
1

Scheduling
Scheduling

� scheduling: share CPU among processes
� scheduling should:

– be fair
� all processes must be similarly affected
� no indefinite postponement

– “aging” as a possible solution
� adjust priorities based on waiting time for resource

– max. possible no of processes per unit time
– reduce response time for interactive users

Scheduling

– priorities should be used
– if critical resources exist: run processes using

those first so that the resources become available
quickly

– not fail even under very heavy load
� e.g. accept no new processes to system
� e.g. lower quantum

Scheduling Criteria

� I/O bound

� CPU bound
� interactive / batch
� importance of quick response

� priority
� real execution time
� time to completion

Scheduling

� preemptive x non-preemptive scheduling

� preemptive
– high cost of context switching
– to be effective, there must be a sufficient amount

of processes ready to run in memory

Priorities

� static x dynamic priorities
� static priorities

– fixed during execution
– easy to implement
– not efficient

� dynamic priorities
– change based on environment changes
– harder to implement + more CPU time
– enhances response times

2

Scheduling Example

564

443

285

622

301

Service
Time

Time of
Arrival

Process

Scheduling Techniques

� Deadline scheduling
– order processes based on their ending times

� useless if process is not completed on time

– process must declare all resource requests
beforehend
� may not be posible

– plan resource allocation based on ending times
� new resources may become available

Scheduling Techniques

� FIFO scheduling
– simplest technique
– order based on arrival times
– non-preemptive
– processes with short service times wait unnecessarily

because of processes requring long service times
� ineffective for interactive processes
� response times may be too long

– ineffective for I/O bound proceses
� I/O ports may be available while the process waits for a CPU

bound process to complete
⇒ FIFO usually used together with other techniques

Example: FIFO Scheduling

0 5 10 15 20

1

2

3

4

5

Scheduling Techniques

� Round-Robin schedulling
– FIFO-like
– assign CPU to processes for fixed time units in turn
– preemptive
– quantum = time slice
– if not completed within quantum: move to end of queue
– effective for interactive processes
– has context switching

Scheduling Techniques

– selection of quantum is critical
� has effect on performance of system

– short x long

– fixed x variable

– same x different for each user

� if too long quantum ⇒ becomes FİFO
� if too short quantum ⇒ too much time for context switches
� correct quantum sizes different for different types of systems

3

Example: Round-Robin Scheduling

0 5 10 15 20

1

2

3

4

5

Scheduling Techniques

� shortest-job-first scheduling
– non-preemptive
– order based on shortest time to completion
– decreased average waiting times compared to FIFO
– better service for short jobs
– not suitable for interactive processes
– total running time must be known beforehand

� user provides estimate
– if requires more than estimate, stop process and run later

� if jobs repeat, may know running time

Example: Shortest-Job-First
Schedulling

0 5 10 15 20

1

2

3

4

5

Scheduling Techniques

� shortest time remaining
– preemptive version of previous technique

� good performance for time-sharing systems
– run process with least time remaining to completion

� consider new arrivals too
� a running process may be preempted by a new, short process

– total running time must be known beforehand
– more time wasted

� used / remaining time calculations
� context switching

Example: shortest time remaining

0 5 10 15 20

1

2

3

4

5

Scheduling Techniques

� Multilevel queues

CPU

level 1
FIFO

level 2
FIFO

level 3
FIFO

level n
(round-robin)

4

Scheduling Techniques

– new process to end of level 1
– FIFO within levels
– if not completed within quantum, go to end of

lower level
– limited no of levels
– in last level, round-robin instead of FIFO
– short, new jobs completed in a short time
– in some systems, longer quantum at lower levels

Scheduling Techniques

– processes at higher level queues finished before
those in lower levels can be run

– a running process may be preempted by a
process arriving to a higher level

– in some systems stay in same queue for a few
rounds
� e.g. at lower level queues

Example: Multilevel Queues

0 5 10 15 20

1

3

2

4

5

Assumption: Max 3 levels in system.

Scheduling in UNIX Systems

Scheduling in UNIX Systems

Priority = CPU_usage + nice + base

CPU_usage = ∆T/2

Example:

� Assume only 3 processes

� base=60
� no nice value
� clock interrupts system 60 times per quantum

� start with the order Process A, B and C

5

Process A Process B Process C

Time Priority Cpu Count Priority Cpu Count Priority Cpu Count

Priority = (CPUusage/2) + 60

0 60 0 60 0 60 0
1
2
|

60

1 75 30 60 0 60 0
1
2
|

60
2 67 15 75 30 60 0

1
2
|

60
3 63 7 67 15 75 30

8
9
|

67
4 76 33 63 7 67 15

