
1

Interprocess Communication
Types of Interaction

� between concurrent processes
– resource sharing
– communication
– synchronization

Levels of Interaction

� interaction between processes on three levels
– processes not aware of each other (competing)

� using system resources (moderated by operating system)

– processes indirectly aware of each other (sharing)
� resource sharing (through mutual exclusion and

synchronization)

– processes directly aware of each other
(communicating)

Resource Sharing

� mutual exclusion
– two types of resources

� can be used by more than one process at a time (e.g.
reading from a file)

� can be used by only one process at a time
– due to physical constraints (e.g. some I/O units)
– if the actions of pne process interfered with those of another

(e.g. writing to a shared memory location)

� synchronization
– a process needs to proceed after another process

completes some actions

Example

� 2 processes: Observer and Reporter
� counter shared variable

observer:observer:
while TRUE {while TRUE {

observe;observe;
counter ++;counter ++;

}}

reporter:reporter:
while TRUE {while TRUE {

print_counter;print_counter;
counter=0;counter=0;

}}

Example – Possible Errors

observer reporter

counter ← 6

print (6)

counter ← 7

counter ← 0 7. is lost!

2

Example – Possible Errors

counter++ LOAD ACC, COUNTER
INC ACC
SAVE COUNTER,ACC

Race:
� when processes access a shared variable

– outcome depends on order and running speed of
processes

– may be different for different runs

Example – Possible Errors

P1:

while TRUE

k=k+1;

P2:

while TRUE

k=k+1;

k=0 (intial value)

what about the values of k
depending on the order of
P1 and P2 executions?

SOLUTION: mutual
exclusion

Sharing

� two types of sharing:
– READ (no need for mutual exclusion)
– WRITE (mutual exclusion needed)

� for consistency
– mutual exclusion
– synchronization

Synchronization

� programs should not be dependent on
running order of processes

� programs working together may need to be
synchronized at some points
– e.g. a program uses output calculated by another

program

Mutual Exclusion

critical section (CS): Part of code in a process
in which operations on shared resources are
performed.

mutual exclusion: only one process can
execute a CS for a resource at a time

Example

P1:

while TRUE {

<non-CS>

mx_begin

<CS ops>

mx_end

<non-CS>

}

P2:

while TRUE {
<non-CS>
mx_begin

<CS ops>
mx_end
<non-CS>

}

3

Mutual Exclusion – Possible Problems

� deadlock
– more than one process requires the same resources
– each process does not release the resource required by the

other

Example : 3 processes and 3 resources
P
1

P
2

P
3

R
1

R
3

R
2

req(R2)

req(R3)

req(R1) P1() P2() P3()
req(R1); req(R2); req(R3);
req(R2); req(R3); req(R1);

Mutual Exclusion

� mx_begin
– any processes in its CS which have not executed
mx_end ?

– if NOT
� allow process to proceed into CS
� leave mark for other processes

� mx_end
– allow any process waiting to go into CS to proceed
– if not leave mark (empty)

Mutual Exclusion Implementation

� only one process may be in its CS
� if a process wants to enter its CS and if there are no

others executing their CS, it shouldn't wait
� any process not executing its CS should not prevent

another process from entering its own CS
� no assumptions should be made about the order and

speed of execution of processes
� no process should stay in its CS indefinitely
� no process should wait to enter its own CS indefinitely

Mutual Exclusion Solutions

� software based solutions
� hardware based solutions
� software and hardware based solutions

A Software Based Solution

� use a flag that shows whether a process is in its
CS or not: busy
busy ← TRUE : process in CS
busy ← FALSE : no process in CS

� mx_begin: while (busy);

busy = TRUE;

– wait until process in CS is finished
– enter CS

� mx_end: busy = FALSE;

A Software Based Solution

� a possible error
� busy is also a shared variable!
� Example:

- P1 checks and finds busy=FALSE
- P1 interrupted
- P2 checks and finds busy=FALSE
- both P1 and P2 enter CS

4

Solutions Requiring Busy Waiting

global variable turn = 1;

Process 1: Process 2:

local variables local variables

my_turn=1; my_turn=2;

others_turn=2; others_turn=1;

mx_begin: while (turn != my_turn);

mx_end : turn = others_turn;

Solutions Requiring Busy Waiting

– use up CPU time
– works properly but has limitations:

� processes enter their CS in turn
� depends on speed of process execution
� depends on number of processes

Solutions Requiring Busy Waiting

� first correct solution: Dekker algorithm
� Peterson algorithm (1981)

– similar approach
– simpler

Peterson Algorithm

� shared variables:
req_1, req_2: bool and initialized to FALSE
turn: integer and initialized to “P1” or “P2”

P1:
mx_begin:

req_1 = TRUE;

turn = P2;

while (req_2 && turn==P2);

< CS >

mx_end: req_1 = FALSE;

Peterson Algorithm

� different scenarios:
– P1 is active, P2 is passive

req_1=TRUE and turn=P2
req_2=FALSE so P1 proceeds after while loop

– P1 in CS, P2 wants to enter CS
req_2=TRUE and turn=P1;
req_1=TRUE so P2 waits in while loop

P2 continues after P1 executes max_end

Peterson Algorithm

� (different scenarios cntd.):
– P1 and P2 want to enter CS at the same time

P1: P2:

req_1=TRUE; req_2=TRUE;

turn=P2; turn=P1;

⇒ order depends on which process assigns value to the turn
variable first.

5

Hardware Based Solutions

� with uninterruptable machine code instructions
completed in one machine cycle

� e.g.: test_and_set

– busy waiting used
– when a process exits CS, no mechanism to determine

which other process enters next
� indefinite waiting possible

� disabling interrupts
– interferes with scheduling algorithm of operating

system

Hardware Based Solutions

� test_and_set(a): cc ← a

a ← TRUE

– with one machine instruction, contents of “a” copied into
condition code register and “a” is assigned TRUE

mx_begin: test_and_set(busy);

while (cc) {

test_and_set(busy);

}

mx_end: busy=FALSE; busy: shared variable
cc: local condition code

Semaphores

� hardware and software based solution
� no busy waiting
� does not waste CPU time
� semaphore is a special variable

– only access through using two special operations
– special operations cannot be interrupted
– operating system carries out special operations

Semaphores

� s: semaphore variable
� special operations:

– P (wait): when entering CS: mutex_begin

– V (signal): when leaving CS: mutex_end
P(s): V(s):

if (s > 0) if (anyone_waiting_on_s)

s=s-1; activate_next_in_line;

else else

wait_on_s; s=s+1;

Semaphores

� take on integer values (>=0)
� created through a special system call
� is assigned an initial value

� binary semaphore:
– can be 0/1
– used for CS

� counting semaphore:
– can be integers >=0

Example: Observer – Reporter

global variables:

counter: integer;

sem: semaphore;

process observer: process reporter:

observe; ...

P(sem); P(sem);

counter++; print(counter);

V(sem); counter=0;

.... V(sem);

main_program:

sem=1; counter=0;

activate(P1);

activate(P2);

6

Example: Observer – Reporter

sample run:

P1: P(sem) ... sem=0;

P2: P(sem) ... sem=0 so P2 is suspended

P1: V(sem) ... P2 is waiting for sem; activate P2

P2: V(sem) ... no one waiting; sem=1

Synchronization with Semaphores

� a process may require an event to proceed –
process is suspended
– e.g. process waiting for input

� another process detecting the occurence of
event wakes up suspended process

⇒ “suspend – wake-up” synchronization

Synchronization with Semaphores

� solution:
event:semaphore; event=0;

process P1: process P2:

... ...

P(event); ...

... V(event);

...

� more than two processes may be
synchronized

Semaphores

Initial value for semaphore:
– =1 for mutual exclusion
– =0 for synchronization

Semaphores

� possible deadlock scenario:
x, y: semaphore; x=1; y=1;

process 1: process 2:

... ...

P(x); P(y);

... ...

P(y); P(x);

... ...

V(x); V(y);

V(y); V(x);

... ...

Pay
attention to
the order of

P and V!

