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e We are now ready to consider how the characteristics of random signals
are changed by transmission through stable linear systems.

e We shall consider the response y(t) to two separate random inputs x,(t)
and x,(t) . The response to a single input can then be obtained directly by
putting either x, or x, zero, and the response to more than two inputs can
be inferred from the form of the solution for two inputs.

e The mental picture we need is of an infinity of experiments, all proceeding
simultaneously, and each with an identical linear system for which the
impulse response functions are h, (t) and h, (t) and the corresponding
frequency response functions are H,(®) and H,(®) .

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Each experiment is excited by sample functions from the x,(t) and x,(t)
random processes and the response is a sample function from the y(t)

random process.
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Fig. 7.1 Concept of ensemble averaging for a linear system subjected to
random excitation
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We want to know how the characteristics of the output process y(t)
depend on the characteristics of the two input processes x,(t) and x,(t)
and on the input-output characteristics of the system.

The functions h,(t) and H,(®) give the response y(t) due to an input x,(t)
and the functions h,(t) and H,(®) give the response y(t) due to an input
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According to =
y(t) = j h(O)x(t—6)do

the response y(t) of a typical sample experiment to the inputs x,(t) and
X,(t) may be expressed as:

yt) = J‘m hy(8)x,(t — 0)do + jm hy(8)x,(t — 6)do.

- -

If we are now to calculate the ensemble average E[y(t)] we have to
determine the average values of both the integrals on the rhs of the above
equation. To do this, we need to remember that an integral is just the
limiting case of a summation and that the average of a sum of numbers is
the same as the sum of the average numbers, for instance:

E[x, + x; + X3 + ] = E[x;] + E[x,] + E[x3] + -

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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* Or using the summation sign:

E[Z x,] - i E[x,].

* Applying this result to

yt) = J‘m hy(8)x,(t — 0)do + jm hy(8)x,(t — 6)do.

- -

gives:

o«

E[y{r)]=r h(O)ELx,(t — 6)]d6 + j ha(@)ELx(t — 6)] 46

—m = &

* Provided that both the random inputs are stationary, then their mean
levels E[x,] and E[x,] are independent of the time of ensemble averaging
(t-0), and so we obtain:

Leal

E[y(0)] = E[xl]f h(6)d6 + E[x:) j h(6)de

=

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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From S
E[y(0)] = E[x,] f

=

Lral

h,(6)d6 + E[x,] r hy(0)d6

We see that E[y(t)] is independent of time, so that finally,

[= 4]

E[y] = E[x] Jm h,(0)dé + E[x;] I_mhz[ﬂ}dﬁ.

Most engineers tend to think in terms of frequency response rather than
impulse response, and we can express the above equation in these terms

by using the basic result: o
H(w) = '[ h(t)e™ ' dt

— o

which for ®=0 becomes

[= 4]

H(w = 0) = f h(t) de

=

On substitution to the second equation above, we get:
E[y] = E[x,]H,(0) + E[x,]H,(0)

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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E[y] = E[x,]H,(0) + E[x,]H,(0)

e Where
constant level of y
H,(0) = J
constant level of x,
constant level of
H,(0) = -

~ constant level of X,
e Orin electrical engineering terms,

H,(0) = Ef, (direct current) level of y
' d.c. level of x,

_ dc level of y
d.c. level of x, "

H,(0)

e The mean levels of stationary random vibration are therefore transmitted just
as though they are constant non-random signals and the superimposed
random excurisons have no effect on the relationships between mean levels.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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e The autocorrelation function for the output process y(t) is:

E[y(t)y(t + 1)].

hy(@)x,(t — 6)do + ru ho(B)x,(t — @) do.

-

e According to -
yl(t) = J

we can write formal solutions for y(t) and y(t+t) and, putting 6, and 0,
instead of O to avoid confusion, these are

an

yt) = J.m hy(0,)x,(t — 6,)d8, +J. ha(0,)x,(t — 8,)d8,

-m —

o

and ®
¥t + 1) =J. hy(03)x,(t + © — 8,)dl, + J. ha(0,)x,(t + © — 6,)d0,

= oo -

e Substituting the third and fourth equation into the first equation:

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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0 o0

hi(8)x,(t — 8,)déd, f hy(02)x,(t + 7 — 6,)do, +

= oD

o Weget: E[t)yt+1]= EH

+ hy(6))x,( — 6,)d6, hy(6)x,(t + T — 6,)d6, +

™ ™ oo

+ ha(04)x,(t — 6,)d6, hy(6,)x,(t + = — 0,)d6, +

r"w_ ™0 |
7 @t = 0,)d0, [ Byt + 7 — ez)dez}

* Since we are dealing with a stable system, the integrals in the above
equation converge and it is legitimate to write each product of two
integrals as a single double integral so that for instance:

f” hy(6,)x,(t — 6,)dé, Jm hi(@2)x,(t + © — 6,)db, =

- = o

= j J. hy(01)he(02)x,(t — 6,)x,(t + T — 6,)d0, db,.

Pelin Giindes Bakair, Probabilistic and stochastic methods in Structural Dynamics
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When we come to average the expression

E[yt)y(t + 7)] = E[j

+ hy(6,)x,( — 6,)d6,

T ho(0y)x,(t — 6,)d6,

+ ho(68,)x,(t — 6,)d6,

o w0

hy(61)x,(t — 6,)d6, f hy(0,)x,(t + 7 — 6,)dd, +

hz(ez)xz(t + T — Gz)dﬂz "}“
hliﬂz)xltr + T — gz)dﬂz +

o T o0 & =@

o - o

hz(ﬂz)xz(f + T — 32) d92:|.

o T 0O J o

We have then to average these double integrals to find for example:

which is equal to:

Pelin Gilindes Bakar,

E[ f hy(0,)hy(8,)x,(t — 64)x,(t + T — 6,)db, daz]
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* Provided that the input process x,(t) is stationary, its autocorrelation
function is independent of absolute time t, and so:

E[x,(t — 8,)x,(t + T — 6,)] = R, (t — 0, + 6,).
e Theterm

= E[ j ha(8)x,(¢ — 6,)d6, r B@)x,(t + © — 6,)d0,

- oo —_——

may be written:

J f 18 )M (@)R..(z — 6, + 6,)d6, d6,

= o — o

and is independent of time t. The same reasoning can be applied to the
other three terms and so for stationary excitation, the output
autocorrelation function is independent of absolute time t and can be
expressed by the following rather lengthy expression:

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Ry(z) = j j B0k (0,)Ro (x — Oy + 0,)d, d6, +

f‘u:. I"m

+ hi(01)hy(02)R, 1 (v — 0, + 6,)d6, d6, +
& T T m
foo a0
+ hl(ﬂl)hl(ﬂz}Rx;xI(T - 92 -+ 91){191 dez +
o T J @
+ h:(ﬂi)hz(ez)sz(T - 92 + Sl)del dﬂz .

of T T m

!D
Q_

.......... n f the innut autocorrelation
r’ C UL W WV UL

crosscorrelatlon functlons.

The autocorrelation function for the output process R (1) is independent of
absolute time t for stationary excitation and this is a general result for the
response of any constant parameter linear system. It turns out that all
averages of the output process are time invariant for stationary excitation, and
the output process is therefore itself stationary.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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e Although the equation

Al AAn 4 s
dl UCIH | L

y

)

R,(z) = j j By(O)hy(0,)Ro (5 — Oy + 6,)d0, d6, +

-+

o T @

™o

+

fon oo

hl(al)hz{gz]inxl(T — 92 + ﬁl)dﬂl d62 -+

= ab

* oo

hl(ﬂl)hl(BZ}Rx;m(T - 92 + Bl)del daz +

o T J T

+ f f ha(01)ha(62)R, (t — 6, + 6,)d6,dg,

is such a complicated e
emerge if we take Fouri

xpression, fortunately considerable simplifications
er transforms of both sides to find S, (®), the

spectral density of the output process.

Pelin Gilindes Bakar,
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From 1
S, (@)= R, (r)e ' dz

- 27z
the Fourier transform of the first double integral on the rhs of the

equation © fo
Ryfz) = j j Bo(8,)hy(6:)R, (x — O, + 0,)d6, d6, +

foo o

+ h1(01)hy(01)R,,, 1 (v — 0, + 6,)d6, d8, +

o T T

foo  ffan

+ hy(0)hy(0,)R, . (t — 6, + 6,)d6, db, +

W 00 g

+ f f ha(0)hy(8,)R,(x — 6, + 6,)d0,d6,

is: 1 h -t a = |
I, = | d're {f_m dé, J;m de, hy(0,)h1(0,)R, (T — 6, + 91.)}

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Changing the order of integration, this may be written:

1 [+ o] oo o
I, = E‘EJ‘_W do, hl(ﬁ'l)f_m do, hl(ﬂz)f- dte™ ™R (t — 6, + 6,)

The last integral is with respect to t with 0, and 0, constant. We can
therefore legitimately write this:

g
glot01=02) J d(t — 6, + 6,)e @ u*WR (: _ g, 4 9,)
=

which from 1 |
S, (w)=— j R, (r)e " dr
2

-I.IJ{E "E - :! E.‘

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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So that the equation
1 ol o] e
I, = Ef_m de, 51{31)'(_ do, hl(ﬂz)j dte'i‘“‘Rxl{-r -6, + 8,

can be written:

I J dﬁ:fhiﬂﬁj dﬂzhlwﬂﬂiuﬂm_hjsx,{m}

=j dﬂlhliﬂljnt"’-"*“j dfh,(8;)e™"" S, (w).

— a0 —

The two remaining integrals can be related to the frequency response

function H(w) since from: o
= _[ h,(6,)e"“*dé,

and the complex conjugate of Hl(oa_)
= J.hl(el)eiwgldﬂ

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Hence we obtain finally,
I, = H;(C‘))Hl (a))le(a))

for the Fourier transform of the first double integral on the right hand side of

mm=j j BBy (B)R,, (x — O, + 6,)d6, d6, +

* o oo

- f hy(0)hy(B)R, 0 (x — 8, + 6,)d0, d6, +

o T @ - o0

("o

+ j hZ(GIJhI(BZ)Rxgx;(T -0, + 6,)do, do, +

[

+ f hz(ﬂl)h2(92)R:‘z(T - 82 + Sl)dgl dgz .

of T =

The same procedure may be applied to the rest of the above equation and the
final results of taking the Fourier transforms of both sides of the equation is
the following expression for the spectral density of the output process.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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S,(w) = H{w)H;(w)S,, (@) + Hi(0)H ()5, (@) +
+ H{(w)H,(@)S,, s, (@) + Hi(w)H,(w)S, ().

This is a most important result. By considering more than two inputs, it is
not difficult to show that, for N inputs the corresponding expression is:
S,(w) = E E H¥(w)H (w)S, . (@)

r=1s=1

when we define: S,. =S

= x,

for the spectral density of the rth input. The equation sw)= ¥ 3 HX0H@)S. (@)

r=13=1

is the central result of the random vibration theory and its simplicity
justifies our faith in the Fourier transform and frequency response
approach. In the case of response to a single input, the above equation
becomes: S,(@) = H*(w)H(w)S,(®)
Or, since the product of a complex number and its complex conjugate is
equal to the magnitude of the number squared,

= | H(w)|* S (o).

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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* For uncorrelated inputs for which the cross-spectral density terms are all
zero, the equation S,() = [H(@)|* S{®). can be generalized to:

N
Sy(mj = Z IHr{m}EESx.-(m}-
r=1

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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* Once the response spectral density has been determined, the mean
square response can be calculated directly from:

which for a single input becomeS'
E[y*] = | H(w)|* S (w) dw

=

and for many uncorrelated inouts is:
E[y*] = f j ) | H ()|, (w) dw
e For uncorrelated inputs, the mean square response is therefore the sum of

the mean square responses due to each input separately. However, in
general, this is not the case and for correlated inputs, the mean square
response is not just the sum of the separate mean square responses. In
these cases, s,w) = ¥ ¥ HrwHS.. (@ must be used to find the response
spectral density S;“(I(oﬁ)land then the integral given below is evaluated.

E[XZ]: TSX(a))da)
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Determine the output spectral density S (w) for the single degree of
freedom oscillator shown in the figure when it is excited by a forcing
function x(t) whose spectral density S (®)=S,.

From S)») = |H(@)[*S, where H(®) is the complex frequency response
function. To find H(w), put x(t)=e 't and y=H(®m)e'®tin the equation of

motion: mj. + cy + ky = x(t)
to obtain: (=mw? + ciw + k)H(w) = 1
and q

H(w) =

—mw? + icw + k-

Displacament
ylt)

xft)

[
i forca
—
L AAAAA—
k

Q00

T AR
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Hence the output spectral density as sketched in Figure d is:

So
S (w) =
@) (k — mw?)?* + c*w?
DithlFujnunt
[ §
ﬂt" AS, (w)
‘2 n g (T
Y E force
A m —
2_._--...-\ .ﬁ;,.'u,__ x(t) So
; 000 =
(a)
b1H (w)l L8, fw)
_’/I\\_/'L\\I
I | -
=Gy (1] Wy i}
(c) (d)

Fig. 7.2 Response spectral density S,(w) for a single degree-of-freedom
oscillator subjected to a white noise force input S, (@) = Sp.
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The area under the spectral density curve is equal to the mean square,
which may be written: E[y?] “f 1

Sﬂdm+
—mw? + icow + k

A list of definite integrals of this form can be found in the literature and

the result is: B[] = mSs

ke
which is independent of the magnitude of the mass m. This is a surprising
result as we would naturally expect m to affect the overall meansquare
level of the output E[y?] . The explanation can be seen by considering the
height and width of the spectral peak in the figure (Remember that the
peak in the left-hand half of the figure is just the mirror image of the peak
in the right hand half, since S () is an even function of w:

88y (w)

eV
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e The peak value occurs for small damping when ¢ ~ \/g = oy
L , Se S
* Its height is therefore: s(w,) = % =29~
which is proportional to m.

=T
e The width of the spectral peak needs definition, but suppose that we
arbitrarily define this as the difference in frequency 2A® between the two
points on either side of m, whose height is half the peak height (the so-
called half power bandwidth). For small damping:

Aw < wy

2&50'—”5
m

which is inversely proportional to m. Hence we can see that increasing
mass m increases the height of the spectral peak, but at the same time
reduces its width. As we have seen, it turns out that these two opposite
effects cancel out and the total area under the spectral density curve, and
therefore the meansquare value, is independent of m.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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The massless trolley shown in the figure is connected to two abutments by
springs and viscous dashpots as shown. If the abutments move distances
X,(t) and x,(t) with spectral densities s, (w) = 5,,(w) = 5, (constant) but

x(t + T) = x,(t) , so that the cross-spectra are
S.'G"L.!:;{w;' = SﬂE_ImT
Sepx (@) = Sge®T

determine the response spectral density S (®) and the mean square
response E[y?]

xy(t) yl(t) xa(t)

o

o

b

(a) (6)

Fig. 7.3 Response spectral density for a system with two correlated inputs
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For the equilibrium of the trolley
ki(xy = ¥) + ea(ky — ) = kaly — x3) + eo(y — %3)
So that the equation of motion is:
(cy + )y + (ky + ka)y = kyx, + ¢,%, + kyx, + c3%,.

To determine the frequency response functions, first put

X, =& x, =0, y = H,(w)e™
to find: _ ky + ic,w
) = L T ik, + e
and then put x, =0, x; =", y = Hy(w)e"™
tO flnd: Hz(r:ﬂ} —_ ki + iﬂzm

. ky + ky + ile; + e5)w’
Hence according to:
5,(@) = HY{(w)H, (@)S,,(@) + Hi(@)Hyo)S,,. (o) +
+ HY(0)Hy()S,,5,() + H3(@)H,(@)S, ().
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B ki + clew? S 4
(ky + ko)* + (cy + ¢.)?w* °
(k, — ic,w)(k; + icyw) .
(ky + kzjz + (c; + Cz}lﬂ-"z 0
{kl + ECIW}{RZ - iﬂz(ﬂ] e
(ky + k3)* + (c; + ¢;)*w? ?

S,(w)

—ilwT

-}

leaT

. k3 + o’ P
(ky + —Ifz}z + (c; + Cz}zmz 0

* which after collecting terms becomes:

S,(w) = §, -+ ke, — ke w)sineT
L (ky + k3)* + (¢, + ¢;)w?

{Rf + k3 + clw* + dw? + 2kk; + c,c;0%)coswT +}

* When the delay time T is zero, so that x,(t)=x,(t), then we see that 5,() = S;

and motion of the trolley is always equal to motion of the abutments.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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e For large o (high frequencies):

et + 3 + Eclczccsz}

Siw) = SD{ (e} + "31}2

e which is finite and so:
E[y*] = ( S,(w)dw — oo

W

on account of the characteristics of white noise excitation which has an
infinite mean square value. For the case when the two spring stiffnesses
and the two damper coefficients are the same,

Sylw) = —{1 + coswT)

which has the form shown in the flgure.

S, (w)
Sg

- 0 2 3 [
T L] ?_'l'l'_ TE

F 7
Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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In the case of a system excited by many inputs, it is sometimes helpful to
determine the cross-correlation between the output and one of the
inputs. Beginning with the definition

Ry (0) = E[x, (1))t + 1)]

for the case of two inputs, using

R, )lt) = E[XL{I}J‘:. hy(O)x,(t + ¢ — 0)df +

= @

+ xltr}jm ha(@)x,(t + 1 = HJdH]_

Since x,(t) is not a function of 0, it may be moved under the integral signs
and the averaging process carried out to give:

R, (1) = Jcr- h(VE[x,()x,(t + T — #)]de +

o

+ J ho(O)E[x,(t)x,(t + = — 0)]d6

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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In terms of the input autocorrelation and cross-correlation functions,

R,,,(1) = f hy(O)R, (x — 6)d6 + f " hyB)R,,.(t — 6)d0

which expresses the cross-correlation between input x,(t) and output y(t)
in terms of the autocorrelation of x,(t), the cross-correlation between x(t)
and the other input x,(t), and the impulse response functions between x,

andy and x, and y.

For the special case when x, is white noise so that from R.(r)=28,5(z)
Ry\(r — 0) = 2n5,6(x — 0)

and x; and x, are uncorrelated so that

Rx:x;(r - H) =0

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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e Then R, (1) = f hy(O)R,.(x — 6)d6 + f " hyB)R,,.( — 6)d0
gives: R, (1) = J_m hy(0)27S, 8(r — 0)dd

= h,(t)2nS, from (5.9).

e The cross-correlation function between a white noise input x,(t) and the
output y(t) is therefore the same as the impulse response at y for a unit
impulse at x, multiplied by the factor 2=s,. This is an interesting result
which is sometimes used to obtain the impulse response function
experimentally.
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e Taking the Fourier transforms of both sides of

(= 1]

R,,,(1) = f hy(O)R, (x — 6)d6 + f hy(O)R, . (t — 6)d0

— i

g|VeS: Sx”{m} _ _'ZLT[ j"“ d‘[ﬂ_imr{jm hIEH}R"“[T — E}d& -+ .

— o = oo

+ jm hy(0)R,, . (t — ﬂ]dﬂ}

 Rearranging terms in the same way as for the previous calculation of the

spectral density gives:

Si'._v{w} = ijm d'ﬁhjfﬂjﬁ_mﬂj‘m dr RI:{T — ﬂlje-l’mtr—ﬁl] +

2n | _ o

+ 'éiﬁj ©de hz[ﬂ}e“'”“Jal dTR, . (t — B)e~ o0,

=

e The integrals with respect to t are with 0 constant, and so if (t-0) is
replaced by ¢ (say) then d T becomes d ¢.
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« Using S ()= glﬂ R (r)e i dz

1 —iwt
a)) = o _J;ony (r)e dr

1+oo

= o _OORyX (z')e_i“”d T

Sy (@)

to evaluate the integrals with respect to ¢, and H(e jh(t)e “dt to evaluate
the integrals with respect to 6 which then remain, we obtain:

Se (@) = Hy(w)S, ,(0) + Hy(w)S,,. (w).

* When there are N separate inputs, of which x.(t) is a typical one, the
above equation becomes the summation

_i H. (w)S, . (w)
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For uncorrelated inputs we can see that
Sarlw) = H(w)S(w)
where H(m) is the complex frequency response function relating the input

X(t) to the output y(t), S,(w) is the spectral density of the input process,
and S, (o) is the cross-spectral density between the input and the output.

From the properties of the cross-spectra
S (@)=5,,(e)

It follows that S5(0)=S,(0)

Syw) = S3(w) = H¥w)S(w)

Since S,(w) is of course always a real quantity.
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We now consider how the probability distribution for the response of a
linear system depends on the probability distribution of the excitation. We
can say at once that there is no simple relationship. There is no general
method for obtaining the output probability distributions for a linear
system except for the special case when the input probability distributions
are Gaussian.

The fact that we can calculate the output probability distributions for a
linear system subjected to Gaussian excitation arises from the special
properties of Gaussian processes.

Firstly, there is a general theorem which says that if y, and y, are a pair of
jointly Gaussian random variables, then if y is defined so that y =y + y,,
the new random variable will also be Gaussian.
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e Secondly, this result may be applied to show that the response y(t) of a
linear system will be a Gaussian process if the excitation x(t) is Gaussian.
Using the convolution integral, we know that:

W) = J. h(t — t)x(z) de
where h(t) is the impulse response function. It can be shown

mathematically that the above integral can be thought of as the limiting
case of a linear sum of a sum of random variables of which

Y=y +):
is the simplest example. Hence if x(t) is @ Gaussian process, y(t) must be
the same. Finally, these results can be extended to the case of more than
one jointly Gaussian input to show that the output processes after
transmission through a linear system will also be jointly Gaussian.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics



ERASMUS Teaching (2009), Technische Universitat Berlin

D lidvs A +rilni i FiANnC
1 | Ly U LITIOULIVUILID

S

~hahh
uvudu

 The output of a linear system subjected to Gaussian inputs is therefore
Gaussian and the output probability distributions can be calculated if the
respective mean values, variances and covariances are known.
El(x_mx)(y_my)J

0,0,

pxy =

 Also since a derivative can be expressed as the limiting case of the
difference {y(t+At)-y(t)}/At between two random variables y(t+At) and
y(t) if the process y(t) is Gaussian so is its derivative and so are higher
derivatives such as acceleration.
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 Alinear system is subjected to stationary Gaussian excitation as a result of
which the response y(t) has a mean level m,, standard deviation G,, and an
autocorrelation function R (t). Determine the probability density function
p(y,Y,) for the joint distribution of y at t; and y at t, where t,=t,+t.

Referring to the definition of the second order Gaussian probability

density from
_ E[(x = mJ)(y = m,)]

= 7.0,

the normalized covariance p,,,,is given by:

_ E[(y; — m)(y: — m}-}] _ Ry(r) — mi _
PJ‘[}'I o EF_E - 'U'E =g

1 = = m) L lr = my)  2pgix — moly — my)

the equation  Pxy) =372—E— 1) S B }gives:

- { =Tl WMy — ity | }
1 o™ Ty bl s

P(Pia}’z} = E?fﬂ_i \."Ir[l _ pi}
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e When the time interval :- «, rR()-m? and from

E[(y; — m)(y; —m)] _R)x) —m;
- 2

PJ-'L}': = D-_E ﬂ'.; = P
g =0,
. 1 - L [ipy = mgd? +(py — o )t = Ty —m ) g — i | }
* Inthiscase, rbur)=sagr—me 7 becomes

¥

1 _1}':—.'112:!2 1 _lya = my}?

_ 2 . —— e n'_-,,.1 == "
P{yh}?l} ﬁﬂ'}.e 2oy 5‘.-"25'1' ETF 2 P(P}J {Pl:.]"z)

e andy,=y(t;) and y,=y(t,) are then statistically independent.
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As a summary, for engineering calculations, the world is often
assumed to be linear, stationary, ergodic and Gaussian. Actually,
there is an important theorem of probability theory called “the
central limit theorem” which helps to explain why the probability

distributions of many naturally occurring processes should be
Gaussian.

Roughly speaking, the central limit theorem says that when a
random process results from the summation of infinitely many
random elementary events, then this process will tend to have
Gaussian probability distributions. We therefore have good reasons
to expect that, for instance, the noise generated by falling rain, or
by a turbulent fluid boundary layer, or by the random emission of
electrons in a thermionic device, will all have probability
distributions which approximate to Gaussian.
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Furthermore, even when the excitation is nonGaussian, a system’s
response may approximate to Gaussian if it is a narrow band response
derived from broad band excitation because the convolution integral

W) = J. h(t — t)x(z) de

— =0

may again be thought of as the limiting case of a linear sum of
approximately independent random variables.

However, there should be one word of caution. An assumed Gaussian

probability distribution may give a poor approximation at the tails of the
distribution and predictions of maximum excursion of a random process,
based on such an assumed distribution should be treated with suspicion.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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* Inthe previous chapter, we considered general relations
between the input and the output of a linear system
subjected to random excitation. The characteristics of the
excitation are modified by the response of the system,
which in electrical engineering terms, acts as a filter.

* |n most vibration problems, the system has at least one
resonant frequency at which large amplitudes can be
generated by small inputs.

e At other frequencies, transmission is reduced and, at very
high frequencies, the effective mass may be so high that
the output is not measurable.
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A typical frequency response function H(w) for such a resonant system is
shown in the figure, which also shows how the characteristics of the broad
band noise are changed by transmission through this system.

Because the output spectrum is confined to a narrow band of frequencies
in the vicinity of the resonant frequency, the response y(t) is a narrow
band random process and the typical time history of y(t) resembles a sine
wave of varying amplitude and phase as shown in the figure.

x(t) y(t)

[|!'| “ I(J" x(t) y(t)
11' III[I'N\MJ ' H(W,l prm——r lfn%‘ii?

IH ()] 4 Sy(w)

4 Sx(w)

0 ﬁ 0 @ 0 )

Narrow band response of a resonant system excited by broad band noise
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In order to make some simple calculations, suppose that the frequency
response function has very sharp cut-offs above and below the resonant
frequency so that the response spectral density Sy(m) has the idealized
form shown in the figure. 457 @)

So 150
A
| |

—t.:.'ru 0 Wy E

We have already worked out the corresponding autocorrelation function
in the previous chapters and this is as shown in the figure and formula

below:
R,(1) = 48,

COS Wyt

sin(Aw 1/2)

A Ry {r)
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e If the excitation is Gaussian, we can find the probability distributions for y
and for later reference, we shall nedd the first-order probability density
function p(y) and the second-order probability density function p(y,y)
for the joint probability of y and its derivative. Both of these functions are

given by the standard expressions

—(x-m)? /252

—€

p(X) = \/gg

1 (X—mx)2+(y_my)2 2pxy(x_mx)(y_my)
1 o 200%)

p(x’ y) i 272.0—x(7y \ (l_pfy)

and are known provided that the statistics m,, my, d,,0;, and p,, are
known.

af 05 OyOy
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e First consider the mean level of y, m,. If this were to be other than zero,
the spectral density for y would have to show a delta function at ®=0,
because otherwise there can not be a finite tribution to E[y?] at ®=0. Since
the spectral density S (o) shown in the figure does not have this delta
function, the mean level is zero, m,=0.

457 @)

So =7 So
Aw

] |
—tig 0 Wy E

* Next, since the spectral density of the y process is given according to
Sy(a))=a)25y(a))

e The s,(® function also cannot have a delta function at ®=0, so the mean
level of v is also zero, m, =0
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* |n order to calculate the variances ¢} and ¢; we use

o* - Epe]- (EXY

(variance)=(standard deviation)?’={Mean square-(Mean)?}
E[xz]:_TSX(a))da)

to find: o = E[y*] = j m S, (w)dw = 25Aw

— o

i - E[y*] = J.m w?’S (w)do ~ 25 wjAw

-
for Aw « wy.

E[(x-m,)y-m,)|

0,0,

, the normalized covariance is:

o, = ELVI
¥y 0,0,

e Llastly from »,=
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. E[y;
We know that the numerator of the equation s, = -}Jﬁﬂ

expressed as:

can be
¥y
, d
E[yy] = ERP{T}
t=10

If R,(1) is expressed as the Fourier integral of the corresponding spectral
density, using

R (r)= ojZSX(a))ei‘”da)
We get: m
E[yy] =i ‘. w S,(w) daw.

Now since S (o) is a real even function of frequency o, the integrand

® S, (o) is a real odd function of ®. When integrated over the range minus
infinity to plus infinity, the contribution from minus infinity to zero is
exactly equal but opposite in sign to the contribution from zero to plus
infinity. Hence the above integral must be equal to zero and we obtain:

E[yy] = 0.
Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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It is therefore a property of any stationary random process y(t) that y and
its derivative y are uncorrelated and so the normalized covariance o is
always zero.

We now have all the parameters we need and can substitute

—(x-m)?/20?

1
p(X):me

1 [em)? (y=my)® 2p (x=my)(y-m,)
1 2(l—pfy)1 o2 ' 0'3 0xOy

p(X y) = e
27mxay,/(1—pxzy)

to obtain the probability density functions

- y?
1 20,1 _Lqe il
Ty l e fl::r 2 ':rj.z}

_]r‘} = £ 7] = ¥
p( ﬁgr p(y,y) I 0,0,

= p(y)p(p)

where o ands, are given by:
o7 = E[y*] = .[ S (w)ydw = 25,Aw g; = E[y*] = j w?S (w)dw ~ 25 05Aw

— ==
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These functions are sketched in the figure alongside the corresponding
spectral density and autocorrelation curves.

{
" ySri@ (b) A Ayln)
Sg 150
Ao
1 | i
—ig [i] wg W
o) Plv.¥)=ply) -p(})
[=
aeiyl (d)
VT
¥

Fig. 8.2 Characteristics of a stationary, Gaussian, narrow band process
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Although the data in the previous figure says a lot about the narrow band
process y(t) by describing its frequency composition and its amplitude and
velocity distributions, it is possible to go further and obtain important
information about the distribution of peak values, that is to say

information about the amplitude of the fluctuating sine wave that makes
up the process.

Suppose that we enquire how many cycles of y(t) have amplitudes greater
than the level y=a during the time period T as shown in the figure. For the
sample shown, there are three cycles.

qnhaf;;aﬂ“anhnn*ﬂﬂ‘n;%nuﬂ J‘ ™

Fig. 8.3 Typical sample of a narrow band process
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* Another way of saying this is that there are three crossings with positive
slope of the level y=a in time T. Each of these positive slope crossings is
marked with a cross in the figure.

Fig. 8.3 Typical sample of a narrow band process

* Now consider the figure as one sample function of an ensemble of
functions which make up the stationary random process y(t). Let =1
denote the number of positive slope crossings of y=a in time T for a typical
sample and let the mean value for all the samples be »;im where

NJ(T) = E[n}(T)].

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Since the process is stationary, if we take a second interval of duration T
immediately following the first we shall obtain the same result, and for the
two intervals together (total time 2T) we shall therefore obtain:

N7 (2T) = 2N (T)

from which it follows that, for a stationary process, the average number of
crossings is proportional to the time interval T. Hence
NXT)ee T

NHT)=v!T

where v, is the average frequency of positive slope crossings of the level
y=a. We now consider how the frequency parameter ¥, can be deduced
from the underlying probability distributions for y(t).

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Consider a small length of duration dt of a typical sample function as
shown in the figure. Since we are assuming that the narrow band process
y(t) is a smooth function of time, with no sudden ups and downs, if dt is
small enough, the sample can only cross y=a with positive slope if y<a at
the beginning of the interval, time t. Furthermore there is a minimum
slope at time t if the level y=a is to be crossed in time dt depending on the
value of y at time t. From the figure, this is: i

I

and so there will be a positive slope crossing of y=a in the next time

IV R I I T H —~
intervdi Ui, 11 di Lire l. y<a and _— T —— =,

Ayt " Minimum slope
- for a positive

crossing in dt

|
|
1
t t+dt

Conditions for a positive slope crossing
of y = a in time interval d¢
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In order to determine whether the conditions »y<«¢ ad 7 >=—7= are
satisfied at any arbitrary time t, we must find how the values of yand
are distributed by considering their joint probability density »x.). .
Suppose that the level y=a and time interval dt are specified. Then we are
only interested in values of y<a and values of j=(dyd)> @@ - 4, Which
means the shaded wedge of values y and y as shown in the figure. The
wedge angle o is chosen so that wna=%-2_4; in order to satisfy the
above equation. Tprm ’ S

)

~ Calculation of the probability that there will be a positive slope
crossing of ¥ = a in time interval d¢
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If the values of yand y lie within this shaded wedge, then there will be a
positive slope crossing of y=a in time dt. If they do not lie in the shaded
wedge, then there will not be a crossing. The probability that they do lie in
the shaded wedge can be calculated from the joint probability density
function »»» and is just the shaded volume shown in the figure, i.e., the
volume under the probability surface above the shaded wedge of

acceptable values of y and j . Hence,

Prob Positive S.[DF.": crossing
of y = ain time d¢

- J-P(M}d.vdﬁ

over the shaded wedge in Fig. 8.5(a)

(v, (= )
oy =, d,vj dy p(y, y).

a= jlana

Calculation of the probability that there will be a positive slope
crossing of y = in time interval d¢
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e When dt — 0, the angle of the wedge a=dt —— 0 and in this case it is

legitimate to put
p(y:3) = p(y = a.y)

since at large values of v and y , the probability density function approaches
zero fast enough. Hence the equation

Prob Positive S.IDF.": crossing
of y = ain time dt

= J. ply.y)dydy

over the shaded wedge in Fig. 8.5(a)

=, dﬁJ‘ ~ dyp(yy).

o

may be written as:

Positive slope crossing fo .
o ﬂb(ﬂfy = g in time dt ] Jﬂ dyJ;-ij dyp(y = a, )
in which the integrand is no longer a function of y so that the first integral
IS just:
[ dyply = a,§) = ply = o, j) ptana
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Hence with tano=dt

Positive slope crossing

™ an
= =, ) pdedy
of y = ain time d¢ JE ply = a,

Pmb[

= ﬂrJ pla,j) pdy
Li]

when the term a5 1S unaerstood to mean the joint probability density piy. 5
evaluated at y=a. Now we have said that the average number of positive slope
crossings in time T is v, T, The average number of crossings in time dt is
therefore v} dt. Suppose that dt=0.01 s and that the frequency v = 20
crossings/s. In this case, the average number of crossings in 0.01 s would be v} dr = 002
crossings. Next imagine that we were considering an ensembie of 500
samples. Each sample would either show one crossing in dt or no crossings, as
dt is assumed very small compared with the average period of the narrow
band process. The number of samples with a positive slope crossing must
therefore be 10 since 10/500=0.02. But 10/500 is also the probability that any
one sample chosen at random has a crossing in time dt. So we arrive at the

following result: o o
Average no. of positive Cm&ﬁiﬂg&-) — Prob Positive slope crossing

of y = a in time di jof p = ain time df
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jof y = ain time df

of y = a in time d¢

because dt is small and the process y(t) is smooth so that there can not be
more than one crossing of y=a in time dt. Accepting the above equation
and substituting from n~;m=v'T and

Positive slope crossing

Prob .
of y = ain time dt

™ a0
= ! ply = a,p) pdedp
Jo

- “"J pla,§) jdj
i

pla, 7 jdy

gives: wide—de|

J0

from which dt cancels to give the following result for the frequency

-

parameter v in terms of the joint probability density function piy ]

v = j pla.g) i d3.
0

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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 Thisis a general result which applies for any probability distribution, but
for the special case of a Gaussian process we know from

p(y.y) =

that

| T
i == = —— [ [; — E_
pla,y) = —==

which on substitution to |
=[ pla.5) 545,

gives: ] fe
v = =g ——e PR i dy.
Jina, 0 A 2RO

The integral is one of the standard results and its value is ##+/Z% so that the
final result is, for a Gaussian process,

Irl_. — _I._ ﬂ-..' E -ﬂzllll:rl.ll-

2 7
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* A special case occurs if we take the level a=0 because this gives a
statistical average frequency for crossing the level y=0, the figure, which
may be thought of as a statistical average frequency for the process.

* Notice that 4 is obtained by averaging across the ensemble and so it is
not the same as the average frequency along the time axis unless the
process is ergodic.

T piel

Paositive slope crossings of the level y = ()

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Calculate the frequency of positive crossings of the level y=a for the single
degree of freedom oscillator shown in the figure when it is subjected to
Gaussian white noise of spectral density S,.

Di:pll?ujnunt
[ §
3:" AS, (w)
2 c g (T
Y E force
7 m | ————
é._..--.m«;ﬂr_- x(t) So
Z 000 -
(e)
b 1M (w)l L8, fw)
/\_/:\\n
—I'..IJH' .n- m” _‘E;
] | -
—tly 0 iy w
fc) (d)

Fig. 7.2 Response spectral density S,(w) for a single degree-of-freedom
oscillator subjected to a white noise force input S,(w) = S,.
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* In Example 1 of the first chapter, we have worked out that the frequency

response function is:
1

+ fcw + &

H =
() — me?

so that

Ll

m | l |-! Idm_]rsﬂ

1
- [ & —
v_=,|—rnw3+r|:!|:|.l+|!r.| . ke

T, =

as already calculated. The frequency response function relating j:) to the
excitation x(t) is obtained by multiplying H(®) by i ® to obtain:

H'lw) = i

—mm® + icw + k
(v al
ﬂ'j,z=J‘
-

 Toresult of this integral is:

so that
. 2
e
S, dow.
—mw + ico + k| " ° @

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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na,
+ k —.p ,.[Jr:Sg,n'k.:}
Va 27!
e The average frequency for the process is obtained by putting a=0 to give

1 [k oy

— — T —

Yo 2nm 2w

where m,, is the natural frequency of the oscillator in rad/s.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Having obtained the frequency of crossings of y=a, it is not difficult to
extend this calculation to determine the probability distribution of peaks.
Let r.(@)da be the probability that the magnitude of a peak, chosen at
random, lies in the range a to a+da. The probability that any peak is
greater than a is therefore

Prob|Peak value exceeds y = a) = J

p,la)da

Now in time T, we know that on average, there will bevi T cycles (since
one positive crossing of y=0 occurs for each full cycle of the narrow band
process) of which only v*7 will have peak values exceeding y=a.

yit)

a+da

[

“a N

U

!

U

V

L

Identification of peaks in the band y =a to y = a+da
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The proportion of cycles whose peak value exceeds y=a is therefore ;—;

. - ]
and this must be the probability that any peak value , chosen at ranaom
exceeds y=a. Hence we obtain:

L] ‘.-’+
j ppla)da = F

0

and this equation may be differentiated with respect to a to give:
_Lld .
—pyla) = ;D:E(va]

which is a general result for the probability density function for the
occurrence of peaks. It applies for any narrow band process provided that
this is a smooth process with each cycle crossing the mean level y=0 so
that all the maxima occur above y=0 and all the minima occur below y=0.
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e The equation -p,a) = —1——(v ) applies for any probability distribution, but

if y(t) is Gaussian, then there is a simple and important result for p,(a).
Substituting

Irl_. — _|-_ ﬂ._.' E _ﬂzllll:rl.li-
2m 7y
into
1 d
—pyla) = ——(v,

Iy va— d }
gi‘\iES _ _d ~a2[20,? a L —a?1q,?
or pa) = e~ 0<a< oo

¥

which is the well known Rayleigh distribution.
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The function pp(a) has its maximum value at a=cy, the standard deviation
of the y process, and it is clear from the figure that the majority of the

peaks have about this magnitude.

ppra) !

Low density for small
and large peaks

4] "y g

Rayleigh distribution of peaks for a
Gaussian narrow band process

The probability of finding very small or very large peaks is small and the
probability that any peak, chosen at random, exceeds a is from j p(a)da = 22

+

+
o
—alflg,?

Prob(Peak value exceeds a) = e
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e (Calculate the probability that any peak value of a Gaussian narrow band
process y(t) exceeds 36, From where 36, is its standard deviation. From

Prob(Peak value exceeds a) = e ~*"/2%",

the required probability is

e~ @20y — =45 — 0011

so on average only about 1 peak in a 100 exceeds the 3c, level.
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 Our analysis of peaks leading to the Rayleigh distribution for a Gaussian
process is based on the assumption that the narrow band process y(t)
resembles a sine wave of varying amplitude and phase. We can investigate
the validity of this assumption by calculating the distribution of the local
maxima of y(t) by another approach. We know that y(t) is an extremum
when dy/dt=0 and that this extremum is a maximum if, at the same time,
d?y/dt? is negative. Therefore the frequency of maxima of y(t) must be the
frequency of the negative zero crossings of the derived process 5 and,
since there is one negative crossing for each positive crossing, this is the
same as the frequency of positive zero crossings of s . Hence if p is the
frequency of maxima of y(t), and v-o is the frequency of zero crossings of ()

, we have B
|u'}r - ujl:i}

where v;_,can be calculated fromv, = 1o e ~nlot by substituting ‘

2m d,
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1 oy
And putting the level y=a=0 toobtain # = g;:

This is a general expression for the frequency of maxima of the process
y(t). For a theoretical narrow band process whose spectral density is
shown in the figure and for which Aw « w,, We have:

i — E[y*] = j w?S (w)do ~ 2§ wjAw

=

and similarly, ¢ = E[?] = [ w*S,(w)dow ~ 2SpwiAw

?syfﬁﬂ
in which case 1 ay S — 5
. Hy =37 A
gives: 2r g, -
.uj' - 2_?_1: I | .
=Wg 0 wp

for the frequency of maxima.
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If the frequency of maxima p is compared with v = Z’e “atitnt we
obtain: 1o, @,

+
Vymg =

2ra, 2n

for the frequency of zero crossings of y(t). The frequency of maxima and
the frequency of zero crossings are therefore the same and our
assumption that there is only one peak for each zero crossing is justified.

If the bandwidth of the narrow band process is not narrow enough to
assume 4w « oy this conclusion is however modified. Suppose that the
spectral density of y(t) has the form shown in the figure. In this case, the

variances of y, y and j are:

. rsr{m}
6}1. = E[}?*] = Slwldew = 2§5,(w; — w,) o %o
o} = E[j*] = | w’S0)do = 35,0l — o)
..n;m = = 0 g wp
1}'-:_-1, = E[ }rEJ = m'*SJ_{m} dw = £8,(w3 — w;) Spectral density of a theoretical band
J-m limited process



ERASMUS Teaching (2009), Technische Universitat Berlin

l \7 'Fm

eqguency or mad

\VA N 2"

C ~
I 1lid

* The frequency of maxima is now:
4 = Loy 1 {3{&:3 - mEJ}
2 a; T In w3y — w3)
compared with the frequency of zero crossings which is:
from o L [foizat]
na, E:-n'u" 3w, — wy)

and these clearly are not the same.
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Calculate the frequency of maxima and the frequency of zero crossings for
a Gaussian process whose spectrum is flat and covers an octave band-
width from ®,/21=70.7 Hz (c/s) to ®,/2n=141.4 Hz (c/s) , as shown in the
figure, with a center frequency of 100Hz. Note that for an octave
bandwidth the upper cut-off frequency is twice the lower cut-off
frequency. Substituting numbers into

1 1 Iew; —
iy = cw__ {{mz m}}

En‘ﬂ‘ 5{&)1 - "13'1}
gives =115 Hz and into
v .._l_ﬂ-_ _ln'r w3 — o]
r=e Ena 2:'1:\,!' Hew, — le'

vi.o = 108 Hz
approximately. There are therefore about 6.5 percent more local maxima
than there are zero crossings. Ste)

Sa &g

gives

=g ~uy 0 wy wy o

Spectral density of a theoretical band
limited process
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The reason for the difference is due to the fact that y(t) can only be
represented by a sine wave of slowly varying amplitude and phase if its
spectrum has the form shown in the figure and includes only a very

narrow band of frequencies Aw. )
? ¥

So 1 So
Aw

e fbe—

] | -
It has been shown that for? moretJr gener?l n%rrow band spectrum, as
shown in the figure below, the high frequency components present
introduce irregularities in the smooth form of the sine wave
approximation and it is these irregularities which cause the additional

maxima. b5, (w)
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In many applications, we are concerned only with the large amplitude
excursions of a narrow band process and the Rayleigh distribution of
peaks, which assumes only one maximum for each zero crossing, is then a
valuable guide to the probability of occurrence of large peak values

———

L5, (w Fa y

¥ied

fal

fb)

Iustrating how local irregularities in a narrow band process give
more than one maximum per Zero crossing,
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Accuracy of measurements
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So far, we have been concerned with the basic mathematical theory of
random processs analysis. We turn now to a more practical aspect of the
subject: experimental measurements. We shall concentrate almost entirely on
measuring the spectral density of a random process or the cross-spectral
density between two random processes. This emphasis on spectral
measurements is justified by the central role which spectra occupy in the
theory of random vibrations. Their importance comes from the simple form of
the input-output relations for spectral density for a linear system subjected to
random excitation. In this chapter, we shall describe the operation of an
analogue spectrum analyser and discuss at length the factors which affect the
accuracy of any measurement of spectral density.

The fundamental experimental problem is that our measurements must be
made on one sample function of a theoretically infinite ensemble, or at the
most, on only a few sample functions from the infinite ensemble.
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Furthermore, we are only able to analyze a limited length of any given sample
function because we can not go on taking measurements for ever.

The fact that we are limited to a single sample and that we can only analyze a
finite length of it means that, automatically, we shall introduce errors into the
measured spectrum.

Even assuming that the random process we are sudying is ergodic, in which
any one sample function completely represents the infinity of functions which
make up the ensembie, we are stiii introducing errors when we oniy deai with
a finite length of a sample function.

Remember that a sample average for an ergodic process is only the same as an
ensemble average when the sample averaging time is infinite. Obviously, this
is not a practical proposition.
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If we follow the mathematical definition of spectral density, we must
begin by measuring the autocorrelation for the process being studied and
then devise a way of calculating the Fourier transform of the
autocorrelation function. However, in practice, this is not the best way to
proceed.

It turns out that it is easier to measure spectra by a procedure which does
not involve first calculating correlation functions. Although the
experimental procedure follows a route which is not mathematically
rigorous, and therefore cannot be used to define the spectral density
functions, we shall see that we can obtain approximations for the true
spectra which are correct to any stated accuracy; furthermore the
measurements are considerably simpler and quicker than they would
otherwise be.
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Most engineers will be familiar with an instrument called a frequency
analyzer. The output of an accelerometer, or other vibration transducer, is
fed into the instrument which is essentially a variable frequency narrow-
band filter with an rm.s. meter to display the filter output.

Usually, the filter center frequency is continuously variable and the
experimenter adjusts this as he searches for the predominant frequencies
present in a vibration signal. An analogue spectrum analyzer is a similar

instrument except that it has more accurate filters and precisely calibrated
bandwidths.

Components of r.m.s. meter

~ = w
Input . .
Narrr:uw band Squaﬁnng Avarafglng 1 Output
filter device device meter

x(t) y(t) y2(t) z(t)
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e Suppose that the input x(t) is a sample function of an ergodic (and
therefore stationary) random process. The signal is filtered by a filter
whose theoretical frequency response is shown in the second figure
below.

Components of r.m.s. meter

-

r Al
Input
P Narrow band Squaring Averaging Output
filter device device ] meter
x(t) y(t) y2(t) z(t)
A |He(w)]
HO Hg
Aw
I | -
‘-‘(’JO U ﬁJg w

Schematic of a spectrum analyser showing the theoretical filter

frequency response
Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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e The filter output y(t) is squared and then the time average z(t) calculated

where { [T
z(t) = ?J. yz(t) dt.

o

e Since the averaging time T can not be infinite, z(t) is itself a function of
time, and fluctuates about its true mean value (the ensemble average).
However, if T is long enough, the fluctuations are small and the mean level

E[z] can be approximately determined from the analyzer’s output meter.
From the above equation, we know that

E[z] = %LT E[y*]dt = E[y*]

since y(t) is stationary, and from
Ely?]= j H(w) S,(0)de

Pelin Glindes Bakir, Probablllstlc and stochastic methods in Structural Dynamics
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_E[yz] == | H(w)|? Sy(w)dew

Which for the filter frequency response shown in the figure, with Aw « w,
can be approximated by E[y?] ~ 2H2 Aw S,(w,).
Combining the above equation with

Bl = 7 || Edr = £D)

the average output of the spectrum analyser is proportional to the

spnectral densitv of the input process at the filter center frequencv ®_. o
rl\—\-ﬂ\-l Al M1 l\-’l\-y A | CiIIN 11 lrl“\- r-ll S wdd AG LTI TN WAl IV | ll\'\-1\-ﬂ\'l l\-ﬂy O' A4

turning the formula round Elz
S(g) ~ LA
2H{ Aw

The mean output level E[z] is therefore a direct measure of the input
spectral density.
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We shall now investigate the accuracy of this measurement. It is clear that
we are likely to improve the accuracy if we use an instrument with a long
averaging time, because then the output depends on an average
integrated over a long period of time as shown.

1 T
E(t] = ?J. yz(t) dt.

0

Also, if we want to distinguish sharp peaks in the curve of spectral density
against frequency, we should use a sharp filter with a very narrow
bandwidth Am. In the next section, we shall find an expression which
relates the accuracy of measurements to both these quantities.
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From S.(wg) ~ ﬁ%
0

the spectral density S,(®) can be determined if
H,, Aw and E[z] are all known. We can determine the first two to any
desired accuracy by using precisely calibrated narrow band filters.

Components of r.m.s. meter
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r N\

Input .
P | Narrow band Squaring Averaging Output
filter - device device ] meter

x(t) y(t) y2(t) z(t)
A [He(w)]
H'D Hg
Aw
]
| I -
—wy 0 g ®

Schematic of a spectrum analyser showing the theoretical filter
frequency response
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* However, E[z] cannot be precisely determined since it is an ensemble
average and therefore not obtainable from measurements of finite length
on a single sample. All we can do is try to make sure that z(t) never differs
very much from its mean value E[z] so that a spot value of z(T) is likely to
be a close approximation for E[z]. The variance of z(t) is a measure of the
magnitude of its fluctuations about the mean and we define,

o? = E[2z*] - (E[z])?
as the variance of the measurement according to
o = Efx’]- (el
* We shall now seek to determine o?. Clearly, this will depend on the

characteristics of the y(T) random process, which is the output of the
spectrum analyzer’s narrow band filter since z(t) is a function of y(t).

| Hy ()|

Ho Hyg 1 T
ﬂ "k 2(t) = L y2(t)dt.

-'wo 0 wo w
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 We begin by substituting for z in terms of y in
o’ = E[2*] - (E[z])?
rT
E[z] = = | E[y?]dt = £[}?]
T Jo
the E[z] term can be replaced by E[y?] to obtain:

o* = E[z*] - (E[y*))’
but the E[z?] term is more difficult. Returning to the definition of z(t),

T
z(t) = lj p3(¢) dt.
we can write: T Jo

T 2 T 1 T
2= [voal = {5 [ o) (], e

where the two different time variables t; and t, are introduced so that ‘

* Using
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e This product of two integrals may be written as the equivalent double
integral { (7 T
22 ==, | diy | dtyy(t)yi().
T o 4]
* Averaging the above equation for the ensemble then gives:

2 1 (" T 2 2
E[z*] = 'rszL d'!l.[ dt, E[y*(t;)y*(t2)]

0

which substituting into
o* = E[2*] - (E[y*)?

gives the following expression for the variance of the measurement o?.

g = {LJ.T dt, }.T dz, E[}’Z[H]J‘z(fz)]} - (E[J"z]}z-

2
T o 0

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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T T
In order to use  ¢* = {LJ. dt, }. dt, E[}’z(h]y"'(fz)]} - (E[y*])*

2
T o 0

we first relate the fourth order average E[y%(t,)y%t,)] to the
autocorrelation function for the y process Ry(t) . This is easy to do if y(T) is
a Gaussian process. Fortunately, this is likely to be a fair approximation
since y(t) is the output from a narrow band filter and so we may expect its
probability distribution to approach a Gaussian distribution when the
input to the filter is broad band noise. For a Gaussian process with zero
mean, the fourth order average E[y,y,Ysy,] can be expressed in terms of
second order averages by the following equation

ETyivay3yal = E[y1y:1-E[ysya] + E[y2y3]-E[yay,] + E[}’lya]'E[}'z_J"df_]_h
which for y;=y, and y,=y, simplifies to E[y?)3] = 2E[y y.)? + (E[Y*])?

if E[y1] = E[y2] = E[)*].

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics



ERASMUS Teaching (2009), Technische Universitat Berlin

\/Aaviamecn ~nF +lhAa mAaaciirarnmyAand
vdilidlitLT Ul LIHICT 1T1ITdAdoOUICIIICTIIL
* If now we put y, = yt,) and y, = y(t,) , we obtain:
E[y*(t,)y*(t2)] = 2AE[ (t,)y(t2)])* + (E[y*])?
in which, since y(t) is a stationary process,
E[p(t)p(t,)] = Ry(t; — ty)
and so finally for a Gaussian process,
E[y*(t,)y*(t;)] = 2R}(t, — t;) + (E[y*])%
e Substituting E[Z]
Sx(wﬂ) - ZH% ﬂﬂ}‘
T T
o* = {LEJ. dt, j dty E[JFZ(H]}‘Z{I:L}]} — (E[y*D*
T )] 0

gives the following expression for the variance of the measurement, o*

22 [Tq (T4 2
o o

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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For a stationary input, the autocorrelation function depends only on the
time difference t=t,-t;, so changing one of the variables t, to T+t; (where
t, is a constant for the integration with respect to t) we obtain:

5 2 T T=1y 5
g° = T3 ; dtlJ‘—r, dt R, (7).

Since the integrand Ri(z) is a function of only one of the two variables of
integration, we can integrate immediately with respect to the other
variable. However, the limits of integration require some thought. The
range of values of T and t, covered by the double integral is shown in the
figure: 4ty

r

|
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e Integrating with respect to t. with T constant. i.e. Along the shaded strip
in the figure gives: Rt} (T—|t]) for —-T<t<T
and then integrating with respect to the other variable over its full range
from —T to +T, we obtain: , 2T |

— 2 — 1
o TJ'_TR},{r)(l T)dr.

* In order to evaluate this integral, we must introduce an expression for the
autocorrelation function Ry(z). Since y(t) is the output of a narrow band
filter, as shown in the figure, its autocorrelation function will have the

form R,(z)=4S, —Sm(AwT/Z)cos WyT

which may be written: sin(Aw 1/2)

(Aw 1/2)

Components of r.m.s. meter

-

}cns WeT.

R,(1) = RP(UJ{

-

Input . "
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sin(Aw 1/2)
(Aw 1/2)

2 :EFJ'_TT Rg(r)(z - g)dr.

and then evaluate the integral to optain tne variance ¢* . Fortunately, we
are only looking for the order of the magnitude of ¢* rather than an exact
value, and it is sufficient to integrate only approximately. First we note
that the first equation includes the quotient

{sin{ﬁm r,/2}}

* We now want to substitute R(z) = R},{{}){ }cﬂs w,T. INtO

(Aw T/2)

which when squared and plotted as a function of 1, has the form shown in
the figure:

in AT 12
(sm__._.

AwT
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* This may be approximated quite closely by the straight line function as
shown in the figures

_ Il 2=
{1 T DAY

2n
0 for |7|> i
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T
With this assumption, ¢? = %J' Ri(r)(l - %)dr. becomes, after
substituting for R (1) -7

o2 ~ 2 [ R3(0)<1 — 7] cosZw,t
T - 2r/Aw g (2n/Aw) °
Secondly, we shall assume that the averaging time T of the rrm.s. meter in
figure is long so that 21

T}}EEE

- e

in which case we can make a further simplification of the integrand to

obtain 5 (258w <]
g? ~ = R0 {1 - }cuszm 1dr.
Tj_z,,mﬂ, »(0) (2n/Aw) 0

Components of r.m.s. meter
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 The integral is represented by the shaded area shown in the figure.
Provided that the bandwidth Am is small compared with the center
frequency of the filter o,, then there will be many cycles of cos*wot inside
the triangular envelope of the figure, and in this case, the shaded area is
equal to half the total area enclosed by the dotted triangle in figure.

RO T
wxxx\\\xx\xxxxxxmx-

N

!

[ %]
3B

o
ay

2m 1'r:
Aw Aw
* Hence the integral is given approximately by:
and so we arrive to the approximate result:
2 ~ Ri(ﬂ}

T&
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Putting the symbol B to denote the bandwidth in Hz, so that

_ Aw 2
= o’ ﬁRr(o)

This is the simplified version of

¢ ={ g, 4 ], o L)y ]} - (D7D
0

we have been looking for. It gives the variance of the output of a spectrum

e the correct O'utpm should be from
= E[z°] - (E[2])?
E[z] = E[y*] = R(0)=m (say)

where m denotes the mean output of the analyzer.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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* The equation ¢* ~ J—;—TR;T(D). may finally be written as: E:‘j—% and it is

m

clear that if the standard deviation of the measurement is to be small, we
must have: BT » 1

which confirms the approximation T >» 1:% in evaluating the integrals.

e We are now in a position to appreciate the pasic dilemma which arises
when measuring spectral density. For high resolution, the filter bandwidth
of the analyzer, B, must be small, while for good statistical reliability B
must be large compared with 1/T. This can only be achieved if the
averaging time T is long, which means that the sample function x(t) must
last for a long time and that the experimenter must be prepared to wait a
sufficiently long time to achieve an accurate result.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Example

Determine the standard deviation of the measurement of spectral density
by an analyser with a $-octave bandwidth and (a) a 1 s averaging time and
(b) a 10 5 averaging time when the centre frequency is (1) 10 Hz, (i1) 100 Hz
and (iii) 1000 Hz,

We must first caleulate the bandwidth in the three cases. Let f, be the
lower cut-off frequency. Then for a j-octave filter the upper cut-off
frequency is

,&EL -] !'Eﬁfiu
Also, if the centre frequency is f;
Ny fa
=0 that
fo=1121,

and the bandwidth is
026 f, = 023 f,.

Hence the filter bandwidths are (i) 2-3 Hz, (ii) 23 Hz and (i) 230 Hz
approximately.

The ratio of standard dewviation to mean outpul, #/m, can now be
tabulated by putting numbers into (9.22),
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{a) Averaging time  (b) Averaging time

T=1s T=10s
Case (i) g _ A 70
e 0Hz 2 = 066 2 =02
Case (i1) [ T _ o
fo = 100 Hz m_{]21 m_ﬂm
Case (1ii) o a
fo = 1000 Hz m = 007 m = 002

This means that, when an experimenter makes a spot measurement of
spectral density, his result is subject to an error on account of the
fluctuations of the output meter. The standard deviation of the measure-
ment (and therefore of the error) is expressed above as a ratio of the mean

output level m

Before leaving this subject it should be mentioned that the output of a
spectral analyser will also be susceptible to a steady state or bias error when the
filter bandwidth covers a range of frequencies in which the spectral density is
changing rapidly with frequency. The mean output of the analyser is, from (7.18),

g+ Ay 2
E[y*] =2 f HES (o) do

wp — A2
and our assumption in (9.3) that this may be written
E[y*] ~ 2H2S (w,) Aw

is of course not accurate if S,(w) is changing fast with frequency in the band
Am. The only practical solution to this problem is to achieve greater resolution
by employing an analyser with narrower band filters (provided that it is possible
to use a long enough averaging time to keep the variance of the measurement

acceptable).
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We have seen how the standard deviation of a single measurement of spectral
density is affected by the bandwidth B and averaging time T of an analogue
spectrum analyser and, to a good approximation, the ratio of the standard
deviation ¢ to its mean value m is independent of the variance of the input
signal and depends only on B and T, according to the fundamental result

If the instrument’s averaging time is T, its output at any instant is based only
on the input values for the immediately preceding time interval T,

1 T
2(t) = ?J. y2(t)dt.

0

The basic problem is that it is just not possible to calculate the precise
estimate of spectral density when only a limited length of data is available for
analysis.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Now, with an analogue spectrum analyzer, operating on a continuous random
process, we can go on taking instantaneous measurements of spectral density and
by watching the movement of the instrument’s output meter, quickly appreciate
the variability of the output.

Usually, an analogue instrument has two or more alternative averaging times and
several different bandwidths, and by altering the settings of the instrument, it is
soon possible to judge how the instrument has to be adjusted to give reasonable
accuracy with an acceptable bandwidth, and therefore adequate resolution of
close spectral peaks.

However, analogue spectrum analysis takes time, since many separate readings
have to be taken to cover a wide range of frequencies; also the maximum
resolution obtainable from analogue filters is limited.

Digital data analysis metods are therefore extensively used and virtually all random
data analysis except for so-called “quick-look” spectrum analysis is now carried out
digitally.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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The sample function x(t) is first digitized by an analogue-to-digital converter and
then a digital computer is used to make calculations on the digitized data.

Since there is a limit to the number of data points that can be fed into a computer,
there is a limit to the length of the sample function that can be analyzed.

This restricted length of sample causes the same loss of precision as that occurring
in an analogue instrument with a finite averaging time.

It turns out that accuracy still depends on record length T and bandwidth B, except
that the bandwidth is no longer that of an analogue filter, but has to be
interpreted in a different way.

We shall now consider the general problem of analysing a record of finite length
and introduce the concept of a spectral window which is used to define the
equivalent bandwidth B, of a digital calculation.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Suppose that {x(t)} is a stationary random process consisting of an
ensemble of sample functions. Since the process is stationary, each
sample function theoretically goes forever. However, suppose that records
are only available for the period t=0 to t=T, as shown in the figure. In this
case, the autocorrelation function R.=) = E[x0xt + )] can only be determined
for [t| <T. We can not therefore calculate the corresponding spectral
density from ()= = (" Re e since we do not know R forf<| > T

Finite length records of duration T from the stationary

random process {x(t)}
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e The best we can do is to approximate S, (®) by truncating the integral to

give the approximation ) r

8, () == o R, (t)e " dr.

=T

* Although as already mentioned, the calculation procedure carried out in a
computer may not actually involve finding the autocorrelation function R.(z),
nevertheless the basic difficulty which arises is the inherent loss of

accuracy resulting from an approximation equivalent to the above
equation.

 Toillustrate how the approximate spectrum sio) = zlgrf Rf)e""dw is |likely to
differ from its true value calculated from

Sw) = — [m R (t)e~ " de

n|_.
suppose that () = asin(wet + ¢)

where the amplitude a and the frequency ®_ are constant, and the phase
angle is constant for each sample function, but varies randomly from

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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sample to sample with all values between 0 and 2nt being equally likely. In

this case, 3x

R. (1) = E[x(t)x(t + 1}] = J. a’sin(wyt + d)sin(wyt + @yt + d)pld)de

0
which putting p(¢)=1/2m, gives:

Q@
R (1) = 5 COS T,

Now suppose that the records x(t) are only defined for t=0 to t=T, so that
we only know R fer |z < 7. and consider calculating the approximation for r.x

1 &£
In Sw) = ziﬁ [_m R (t)e " dr
gives: T g
S{w]*v—J Seoswpte ot g
T
1 (7 d
=-— a’cos wyt coswrdr
2n g 0

since cosw,t is an even function of t, this may in turn be written as:

S, () = :HJ lcos(w — wglt + cos(w + wg)r}ds
0
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* Notice that the terms on the r.h.s. of the above equation have a form

similar to those in equation
R,(r)= 450 cos CUST sin CU;T
which has been shown to become a delta function, and so the

approximation for st given by
$.() = a Jlsm{w — wo)T _ sinfw 4 LU.:,]T}

W — g w + iy

tends to two delta functions in the limit when the length of the record, T,
becomes infinite.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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* Inthe Figure a, the approximate result

from the equation LA.(T)
S(@) ~ a {sm{w — )T sinfw + WGJT}.

o — g w4+

2
for T finite is shown compared with figure Ll
(b) , the exact result when T — oo . The ;b%ﬂcé - =
conclusion we can draw from this is that ""'1_-..;__,1_;:-
the result of analysing only a finite length AR (T) M0

of record is to smear out a sharp spectral

line over a band of frequencies of width 7
Aw=21/T approximately. In order to - -
resolve two nearby spectral peaks, the i

length of record T, must be long enough kit
for their frequency difference to be large
compared with 1/T Hz.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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* However accurate the analogue to digital conversion and however large
the computer, close spectral peaks can only be distinguished if the record
length T is long enough.

bS5yl
LR (T 1%
fa) IEP**:?—
-T
_DDUDUQGBUDU_" ““JW oA
_._'_,_,-'-1?" _mu mn
) R (T} *0 | Sefea)
L are;nz fdultn ﬁ:nl:tinn
- F
71 ry ares =
e
0 l‘:j r] U T -y 0 g {4}
'
Gn
by

Fourier transform of a finite length of a cosine wave compared with
the transform of an infinite length

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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A further limitation on the accuracy of numerical calculations can be seen
by considering the fluctuations of S(ew) on either side of w = @, in Fig. 9.4{a).
These fluctuations remain as the length of the record increases although their
frequency increases as shown in Fig 9.5(a) (which is drawn for positive fre-
quencies only). One way of removing them, or at least of reducing their

i
fal ) B,
£ s
0 5
4 Fre)
— el
_I:I b.:l,u 1)

Fig. 9.5 Smoothing with a rectangular spectral window

magnitude, is to smooth the spectrum so that instead of plotting S{w) we plot
a smoothed spectrum S{c) given by

Slw) = Jm Wi — w)5(E)d0 (9.26)

where £ is a dummy frequency variable and W(f) is a weighting function which
satisfies

j " winda = 1. (9.27)

=D
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Suppose that W(Q) is the rectangular function shown in figure b. In this
case, the smoothed form of the spectrum defined by

(@) = {sm{m — w)T | sinfw + mﬂ]T}l
4 [ — gy o + oy
is sketched in Figure c. Since positive and negative half cycles of S(») tend
to cancel each other out, the smoothed spectrum has the approximate
form shown and on account of '[ wae = 1. the shaded areas in Figure a and
Figure c are approximately equal.

L 5 () W)
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Smoothing with a rectangular spectral window
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The function W(Q) is called a spectral window function and the shape of a
graph of W(€2) against Q is said to be the “shape of the window”. Many
different shapes have been suggested, but the effective width of the
window is what matters because this defines the band of frequencies over

which averaging occurs. . ®
$(w) = f W(Q — w)S(Q)d0

For a rectangular window as shown in the figure, the bandwidth B, is just
the full width of the function. However, for other functions which may rise
gradually to a peak and then fall off gradually, it is necessary to calculate
an effective width and this is usually defined by the effective bandwidth B,
where,

=) T ¥
ﬁ.,J- W) dQ = {J W[ﬂ}dn} L)
s o (b)
which with [w(@pe-1 becomes 5 I e

= wHQ)dQ

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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Just as the variance of a measurement made with an analogue spectral
analyser depends on the filter bandwidth and the averaging time, so the
variance of any estimation of mean square spectral density depnds on (i)
the effective band width of the spectral window, B,, and (ii) the length of
the record, T. It can be shown that the result

[ 1

~Y

m /BT

still applies provided that the spectrum changes slowly over frequency
intervals of order 1/T, i.e., provided that the record length is long enough
to resolve adjacent spectral peaks. In this case, we therefore still have:

g 1

m J(B,T)
where o is the standard deviation of a measurement whose mean value is

m, B, is the effective bandwidth of the spectral window and T is the record
length.

Pelin Glindes Bakir, Probabilistic and stochastic methods in Structural Dynamics
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e Furthermore, the equation
7 1l
m J(B,T)

also applies approximately to measurements of the autocorrelation
function. In this case, the effective bandwidth Be is the bandwidth of the
entire input process so an individual measurement of a correlation
function has greater statistical reliability than an individual measurement
of spectral density from the same length of the record. However, in
transforming from the time domain to the frequency domain, we are
forced to employ selective filters which automatically reduce the effective
bandwidth and therefore reduce the statistical reliability of the results
obtained.
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