
1

Memory Management - 1
Memory Management Unit

� memory is a critical resource
– efficient use
– sharing

� memory management unit

Memory Management Unit:
Main Aims

� relocation
– physical memory assigned to process may be

different during each run
– physical and absolute adresses should not be

used

� protection
– process cannot access another process' memory

area

� sharing
– code / data sharing

Memory Management Unit:
Main Aims

� logical organization
– in traditional systems: linear adress space

(0→max)
– programs: written as modules / procedures

� physical organization
– transfers among main memory and secondary

storage

� naming (N)
– user defined variable → actual location referenced

� memory (M)
– variables → physical adress

� contents (C)
– obtain contents of memory locations from address

user variable → system variable → memory address → value

Memory Management Functions

N M C
(symbol table)

Memory Management Functions

� functions performed at different times
– M during link phase
– N during load phase
– C changes during assignment to memory

2

Linkers and Loaders

� aim: binding abstract names to concrete
names

� actions performed:
– symbol resolution
– relocation
– program loading

Symbol Resolution

� references from one subprogram to another made
through symbols

� linker resolves symbol
– notes location assigned to called function
– patch caller's object code
– e.g. “main” function calls “sqrt” function defined in math

library
� linker finds location assigned to “sqrt”
� modifies “main” object code so call instruction references

location

Relocation

� compilers and assemblers generate object
code starting at 0
– all subprograms loaded at non-overlapping

locations

� linker creates linked output starting at 0
– subprograms relocated to locations within complete

program

� loader picks actual load adress
– linked program relocated as a whole

Program Loading

� loader copies program from secondary
storage into main memory
– allocate storage
– copy data from disk to memory
– set protection bits
– arrange virtual memory maps

Final Adress Binding

� before OS
– each program had entire memory
– assembled and linked for fixed memory adresses

� with OS
– programs share memory with OS and other

programs
– actual adresses not know until program is loaded
– final adress binding is deferred to load time

Dividing Work

� linker does part of adress binding
– assigns relative adresses within each program

� loader does final relocation step
– assigns actual adresses

3

Multiple Programs

� computers run more than one program
– frequently copies of same program
– some parts of program are same among all running

instances
– other parts unique to each instance

� separate same and different parts
– use single copy of same parts

Linking Multiple Sections

� compilers and linkers generate object code in
multiple sectors
– read-only code section
– writable data section

� linker combines all
– all read-only codes together
– all writable data together

Shared Libraries

� different programs share a lot of common
code
– library routines

� e.g. printf, fopen in C

� modern systems provide shared libraries
– all programs share same copy of library

� improves runtime performance
� saves disk/memory space

Two-Pass Linking

� input: set of object files
– each input file contains a set of segments
– libraries
– command files

� output: executable object file
– load map, debugger symbols, ...

Linker Input and Output
Symbol Table

� each input file contains a symbol table
� exported symbols

– defined within file for use in other files
– names of routines within file that may be called

from elsewhere

� imported symbols
– used in file but defined elsewhere
– names of routines called but not present in file

4

First Pass

� scan input files
– find size of segments
– collect definition and references of all symbols

� create:
– segment table: all segments defined in all input

files
– symbol table: all imported and exported symbols

Second Pass

� use data from first pass:
– assign numeric locations to symbols
– determine size and location of segments in the output

adress space
– substitute numeric adresses for symbol references
– adjust memory adresses in code to reflect relocated

segment adresses
– after all regular input files processed, if any imported

names remain undefined
� run through libraries
� link required libraries

Linking Libraries

Allocating Memory

� memory allocation: allocate memory to
program

� not required to have whole program in
memory
– load as required
– more efficient memory usage
– more costly

Static / Dynamic Memory Allocation

� programs with absolute adresses
– give absolute adresses when writing program (M

and N together)

� symbolic programming
� compiler / linker generates memory adresses from

symbolic names

– memory allocation:
� generate fixed absolute adresses

– linking and loading together with compiling →
fast)

� use relocatable adresses
– loader determines absolute adresses
– adresses remain fixed during execution
– code remains constant in memory after

loading

� use relocatable adresses
– gets absolute adress when referenced

Static / Dynamic Memory Allocation

static:

adresses

fixed

when loading

into memory

dynamic

5

modern operating systems use
(segmentation + paging)

Segmentation

� programs composed of logical parts
� segmentation reflects logical structure of programs
� program divided into segments

– segment sizes may be different
– e.g.

� data area as a segment
� a procedure / function as a segment

address = segment start address + offset in segment

� program segments may be in different memory
locations

– may be on disk too (loaded when required)
– adress calculation requires special hardware

Segmentation

� adress: (s,d)
– s: segment name
– d: offset

� each process has a segment table
– flag: is segment in memory?
– base adress of segment
– segment length (limit)
– protection bits

� starting adress of segment table kept in a
register

Segmentation

(s,d)

s

segment table

segment table

register

+

+
limit
(no of

bytes)

Memory

d

segment start

flag
prot.

bits
limit base

(byte)

Segmentation

– check flag before adress calculation
– “segment fault” if not in memory

� interrupt

– segment loaded into memory
� if no room in memory, remove another segment from

memory
– segment sizes may be different → fragmentation in

memory

� segment table register points to start of segment table of
running process

Paging

� memory divided into equal sized blocks
– page frame

� program and data also divided into same
sized logical blocks
– page

� a page is loaded into a page frame
� adress: (p,d)

– p: page name
– d: offset in page

6

Paging

� info on page in page table
� page table entry:

– flag: is page in memory ?
– page location (memory/secondary storage

adress)
– protection bits

� page table register
– points to start of page table of running process

Paging

(p,d)

page table

page table

register

+

Memory

d

page start

flag
prot.

bits
page adress

(byte)

Logical adress

Paging

� check flag before adress calculation
– “page fault” if not in memory
– fetch page from secondary storage

� check protection bits

� operating system keeps list of free page
frames

� main memory ⇔ secondary storage page
transfers = page traffic

Paging

� memory allocation easier than in
segmentation
– fixed page size

� problem: page size may be smaller than a
program logical block
– more than one page
– fragmentation

Paging

� external fragmentation
– empty spaces between blocks

� internal fragmentation
– empty spaces within blocks

� no external fragmentation with paging

Paging

� criteria for page size selection:
– page traffic
– internal fragmentation

� large page sizes
– easier main memory ⇔ secondary storage transfers
– process has less pages ⇒ less page traffic
– more internal fragmentation

� small page sizes
– more page traffic
– less internal fragmentation

Result: balance internal fragmentation and page traffic costs

7

� Example (internal fragmentation): process size
1545 words
– if page size = 1500 words: process has 2 pages

– if page size = 500 words: process has 4 pages

Paging

free
1500 words

45 words

1455 words

500 words

45 words

455 wordsfree

Segmentation with Paging

� segments divided into pages
� each segment has page table
� adress: (s,p,d)

– s: segment name
– p: page table access info for segment
– d: offset in page

segment table register

segment table

limit
page

table

base

adress

s

B K page adress

p

limit

Memory

page table

page

(byte)

d

(s,p,d)

Segmentation with Paging

� 3 step adress calculation
� time consuming even when hardware used

– associative registers used ⇒ TLB (Translation
Lookaside Buffer)

Segmentation with Paging

� has advantages of both segmentation and
paging

� easy memory allocation due to paging
� no external fragmentation
� through TLB use, adress calculation times

become acceptable

