
1

Memory Management - 2
Virtual Memory

� to run, a process must be in memory
– Question: must the whole of the process be in

memory?

� physical addresses are determined after a
process is loaded onto the memory
– physical addresses may be different during the

whole lifetime of the process

� parts of a process don’t have to be placed at
contiguous locations in memory

Virtual Memory

� unused parts are in secondary memory
� initially a part of the process is loaded onto the main

memory
– resident set

� if the part that is being accessed is not in memory
– page fault – interrupt occurs
– process is blocked
– the requested part is loaded onto memory

� operating system generates I/O request

� interrupt occurs when I/O is completed; waiting processes are
awakened and become READY

Virtual Memory

� due to virtual memory, there can be more
processes in READY mode
– more efficient multi-programming
– only necessary parts of process are in main

memory
– processes larger than the whole main memory can

also be run

� paging/segmentation is used in implementation
– requires hardware support

Virtual Memory

Questions to answer:
� how is space allocated on the main memory and

secondary storage
– easier with paging
– harder with segmentation due to unequal segment sizes

� what to consider when moving pages/segments
between main memory ⇔ secondary storage ?

� if main memory is full, which page/segment should
be removed to secondary storage ?

Allocation of Memory for Unequal
Sized Segments

� keep free spaces in a linked list in increasing
order of their address values

� in each record of the linked list:
– address of free space
– size of free space
– pointer to next free space

� add all memory locations to list as they are freed
– combine with previous and next records if possible

� de-fragmentation is useful

2

Allocation of Memory for Unequal
Sized Segments

� first-fit
– starting from the beginning of the list, allocate the first free space whose

size is greater than or equal to the required size
– leftover spaces are again added to the list

� next-fit
– start looking for the first appropriate free space starting from the location of

memory space allocated in the previous request (not from beginning of list)
– better to have a circular list

� best-fit
– try to find the free space whose size fits the requested size the best

(minimum leftover free space)
– for each time, go through the whole list

� worst-fit
– opposite of best-fit
– again go through the whole list for each request

Allocation of Memory for Unequal
Sized Segments

� order the free spaces in increasing order of
their sizes:
– best fit = first fit
– harder to combine neighbor free spaces

� or keep pointers to locations in the list of free
spaces of different sizes
– takes time to update the pointers

Allocation of Memory for Unequal
Sized Segments

� “buddy” system
– divide the whole memory into blocks of size 2k

– assume the whole memory size is 2s

� there are (s+1) linked lists
� 20, 21, 22,, 2s

– list(k): pointer to blocks of size 2k (k=0,1,...,s)
– initially list(s) points to the first location of the

memory
� all other lists are initially empty

“Buddy” System

� assume a block of size 2k is requested
[>2k-1 and ≤2k]
– if list(k) is empty, try list(k+1)

� if not empty, split the block into two
� add one of the resulting blocks to liste(k)
� use the other one for the request

– if all lists are empty, the request cannot be satisfied

� when allocated blocks are retuned, they are added
to appropriate lists

– “buddy” blocks are combined

Buddy system example Tree representation for the Buddy system

3

Fetching Techniques

� which criteria should be used when moving pages
from secondary storage ⇒ main memory ?

– pre-paging
� pages that will be accessed in the near future can be predicted
� load pages onto memory before the actual access request
� lesser page faults
� high costs for wrong predictions
� good for data pages for example

– demand paging
� bring pages to main memory only when they are accessed

Page Replacement

� if there is no available free space in the main memory,
a page needs to be moved to the secondary storage

– care must be given to possible page traffic
– a page that is just removed from the main memory should not

be accessed
� “thrashing”: loss of time

– main aim is to NOT remove USEFUL pages
� pages that won’t be accessed in the near future can be removed

– some operating system pages cannot be removed
� frame locking is done through setting a bit

– page selection can be at two levels :
� local: choose from among the pages of the running process
� global: choose from among all the pages

Page Replacement

� select randomly
– easy to implement
– USEFUL pages may be selected

� first in first out – FIFO
– select page which has been in the main memory the longest
– performance may be bad – the oldest page may not be the page that

won’t be accessed in the near future
� BIFO (biased FIFO)

– select from among the ni pages of the i. process, use FIFO for the ni
pages

– Different processes may have different number of pages in memory
– ni for each process may change over time

Page Replacement

� LRU (Least Recently Used)
– high implementation cost, hardware support needed
– keep a table of records for each page of the time that has

passed since the last access to that page
– at the end of each quantum, all entries are updated

� clear the access time counters for the accessed pages

� increment the access time counters for all other pages in the
main memory (the ones that were not accessed)

� when choosing a page to remove from memory, choose the
one with the highest counter value (means the page has not
been accessed for the longest time)

Page Replacement

� use pre-defined priorities
– the compiler can determine which page should

have higher priority (do not remove from memory)
– the structure of the program can give this info

� principle of locality): tendency of code and data
accessed to remain in the same area

– e.g. loops, data lists

Page Replacement

� use system defined priorities
– possible to use the same priorities used in scheduling
– in case of a page fault, a page belonging to the process with

the lowest priority is selected to be removed from main
memory
� e.g. through LRU

– if the last page of the process with the lowest priority is
removed, it has to wait until space becomes available in the
main memory
� PROBLEM: there may be unused pages of higher priority

processes in main memory

4

Page Replacement

� use hybrid techniques
– some rules can be combined
– in order of decreasing preference:

� select a read-only-access page of a blocked process
� select a read/write-access page of a blocked process
� select an operating system page that has not been

access during the previous ½ seconds
� select a page of a process waiting for I/O
� select a page of an active (running)

