\ e . N _ ) | ‘ - _!




Forced-Excited System: Harmonic
Excitation

* The quantity M=X/0st is known as the magnification factor, amplification
factor or the amplitude ratio. The amplitude of the forced vibration
becomes smaller with increasing values of the forcing frequency (that is,

M— 0 asr — )
X 1

Flk J0-r) +(2&)

180°

~150°

120°

Phase angle: ¢

0
=

g

Amplitude ratio: M = ﬁl
st

_ 39., yw-—t;=o:os
— £ = 0.00

- ‘
0 0.5 /‘ 1.0 1.5 20 25 30
t=00"" o

. : L, 2
Frequency ratio: r= wﬁ Frequency ratio: r= o,



Forced-Excited System: Harmonic
Excitation

* Afact that creates difficulty for designers is that the response can become
large when r is close to 1 or when o is close to mn. This condition is called
resonance. The reduction in M in the presence of damping is very
significant at or near resonance.

£=00
2.8 | ‘ i
£ =0.05 / £=0.25
2.4 180° [ ______jéw_
£=0.50_ [ —
5 2.0 150°—r =10 Wt  —
o - £=2.0 L
= 16 g 120°—— ;lﬁ ——t—
o :
& s £=5.0 [t
3 . 2 . 90°
E Y
- _t=1.0
B 08 60° =1
g o8 //f =05
. LA £=0.25
0.4 3 /  M—t =005
0

0 0.5]1.0 1.5 2.0 25 30
§=0.0"" o

Frequency ratio: r =

sle

. [PR— ]
Fréquency ratio: r o,



Forced-Excited System: Harmonic
Excitation

e For an undamped system (C=0), the phase angle is zero for O<r<1 and 180
degrees for r>1. This implies that the excitation and response are in phase
for O<r<1 and out of phase for r>1 when C=0.

o= arctan( 2&/2 j

1-r

£ =00
/
| | |
£=0.05 t=025 |
180° [
=0.50
% -wm-_c_' “‘45}’//” e sl
RI $ t=1.0 o
. I >/ "
. - £=2.0 L~
5 120° -~ =
g ) £=5.0- -
g 5 £=5.0 i —
= g W=
2 £ L
5
: VA
. . £ =0.25
W7V =00
— £ =0.00 ol
0 05 /1.0 1.5 20 25 30
£ =00" o

o
wﬂ

£

Frequency ratio: r=— Fréquency ratio: r=



Forced-Excited System: Harmonic

Excitation

For (>0 and 0<r<1, the phase angle is given by 0<$<90, implying that the

response lags the excitation.

P

A'mplitude ratioo M =

2.8

2.4

2.0

@ = arctan(

Frequency ratio: r=
: . "

2¢r

1-r

Phase angle: ¢

]

£ =00
I
I | _
£=0.05 t=0.25 |
180° [
£=0.50 [ —
1500_1;=I1.0 ™ ’/,/L’-‘
. |
20 1A —
120° ;=Iso ;r’ I
£=50 >
- 90° E=70]
60° 7 -£=1.0
///// t=’0-5
3qo AL §=0-25
! /  A—1t=005
“—t-—LO.GD .
0 05 /10 15 20 25 30

£=0.0"

Fréquency ratio: r= o,
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Forced-Excited System: Harmonic

Excitation

For (>0 and r>1, the phase angle is given by 90<$<180, implying that the
response leads the excitation.

P

A'mplitude ratioo M =

2.8

2.4

2.0

@ = arctan(

Frequency ratio: r=
: . "

2¢r

1-r

Phase angle: ¢

]

£ =00
I
I | _
£=0.05 t=0.25 |
180° [
£=0.50 [ —
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. |
20 1A —
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£=50 >
- 90° E=70]
60° 7 -£=1.0
///// t=’0-5
3qo AL §=0-25
! /  A—1t=005
“—t-—LO.GD .
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£=0.0"
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Response of a damped system under
F()=F.¢"

* Using complex algebra, let the harmonic force be:
F(t)=F "
where Fo is a real constant and i is the imaginary unit. Assume that the

response has the same frequency as the force, but is, in general, out of
phase with the force

X(t) - X ei(a)t+¢) :)?eia)t

where Xo is the amplitude of the displacement and X isthe complex
displacement,

X=X,¢"
Substituting this into the differential equation of motion

(—-m® +ico+k)Xe'™ =F e



Forced-Excited System: Harmonic
Excitation

Define the transfer function (or frequency response function) H(®) as the
complex displacement due to a force of unit magnitude (Fo=1). Thus,

1

(@)= (k—mo®)+icw

Rationalizing, the transfer function becomes:

(k—mao®)—icow
(k—ma®)’ + (cw)’

H(w) =

This is also the ratio between the complex displacement response and the
complex input forcing function.



Forced-Excited System: Harmonic
Excitation

Define the gain function as the modulus of the transfer function

|H(0)| =/ H(0)H (@) = /(Re H)? + (Im H)?

where H* is the complex conjugate. For the force excited system under

consideration,
1

Jk=ma?)? + (co)’

(@) -

The gain function is the amplitude of the displacement for Fo=1. Thus,

e = |H(w)

o



Forced-Excited System: Harmonic
Excitation

* |tis convenient to develop a nondimensional form of the gain function.

First define the frequency ratio o

y = ——
w

n

Multiplying the equation

H (@)= .

Jk=mw?)? + (co)’

by k and employing the definitions for C, cc and mn, it is easily shown that
X 1

F k™ 1=y + (2&)

¢ = arctan[ 2&2 j

1-r

and the phase angle is:




Forced-Excited System: Harmonic
Excitation

Transfer functions expressing the velocity and acceleration responses can
be written based on equation

X(t) — Xoei(a)l‘+¢) — Xeia)t
by multiplying H(®) in equation

H (@)= &

J(k=mw?) +(cow)’

by i® and (iw)*2=-w"2 respectively. The resulting gain function for the
velocity output would be derived by multiplying both sides of the above

nntiartinn anAd tho AaAIdvian
CHUGLIUII aliu L1ic CqUGLIUII

X, _ 1
F,lk Ja-r?)?+(2&)

by ® and noting that wXo is the amplitude of the velocity. Similarly, the
gain function for the acceleration can be obtained by multiplying both
sides by m”2.
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* For small values of damping we can take:

|
X X 1 L2 I A S
= = — = Q Vi | ‘ |

5Sf max 531 0= 24 ‘
o
iﬂ‘gdﬂ.!

o =I;" = deflection under the static force F, | R s Rz

st Half pawer points

where
X denotes the amplitude of the response and

* The value of the amplitude ratio at resonance is called the Q factor or the
quality factor of the system. The points R1 and R2, where the amplification
factor falls to Q/V2, are called half power points because the power
absorbed (AW) by the damper (or by the resistor in an electrical circuit),
responding harmonically at a given frequency, is proportional to the
square of the amplitude. W = e wX?
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The differences between the frequencies 1"
0= [T T T

associated with the half power points Rz
and Rz is called the bandwidth of the system.

[ ]
|

To find the values of R: and Rz, we set

R, 1.0 R

X/6, = O/V2 so that | e
1 QO

1
(1 - /)2 + (2002 V2 2V2g

b= 22 -4 + (1 - 82 =0

or

From which, we can get:

1 - 202 -2V + 2 i3=1-2024+2V1+ 2

72 =
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e
|

O
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For small values of C, the roots
=1 - 22— 2{V1 + 2

can be simplified as:

2
22(_5‘11_) =1 - 2/
Wy,

(5"-?-')2*—--1 Iy

i1}

=~
b
I
~
o

r3 = R3

where w, = w|g| and @, = wlg,
Then

2 2

d

A
11U

w§ — @} = (wy, + 0)(wy — w) = (R3

O
)
=

<

=.
Q.
r_-'l-

]

>

R, 1.0 R,
Half pawer points

- R0} ~ 4w}

gl
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e Using the relation @, + @, = 2w, inthe equation
5 ? = (wy + 0wy — @) = (R} — RPw; = 4w}

wn — [43)
we find that the bandwidth A is given by:
Aw = wy ~ w; = 2{w,

Combining the above equation and the equation ¢- 3

X183,
F-

gl

X X _ 1 0 2
5,) T\e,) T2 v
We obtain:
0~ ~ —%n | i
- R, 10 R,
2 { w2 w 1 Half power points

It can be seen that the quality factor Q can be used for estimating the
equivalent viscous damping in a mechanical system.
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An electronic circuit is a closed path formed by the interconnection of
electronic components through which an electric current can flow.

We have just seen that linear ODEs have important applications in
mechanics. Similarly, they are models of electric circuits as they occur as
portions of large networks in computers and elsewhere.

The circuits we shall consider here are basic building blocks of such
networks.

They contain three kinds of components, namely, resistors, inductors and
capacitors.

Kirchhoff’s Voltage Law (KVL): The voltage (the electromotive force)
impressed on a closed loop is equal to the sum of the voltage drops across
the other elements of the loop.
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Figure shows such a RLC circuit. In it a resistor of resistance
R Q (ohms), an inductor of inductance L H (Henrys) and a
capacitor of capacitance C F (farads) are wired in series as
shown, and connected to an electromotive force E(t) R L
V(volts) (a generator for instance), sinusoidal as shown in
the figure or some other kind.

5

o] O—

E(t) = E[_.J sin wt

R, L, C, and E are given and we want to find the current I(t) Fig. 60. RLC-circuit
A(Amperes) in the circuit.

An ODE for the current I(t) in the RLC circuit in the figure is
obtained from the Kirchhoff’s Voltage Law.

In the figure, the circuit is a closed loop and the impressed
voltage E(t) equals the sum of the voltage drops across the
three elements R,L,C, of the loop.
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Voltage drops: Experiments show that the current | flowing through a
resistor, inductor and capacitor causes a voltage drop (voltage difference,
measured in volts) at the two ends. These drops are:

Rl (Ohm’s law) Voltage drop for a resistor of resistance R ohms Q
Ll’=L% Voltage drop for an inductor of inductance L henrys (H)
% Voltage drop for a capacitor of capacitance C farads (F)

Here Q coulombs is the charge on the capacitor, related to the current by

1(?) =62—§2 equivalently O = j 1(t)dt
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e Table Elements in an RLC circuit

Symbol Voltage
Drop

Ohm’s Ohm’s Ohms
resistor resistance, R (Q)

Inductor fmﬁ.\_ Inductance, L henrys Ldl/dt
(H)
Capacitor Capacitance, C farads Q/C
—_)I_ (F)

e According to Kirchhoff’ voltage law we thus have an RLC circuit with

electromotive force E(t)=Eo sinmt (Eo constant) as a model for the ‘integro
differential equation’. .
L1'+R1+Ej1dt:E(t):Eosin wt
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To get rid of the integral in

L['+RI+%det = E(f)=E, sinwt

We differentiate the above equation with repect to t, obtaining:

L[”+RI’+%I = E'(t) = E,wcos ot

This shows that the current in an RLC circuit is obtained as the solution of
this nonhomogeneous second-order ODE with constant coefficients.

1
Using LI'+RI+éIIdt=E(t)=Eosina)t and noting that I=Q’ and I'=Q”’, we

have directly: ) 1 _
LO"+ RO +EQ:EOS|na)t

But in most practical problems, the current I(t) is more important than the
charge Q(t) and for this reason, we shall concentrate on the below
equation rather than the above.

LI"+RI' +%1 = E'(f) = E,wCOs wt
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* Ageneral solution of
LI"+RI' +%1 = E'(t) = E,wcos wt
Is the sum I=In+Ip, where Inis a general solution of the homogeneous ODE

corresponding to the above equation and Ip is a particular solution. We first
determine Ip by the method of undetermined coefficients. \We substitute:

[, =acoswt +bsin wt
I’ = w(-asin ot + b cos or)
I = * (—acos ot —bsin wr)

Into the first equation. Then we collect the cosine terms and equate them to

Eomcoswt on the right, and we equate the sine terms into zero because there
IS no sine term on the right.

Lo’ (-a) +Ra)b+% =E,o  (Cosine terms)

Lao* (-b) + Ro(—a) +% =0  (Sine terms)
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To solve this system for a and b, we first introduce a combination of L and C,

called the reactance:

S=wlL—-——
oC

Dividing the previous two equations by m, ordering them and substituting S

gives: _Sa+Rb=F,

—Ra—-Sh=0

We now eliminate b by multiplying the first equation by S and the second by R,
and adding. Then we eliminate a by multiplying the first equation by R and
second by =S, and adding. This glves

p =aCoSwt+bsSin wt

a= —E,S b= LR I’ = w(~asin wt +bcos )

2 2 - 2 2
RE+5 RE+5 I" = w*(~acos wt —bsin o)
Equation for Ip with coefficients a and b as given above is the desired
particular solution of the nonhomogeneous ODE governing the current | in an
RLC circuit with sinusoidal electromotive force.
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Using a =——2— b=—2— we can write lp in terms of physicall
I R? +S? P ok y

visible guantities, namely, amplitude lo and phase lag 0 of the current
behind the electromotive force, that is,

1,(2)=1,sin(ewt - 0)

where
N o
R*+ 87
tan 9:—3:i
b R

The quantity +/R?+ S? is called the impedance. Our formula shows thatthe impedance equals the ratio —2.

(o]

This is somewhat analogous to E/l = R (Ohm' s law)
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A general solution of the homogeneous equation corresponding to
L]"+RI'+%I:E’(t) = E wCoS ot

t Aot
& +c,e™

I, =ce
where A1 and Az are the roots of the characteristic equation:

2+B0 L o
L LC

* We can write the roots in the form A1=-a+f3 and A2=-a-3, where

R R 1 _ 1 | AL
2L AI* LC 2L C

* Now in an actual circuit, R is never zero (hence R>0). From this, it follows that
Ilh approaches zero, theoretically as t—, but practically after a short time.
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 Hence the transient current I=In+Ip tends to the steady state current lp and
after some time the output will practically be a harmonic oscillation,
which is given by:
1,(2)=1,sin(et - 0)

and whose frequency is that of the input (of the electromotive force)



Analogy of electrical and mechanical
guantities

Entirely different physical or other systems may have the same
mathematical model. For instance, the ODE of a mechanical system and
the ODE of an electric RLC circuit can be expressed by:

LQ”+RQ’+%Q=EOSina)t my" +cy'+ky = F, C0S wt

The inductance L corresponds to the mass, and indeed an inductor
opposes a change in current, having an inertia effect similar to that of a
mass.

The resistance R corresponds to the damping constant ¢ and a resistor
causes loss of energy, just as a damping dashpot does.

This analogy is strictly quantitative in the sense that to a given mechanical
system we can construct an electrical circuit whose current will give the
exact values of the displacement in the mechanical system when suitable
scale factors are used.



Analogy of electrical and mechanical
guantities

The practical importance of this analogy is almost obvious. The analogy may be
used for constructing an ‘electrical model’ of a given mechanical model, resulting
in substantial savings of time and money because electric circuits are easy to
assmeble, and electric quantities can be measured much more quickly and
accurately than mechanical ones.

LQ”+RQ'+%Q:E0 sin wt my"+cy'+ ky = F, Ccos wt

Table: Analogy of electrical and mechanical quantities

Electrical system Mechanical system

Inductance, L Mass m

Resistance, R Damping c

Reciprocal of capacitance, 1/C  Spring modulus k
Electromotive force Eo sinmt Driving force Focosmt
Current, I(t)=dq/dt Velocity , v(t)=dy/dt
Charge, Q(t) Displacement, y(t)
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* Consider the base-excited system

of the figure. The goal of the analysis

3
L.
=

will be to determine the absolute

response X(t) (typically acceleration or

displacement of the mass) given the base

motion y(t).

* From the free-body diagram, application

of Newton’s second law leads directly to +x
the differential equation: __T
mx+cx+kx=ky+cy 1 l

k(x =y} clx—y)



e Assume that the base motion is harmonic,
y(f) — Yoeia)t

e And assume that the response will be harmonic,
x(t) = Xe'”

where X is the complex response. The transfer function and the gain
function are derived in the same manner as for the force excited system.
The transfer function is:

H(w) =

k+icw

(k—ma®)+icw

e The gain function is

2 - ‘H(a))‘ = \/ . +2(SCU) 2 :\/ 1—'2_ (22&/) 2
Y (k —mw*)* + (cw) 1-r?)% +(2¢)

o
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* |n nondimensional form ﬁz 1J2r(22§r) ~
Y, 1-77)" +(2r)

 The gain function for the absolute displacement for the base-excited
system is shown in the figure.

6

T

|
=

 Displacement transmissibility, T4

Frequency ratio: r = w
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The value of T4 is unity at r=0 and close to unity for small values of .
For an undamped system (=0, Td — oo at resonance (r=1).

The value of Td is less than unity (Ta<1) for values of r >\2 (for any amount of
damping C)
The value of Td is equal to unity (Ta=1) for all values of { at r=\2

6 — |

= =10.05
N> s
;’f [ =010 -
£ | 2
: o XO_J 1+(2&)
- ] _
1 n Ve +ee)
: % t=1.0
= {
A =1.0 ——
_ £=10.05
vz 2 3 4

' o = @
Frequency ratio: r = -~
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The equations
X, _ 1+(28r)°
Y, V(@-r)"+(2&)
k* + (cw)?
- ‘H(a))‘ - 212 2
f (k—mw’) +(cw)
can be interpreted as the gain functions for acceleration output given
acceleration input. And again note that the transfer function for velocity
and acceleration responses can be derived by multiplying the equation
k+icw
H(w) = ic

(k—mao®)+icw

by i® and -®”2, respectively.
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e Consider the free body diagram in the
figure. Now the response variable under
consideration will be the relative
displacement,

z(1) = x(2) - y(t)

* Inthe model, the spring represents a
structural element. The stress in that
element will be proportional to z. Thus,
this problem would be relevant to T
designers of structures subjected to base
motions, for example, earthquakes.

e Letting z=x-y in the equation of motion e _L) C(:liﬁﬂ
leads directly to mZz + z + kz = —my
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Assuming that the base motion is harmonic,
y(t) — Yoeia)t

And assuming the response is also harmonic,
2(f) = Ze'™

Following the procedure as described above, the transfer function is:

2
ma

H(w) =

(k—ma®)+icw
And the gain function is

2
ffo :‘H(a))‘: ma

g Jk=ma?)? + (cw)’
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2
* In nondimensionless form, Z, d

v, Ja-r)+ (28)

* The gain function for the relative motion for the base-excited system is
shown in the figure:

7 T
£ =0.00
6
& s
° =
2 rt 0.10
o 4
= £ =0.15
S 3
L =0.25
2
L = 0.50
1 %
e ‘<"t_.=ll.m

0 05 1.0 15 20 25 3.0 35 4.0
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Again note that the transfer function for relative velocity and acceleration

responses can be derived by multiplying

2
ma

(@)= (k—mao®)+icw

by i® and -®”2, respectively.

The gain functions for velocity and acceleration responses can be obtained
by multiplying both sides of the equations

2 2
Z, :‘H(a))‘: mao Z v

y Je—mo?Y+ea) Y Ja-r) e

by ® and o2, respectively.



Gain functions for force excited
systems

Table 7.1 Gain Functions for Force-Excited Systems

F(t)
X(t) T
Equation of Motion
m mX + cX + kX = Fo)
l r=oww, =flf, §=c2mo,
k L].J c Input — Force, F(r)
S “
Case [ Case II Case III
Qutput Absolute displacement, X(?) Absolute acceleration, X(7) Force transmitted to base, Fg =
kX(t) + cX(1)
()| 1 w? &+ (cw)?
Jk — mo?)F + (cw) Ve — mw?? + (cw)’ *k — ma?? + (cw)’
|G| L S N r T+ @y
k1 - PF + @’ mJ(1 — P + @) Ja = 27? + @}




Gain functions for base-excited
systems

Table 7.2 Gain Functions for Base-Excited Systems

X(t)

Absolute displacement = X(f)

Relative Displacement

20 = X(@) — Y

Case I Case Il Case III
Output Absolute displacement, X(r) Relative displacement, Z(f) Relative acceleration, /()
Input Base displacement, Y1) Base acceleration, (03] Base accleration, ¥(#) (same as case
(same as case where ¥ is input, X where Y is input, Z is output)
is output) -
JE + (cc.c)I m mw?
|H(w)| & = ma? + (coy Yk — ma) + () Jtk — ma2? + (cw)’
i+ @y i 1 r
2Ja - Py + @) Ja - 27 + @p)

e e e
|H(n)| ,I(—l __';')‘z s (2‘7)'5 w2 Ja —




Exampl
CXdmpie

A fixed bottom offshore structure is subjected to oscillatory storm waves.
In a first approximation, it is estimated that the waves produce a harmonic
force F(t) having amplitude F=122 kN. The period of these waves is =8
sec. The structure is modeled as having a lumped mass of 110 tons
concentrated in the deck. The weight of the structure itself is assumed to
be negligible. The natural period of the structure was measured as being
tn= 4.0 sec. It is assumed that the damping factor is {=5%. It is required to
determine the steady state amplitude of the response of the structure.

Solution: As modeled, this will be a force-excited system, and the

amm on e et on om e oom e

reSporise Cdari UE LU”I[JULEU IIUIII LIIE gdlll IUHLLIUH UI

X, _ 1
F Ik J@-r?)?+(2&)

The problem reduces to one of finding the frequency ratio r and the
stiffness k.
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Because r is the ratio of the forcing frequency to the natural frequency, it
follows that r will also be the ratio of the natural period to the forcing

period. Thus, r, 4

To compute k, first note that the natural frequency is

f =t _025m:

n

Then noting that the expression for the natural frequency is

/k
f"271 Wilg

We compute k=27667 N/m
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Finally substituting into

X 1

)

E Ik a2+ (&)

X0=5.87 m.
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nesonance
 For resonance please download the Millenium

bridge and Tacoma Bridge videos in the
website of the course.




Background for response of
SDOF system to random forces

*Response of SDOF system to impulsive forces
*Response of single degree of freedom system to arbitrary loading

*Relationship between the impulse response and the transfer
function

*Relationship between the Fourier transform of displacement and
force
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We will see that periodic forces of any general wave form can be represented by Fourier series as a
superposition of harmonic components of various frequencies.

The response of a linear sytem is then found by superposing the harmonic response to each of the
exciting forces.

When the exciting force F(t) is nonperiodic, such as that due to blast from an explosion, a different
method of calculating the response is required.

Various methods can be used to find the response of the system to an arbitrary excitation as
follows:

— Representing the excitation by a Fourier integral

— Using the method of convolution integral

— Using the method of Laplace transforms

—  First approximating F(t) by a suitable interpolation model and then using a numerical procedure

— Numerically integrating the equations of motion.



Response of single degree of freedom

system to impulsive forces

A nonperiodic exciting force usually has a magnitude that varies with time;
it acts for a specified period of time and then stops.

The simplest form is the impulsive force- a force that has a large
magnitude F and acts for a very short period of time At.

From dynamics, we know that impulse can be measured by finding the
change in momentum of the system.

The unit impulse F acting at t=0 is also denoted by the Dirac delta
function, o(t). The Dirac delta function at time t=t, denoted asJ(t-7)

has the properties T5(t—r)dt=1 Té(r—r)F(t)dt=F(f)

where 0<t<oco. Thus an impulsive force acting at t=1 can be denoted as:

F(t)=F&(t—7)



Response of single degree of freedom
system to impulsive forces

e Consider a SDOF system subjected to impulsive loading as shown in figure.
The external force is:

F(t)=F,0(t)
where 3(t) is the Dirac delta function.

F(1) x(1) = g(1)
& 4

F e ° [~ o

__FAr=1 Ny

0 >t 2 |
& —| [—Ar !

(a) (b) (c)



Response of single degree of freedom
system to impulsive forces

 The equation of motion of the mass will be similar to

mX +cx + kx = F, sin ot
with the impulsive force of
F(1)=F,6()

on the right hand side. The unit impulse is defined as Fo=1. The response
X(t) to the unit impulse is denoted as h(t):

mh + ch+kh = (1)5(t)
e Physically speaking, for t=0, a radical change in the system motion takes
place when the short duration high amplitude force excites an initial
motion in the system. But for t>0, the response will be free vibration.

Using elementary mechanics, F(At)=m(Av) it can be shown that the
velocity of the system just after the impulse is:

H(0") ==

m



Response of single degree of freedom
system to impulsive forces

Using the initial conditions:

h(0") _1 h(0) =0
m
In the equation: x(¢) = eg“’"t(xo cos1-C*w t+ Y, £ 60X, sin 1—§2wnt]
@,

The free vibration response is:

h(t) = 1 ersin wt t>0
mao,

Here h(t) is known as the force-excited absolute displacement response,

impulse response function of the single-degree-of-freedom system. Note that

h(t) characterizes a system just like the transfer function H(®) does. The

velocity and acceleration impulse response functions can also be obtained as

derivatives of h(t).



Response of single degree of freedom
system to impulsive forces

If the magnitude of the impulse is F '
instead of unity, the initial velocity x, is ) SO — .1
F/m and the response of the system

FAt=F
becomes: Ve ~

() =—— e sin @ ¢ = Fa (1)
mo, ok ' >
If the impulse F is applied at an arbitrary ] * 1.|'—m
time t=t by an amount F/m as shown in | (a) -
the figure, it will change the velocity at x(1) |
t=T by an amount F/m. Assuming that x=0 4 [
until the impulse is applied, the |
|
|

—

L

displacement h at any subsequent time t,
caused by a change in the velocity at time

T is given by the above equation with t
replaced by the time elapsed after the © 7!
application of the impulse, that is, t- 1. As |
shown in Fig.b, we obtain |

x(t)=Fg(t—1) | | (b)

Fg(t— 1)




Response of Single-Degree-of-
Freedom System to Arbitrary Loading

For a linear system, the impulse response function can be used to derive
the response of a system under an arbitrary loading history. Consider the
force shown in the figure

F)
Y

)

T T+ AT

FIGURE 4.5 An arbitrary (nonperiodic)
forcing function.



Response of Single-Degree-of-
Freedom System to Arbitrary Loading

The impulse during At is F(t) At. The F(i)
response to this impulse at any time 'y

t>t is approximately [F(t) At]h(t- 1).
Then the response at t is the sum of
the responses due to a sequence of
impulses. In the limit as At—0

x(t) = jF(r)h(t —7)drt

where the input F(t) is accounted for

as t—-oo, for example,F(t) could be o . +A
defined as zero for t<0. The expression | v *
for x(t) is called the convolution FIGURE 4.5 An arbitrary (nonperiodic)

integral. forcing function.



Response of Single-Degree-of-
Freedom System to Arbitrary Loading

Note that h(t-t) =0 when t>t. Thus,
we can expand the limits to the
interval (-00,00):

x(t) = TF(r)h(t —7)dr

Another useful form is obtained by
letting O=t-T:

x(t) = jF(r - 0)h(0)do

F0)
&

o

T T4+ AT

FIGURE 4.5 An arbitrary (nonperiodic)

forcing function.



Response of Single-Degree-of-
Freedom System to Arbitrary Loading

e By substituting the equation
h(t) = 1 i wt t>0
ma,
into “
x(t) = j F(o)h(t—1)dr

we obtain: (-

t
j F(r)e ““sina,(t-1)dr
ma,

which represents the response of an underdamped single degree of
freedom system to the arbitrary excitation F(t).

* Note that the above equation does not consider the effect of initial
conditions of the system.

e The integral in either of the two above equations is called the convolution
or Duhamel integral.
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An important result from Fourier transform theory is that h(t) and H(®)
form a Fourier transform pair. This relationship is useful when deriving
responses of dynamic systems to random vibration inputs. Let,

F(t)=¢e"
x(t) = H(w)e'™

Then, o
= '[h(t —7)e'"dr

= j h(6)e““do

= [h(0)e’d0
which implies that h(t) and H(®) fo_rm a Fourier transform pair.

H(w) = Th(e)e-"wm S =% TH(a))ei“’tda)
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Based on the Fourier transform of a convolution, the expression for the
response to an arbitrary input in equation

x(t) = [ F()h(t—7)dr
and representation in -

H(w)= [h(0)e™™d0  — h(t):% TH(w)efwfda)

it is clear that we can also express the response to an arbitrary input as:
1 5 .
x(t) = — j F(o)H(0)e dw
27

where F(®) is the Fourier transform of F(t). This expression is useful for the
analysis or numerical computation of system response or as the basis for
random vibration computations.
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 The relationship between the Fourier transforms of x(t) and F(t) is used to
derive responses of dynamic systems to random vibration input in random
vibration theory. Take the Fourier transform of both sides of

x(t) = j F(t—0)h(6)d6
to find _

1 R —iot
X(w) = EL {j@ F(t —9)h(6’)d6’}e dt
Lett=t-0,dt=dr

1 R —iw(r+6
X(w)= 5[@ “@ F(r)h(é’)dé’} gz
Rearranging :

X(0) = [ h(@)e'iw%mi [F)edr



From

H(w) = Th(e)e-m@de

and the basic relationship of the Fourier transform:

1 ¢ —iwt
u(r)zg:[o g(t)e ™ dt

it follows that
X(w) = H(w)F (@)



