
1

Classical IPC Problems

Problems

• producer – consumer

• readers – writers

• dining philosophers

• sleeping barber

Producer - Consumer

shared buffer

Producer 1 Producer 2 Producer P

Consumer

Producer - Consumer

• access to shared buffer through mutual 
exclusion

• circular buffer
• if buffer empty → consumer waits 

(synchronization)

Producer – Consumer

• use counting semaphores
– takes on ≥ 0 integers

– used when resource capacity > 1

– initial value = initial free resource capacity

– P: one more unit of capacity in use

– V: one unit of capacity freed

Producer – Consumer

• shared buffer implemented through a 
shared array of size N
– array[N]

• binary semaphore: 
mutex ← 1

• counting semaphores:
full ← 0 : number of full buffer locations
empty ← N : number of free buffer locations



2

constant N=100;
semaphore full=0, empty=N, mutex=1;
item array[N];
int in=0, out=0;
item data;

process producer(){
while (true) {

-- produce data –
p(empty);

P(mutex);
array[in]=data;
in=(in+1)%N;

v(mutex);
v(full);

} 
}

process consumer(){

while (true) {

p(full);

p(mutex);

data=array[out];

out=(out+1)%N;

v(mutex);

v(empty);

-- use data --

}

}

Readers - Writers

shared
data

reader 
1

writer 
W

writer 
2

writer 
1

reader 
R

reader 
2

Readers - Writers

• more than one reader may read shared 
data (no writers)

• when a writer uses shared data, all other 
writers and readers must be excluded

int reader=0;
semaphore read_mutex=1, data_mutex=1;

process reader() {

while (true) {

p(read_mutex);

reader=reader+1;

if (reader==1)

p(data_mutex);

v(read_mutex);

-- read data –-

p(read_mutex);

reader=reader-1;

if (reader==0) 

v(data_mutex);

v(read_mutex);

}

}

process writer() {
while (true) {

-- execute --
p(data_mutex);
-- write data --
v(data_mutex);

}
}

readers have priority over writers!

Possible indefinite postponement !

Readers - Writers

• must find a fair solution 
• apply rules for access order:

– if a writer is waiting for readers to be finished, 
do not allow any more readers

– if a reader is waiting for a writer to finish, give 
reader priority

Dining Philosophers

Problem: share resources (forks) 
among philosophers without causing 
deadlock or starvation

1

0
4

3

2

0

1 2

3
4



3

Dining Philosophers

• philosophers 
– eat pasta

– think

• philosophers need two forks to eat

Dining Philosophers

• fact: two philosophers sitting side by side cannot eat at 
the same time
– e.g. for N=5, at most 2 philosophers can eat at the same time

• solution must provide maximum amount of 
parallelism

Dining Philosophers

philosopher(i) {

while (true) {

think();

take_fork(i); //left fork

take_fork((i+4)%5); //right 
fork

--- eat -----

leave_fork(i);

leave_fork ((i+4)%5);

}

}

what happens if 
all philosophers 

take their left 
forks?

Dining Philosophers

philosopher(i) {
while (true) {

think();
take_fork(i); //left fork

if 
(fork_free((i+4)%5)==FALSE)

leave_fork(i);
else {

take_fork((i+4)%5); //right 
fork

--- eat -----
leave_fork(i);
leave_fork ((i+4)%5);

}
}

}

is it possible 
that all 

philosophers 
starve?

Dining Philosophers

philosopher(i) {

while (true) {
P(mutex); //binary semaphore

think();
take_fork(i); //left fork

take_fork((i+4)%5); //right 
fork

--- eat -----

leave_fork(i);

leave_fork ((i+4)%5);

V(mutex);

}

}

at most how 
many 

philosophers can 
eat together?

Dining Philosophers
(Correct Solution)

• state[i] : state of ith philosopher
– 0 : THINKING
– 1 : HUNGRY (wait for fork)

– 2 : EATING

HUNGRY

THINKING EATING



4

Dining Philosophers
(Correct Solution)

• a philosopher can be “EATING” only if 
both neighbors are not “EATING”

• use a binary semaphore per philosopher
– blocks on semaphore if a fork is not available 

when requested

Variables:

• N=5 philosophers

• states: 

THINKING = 0

HUNGRY = 1

EATING = 2

• state[5]: array of size 5

• semaphores: 

mutex ←←←← 1

s[5] ←←←← 0 array of size 5

process philosopher(i){
while (true) {

think();
take_fork(i);
--- eat ---
leave_fork(i);

}
}

take_fork(i) {
P(mutex);

state[i]=HUNGRY; //request to eat

try[i]; //try to take forks

V(mutex);
P(s[i]); //blocks if can't take forks

}

leave_fork(i) {
left=(i+1)%5;
right=(i+4)%5;
P(mutex);

state[i]=THINK;
try(left);
try(right);

V(mutex);
}

try(i) {
left=(i+1)%5;
right=(i+4)%5;
if ((state[i]=HUNGRY) ∧∧∧∧

(state[left] ≠≠≠≠EATING) ∧∧∧∧
(state[right] ≠≠≠≠EATING))

{
state[i]=EATING;
v(s[i]);

}
}

Sleeping Barber
• in a barber shop

– 1 barber
– 1 customer seat
– N waiting seats

• barber sleeps if there are no customers 
• arriving customer wakes barber up
• if barber is busy when customer arrives

– waits if waiting seats available
– leaves if no waiting seats available

Sleeping Barber

• 3 semaphores needed for the solution
– customers : number of customers waiting 

(excluding the one in the customer seat)
– barbers : number of available barbers (0/1 in 

this problem)
– mutex : for mutual exclusion

constant CHAIRS=5;
int waiting=0;
semaphore customers=0,barber=0,mutex=1;

process barber() {

while(true) {

P(customers); //sleep if no customers

P(mutex);

waiting--; //remove customer

V(barber); //barber ready to cut hair

V(mutex);

-- cut hair –

}

}

process customer() {

P(mutex);

if (waiting<CHAIRS){ //shop full?

waiting=++; //admite customer

V(customers); //wake-up barber (possibly)

V(mutex);

P(barber); //sleep if barber busy

-- cut hair –

}

else

V(mutex); //shop is full, so leave

}


