Interprocess Communication

Levels of Interaction

e interaction between processes on three levels
- processes not aware of each other (competing)
e using system resources (moderated by operating system)
- processes indirectly aware of each other (sharing)
e resource sharing (through mutual exclusion and
synchronization)
- processes directly aware of each other
(communicating)

Types of Interaction

e between concurrent processes
- resource sharing
- communication
- synchronization

Example

e 2 processes: Observer and Reporter
e count er shared variable

observer: reporter:
whil e TRUE { whil e TRUE {
obser ve; print_counter;
counter ++; count er =0;
}

Resource Sharing

e mutual exclusion

- two types of resources
e can be used by more than one process at a time (e.g.
reading from a file)
e can be used by only one process at a time
- due to physical constraints (e.g. some I/O units)
- if the actions of pne process interfered with those of another

(e.g. writing to a shared memory location)

e synchronization
- aprocess needs to proceed after another process

completes some actions

Example — Possible Errors

observer reporter
counter — 6
//W(G)
counter « 7
counter ~ 0 7.is lost!




Example — Possible Errors

counter++ LOAD ACC, COUNTER
INC ACC
SAVE COUNTER,ACC
Race:

e when processes access a shared variable
- outcome depends on order and running speed of
processes
- may be different for different runs

Example — Possible Errors

P1: k=0 (intial value)

wmk|_i TEUE what about the values of k
=k+1; !
depending on the order of
p2: P1 and P2 executions?
whil e TRUE
k=k+L; SOLUTION: mutual

exclusion

Sharing

e two types of sharing:
- READ (no need for mutual exclusion)
- WRITE (mutual exclusion needed)
e for consistency
- mutual exclusion
- synchronization

Synchronization
N

e programs should not be dependent on
running order of processes

e programs working together may need to be
synchronized at some points
- e.g. a program uses output calculated by another

Mutual Exclusion
. |

critical section (CS): Part of code in a process
in which operations on shared resources are
performed.

mutual exclusion: only one process can
execute a CS for a resource at a time

program
Example

PL p2:

while TRUE { whi l e TRUE {
<non- CS> <non- CS>
nx_begi n nx_begi n

<CS ops> <CS ops>

mx_end nx_end
<non- CS> <non- CS>

} }




Mutual Exclusion — Possible Problems

e deadlock
- more than one process requires the same resources

- each process does not release the resource required by the
other

Example : 3 processes and 3 resources

P10 P20 P3Q
req(R1); req(R2); req(R3);
req(R2); req(R3); req(R1);

Mutual Exclusion

C——
e nNX_begin
- any processes in its CS which have not executed
nx_end ?
- if NOT

e allow process to proceed into CS
o leave mark for other processes

e nx_end

- allow any process waiting to go into CS to proceed
- if not leave mark (empty)

Mutual Exclusion Implementation

only one process may be in its CS

if a process wants to enter jits CS and if there are no
others executing their CS, it shouldn't wait

e any process not executing its CS should not prevent
another process from entering its own CS

no assumptions should be made about the order and
speed of execution of processes

e no process should stay in its CS indefinitely
e no process should wait to enter its own CS indefinitely

Mutual Exclusion Solutions
G
e software based solutions

e hardware based solutions
e software and hardware based solutions

A Software Based Solution

e use a flag that shows whether a process is in its
CS or not: busy
busy — TRUE : process in CS
busy ~ FALSE : no process in CS

e nx_begin: whi | e (busy);
busy = TRUE;
- wait until process in CS is finished
- enter CS

e nx_end: busy = FALSE;

A Software Based Solution
. ]

e a possible error
e busy is also a shared variable!
e Example:
- P1 checks and finds busy=FALSE
- Pl interrupted
- P2 checks and finds busy=FALSE
- both P1 and P2 enter CS




Solutions Requiring Busy Waiting
N

gl obal variable turn = 1;

Process 1: Process 2:

local variables local variables
nmy_turn=1; my_turn=2;

ot hers_turn=2; ot hers_turn=1;

nx_begin: while (turn !'= ny_turn);
nk_end : turn = others_turn;

Solutions Requiring Busy Waiting
C——

- use up CPU time

- works properly but has limitations:
e processes enter their CS in turn
e depends on speed of process execution
e depends on number of processes

Solutions Requiring Busy Waiting
e

e first correct solution: Dekker algorithm

e Peterson algorithm (1981)
- similar approach
- simpler

Peterson Algorithm
. |

e shared variables:
req_1l, req_2: booland initialized to FALSE
turn: integer and initialized to “P1” or “P2"
P1:
nx_begi n:
req_l = TRUE
turn = P2;
while (req_2 && turn==P2);
< CS >

nx_end: req_1 = FALSE;

Peterson Algorithm
. |

e different scenarios:
- P1lis active, P2 is passive
req_1=TRUE and turn=P2
req_2=FALSE so P1 proceeds after while loop
- P1in CS, P2 wants to enter CS
req_2=TRUE and turn=P1;

req_1=TRUE so P2 waits in while loop
P2 continues after P1 executes max_end

Peterson Algorithm
e

e (different scenarios cntd.):
- P1 and P2 want to enter CS at the same time

P1: P2:
req_1=TRUE; req_2=TRUE;
t urn=P2; turn=P1;

= order depends on which process assigns value to the turn
variable first.




Hardware Based Solutions
. |

e with uninterruptable machine code instructions

completed in one machine cycle
e e.g.test_and_set

- busy waiting used

- when a process exits CS, no mechanism to determine

which other process enters next
e indefinite waiting possible
e disabling interrupts

- interferes with scheduling algorithm of operating
system

Hardware Based Solutions
¢ |

e test_and_set(a): cc « a
a < TRUE

- with one machine instruction, contents of “a” copied into
condition code register and “a” is assigned TRUE

nx_begi n: test _and_set (busy);
while (cc) {
test _and_set (busy);
}
nx_end: busy=FALSE; busy: shared variable

cc: local condition code

Semaphores
. |

e hardware and software based solution

e no busy waiting

e does not waste CPU time

e semaphore is a special variable
- only access through using two special operations
- special operations cannot be interrupted
- operating system carries out special operations

Semaphores
C——

e s: semaphore variable

e special operations:
- P (wait): when entering CS: nut ex_begi n
-V (signal): when leaving CS: mut ex_end

P(s): V(s):
if (s >0) if (anyone_waiting_on_s)
s=s-1, activate_next_in_line;
el se el se
wai t _on_s; s=s+1;

Semaphores
. |

e take on integer values (>=0)

e created through a special system call
e is assigned an initial value

e binary semaphore:

- can be 0/1
- used for CS

e counting semaphore:
- can be integers >=0

Example: Observer — Reporter
R

gl obal vari abl es:
counter: integer;
sem senaphor e;

process observer: process reporter:
observe; L
P(sem; P(sem;
count er ++; print(counter);
V(sen); count er =0;
- V(sen ;

nai n_program
semel; count er =0;
activate(Pl);
activate(P2);




Example: Observer — Reporter
|

sample run:
P1: P(sem) ... sem=0;
P2: P(sem) ... sem=0 so P2 is suspended
P1: V(sem) ... P2 is waiting for sem; activate P2
P2: V(sem) ... no one waiting; sem=1

Synchronization with Semaphores

® a process may require an event to proceed —
process is suspended
- e.g. process waiting for input

e another process detecting the occurence of
event wakes up suspended process

= “suspend — wake-up” synchronization

Synchronization with Semaphores

e solution:

event : semaphore; event =0;

process P1: process P2:
P(event);

V(event);

e more than two processes may be
synchronized

Semaphores
C——

Initial value for semaphore:
- =1 for mutual exclusion
- =0 for synchronization

Semaphores
. |

e possible deadlock scenario:
X, y: semaphore; x=1; y=1;

process 1: process 2: Pay
s s attention to
P(x); P(y); the order of
B S P and V!
P(y); P(X);
V(X) V(y)

V(y); V(X);




