

Process States in UNIX

Process Creation in UNIX

 fork system call
– parent process
– child process

 syntax: pid=fork()
– both processes have same context
– returns pid of child to parent process
– returns 0 to child process

 process no. 0 is the only process not created
using fork

Process Creation in UNIX

 when fork system call is made:
– if possible, reserve entry in process table (max no of

processes)
– assign unique pid to child process
– make a copy of the context of the parent process
– file access counters modified
– return child pid to parent process and 0 to child

process

Process Hierarchy in UNIX

process 0

process 1 (INIT)

tty1 tty2 ….. other system processes

login

shell

user processes

Exit System Call

 ends execution of process
 syntax: exit(status)

– “status” returned to parent process

 all resources returned
 file access counters modified
 process table entry deleted
 when a parent process exits all its children are assigned

the init process as a parent (process no 1)

Sample program code - 1

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int f;

int main (void)
{
 printf("\n Program running: PID=%d \n",
 getpid());
 f=fork();

Sample program code - 2

if (f==0) /*child*/
 {
 printf("\nChild process: my pid = %d\n",
 getpid());
 printf(“Child process: my parent pid = %d\n”,
 getppid());
 sleep(2);
 exit(0):
 }

Sample program code - 3

else /* parent */
 {
 printf("\nParent process: my pid = %d\n",
 getpid());
 printf(“Parent process: my parent pid = %d\n”,
 getppid());
 printf(“Pranet process: my child’s pid = %d\n”,
 f);
 sleep(2);
 exit(0):
 }
 return(0);
}

