File System

]

Longterm Storage
d |
= store very large amounts of data
= data should not be lost after process
terminates
= processes should be able to share
access to the data
2

]

File System Functions

c

e file naming

o file access

o file use

e protection and sharing
e implementation

]

File System Properties
l
e from the point of view e from the point of view of
of the user the designer
- file contents - implementation of files
- file names - free space handling
- file protection and - logical block size
sharing I
- file operations
T = File system
implementation
= User interface
4

]

File Types

@l

o Files
- ASCII files
- binary files
e Catalogs

- in most operating systems catalogs = files

]

Access within a File

@l

e sequential access
e random access

—]

File Attributes

]

File Operations

d
e access rights e |ocking flags
e password e record length
e creator e key location
e owner e key length
e read-only flag e time of creation
e hidden flag o time of last access
e system flag e time of last change
e archive flag o file size
e ASCll/binary flag o maximum file size
e random access flag
7
Hierarchical Catalog Systems
d |
. ~—Root director:
e users wish to N Y
I User
keep their files girectory. -
in a logical [A]
grouping
e catalog tree
e used in modern
operating
systems)
<—Userﬂ\e
9 (Note: letters show the owners of the files/directories)
Catalog Operations
d

11

create / erase

open / close

reading

- example: list files

- must open before reading

rename

link / unlink

- in UNIX this is similar to erasing a file

e create / delete
e rename
e open/ close
e read / write / append
e position file pointer
e query/change file attributes
= through system calls (open, creat, read, write, close,
8 | ...
L
bin [=— Root directory
etc
lib
bin etc lib usr tmp
ast
jim
m w
jim
~— Jusr/jim
Example: UNIX
catalog tree
File System Implementation
Entire disk
Partition table Disk partition \
| [I [
| Boot block | Super b\cck| Free space mgmt | I-nodes | Root dir | Files and directories
12 Example file system structure

File System Implementation

13

e using contiguous allocation
- keep a list of addresses of first blocks and number of
blocks for each file
- advantages
e easy implementation
e more efficient “read” operation
- disadvantages
e fragmentation on disk (need to compact disk)
o keep a list of free spaces
- file size must be known at creation (cannot change)
- limited maximum file size
- good for CD-ROM file systems (only one write)

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)

MMM T T T T T T T T T T T T T T T T

—— -)
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(@)
(File A) (File) (File E) (File G)
I T T T T T T T T I T T TTTIT T ITTITTT]
File B 5 Free blocks 6 Free blocks

(b)

(a) contiguous allocation example: 7 files
(b) view of the disk after files D and E have been deleted

|

File System Implementation

15

e using linked lists

- first word of each block is a pointer to the next block
- no fragmentation (internal fragmentation only in the last block)
- only the address of the first block of a file is kept
- access to data in a file

e easy sequential access

e random access is harder
- data size in blocks are no longer a power of 2

e few bytes taken up by pointer

e most reads performed in sizes as powers of 2

- need to read two blocks to achieve the required amount of data

File A

File File File File File
block block block block block
0 1 2 3 4

F 4 2 10 12

Physical 4
block

File B

File File File File
block block block block
(o] 1 2 3

3 11 14

Physical 6
block

Using linked lists

]

File System Implementation

17

e using file tables in memory
- keep the pointers in a table in memory (instead of in
the blocks on the disk)
- FAT (File Allocation Table)
- easier random access
e since table is in memory
- only need to know the address of the starting block
- the whole table must be in memory !
- size of table depends on size of disk

e e.g.: for a 20 GB disk and a block size 1K: need 20 million
records of a minimum of 3 bytes in the table (20MB)

Physical
block
o
1
2 10
3 11
4 7 ~— File A starts here
5
6 3 |~— File B starts here
7]
8
9
10 12
1" 14
12 Bl
13
14 1
15 |~— Unused block

using file tables in memory

File System Implementation

19

e keep an i-node (index-node) for each file
- contains file attributes
- contains disk addresses of blocks
e keep only the i-nodes of open files in memory
- total memory size needed is proportional to the number
of maximum files allowed to be open at the same time
e in the simplest implementation, the maximum
number of blocks for a file is limited

- solution: reserve the last entry of the i-node for a pointer
to a block containing more block addresses

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 4

Address of disk block 5

Address of disk block 6

—
—
—
Address of disk block 3 f——>
—
—
—
—

Address of disk block 7

Address of block of pointers

Disk block
containing
additional

disk addresses

example i-node

]

Disk Space Management

21

files split up into blocks of fixed size which do not
need to be adjacent on disk

what should the block size be (unit of allocation) ?
- same as sector, track, cylinder size?
e device dependent
- selection of the size of blocks is crucial
e performance and efficient disk space usage are contradictory
objectives
e better to choose depending on average file size
o size is usually pre-determined for each system
- UNIX systems: usually 1K

Keeping Track of Free Blocks on Disk

Free disk blocks: 16, 17, 18

42 r 230 ~ 88 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
516 482 % 141 1101111101110111
A 1 KB disk block can hold 256 A bit map
32-bit disk block numbers
@ ®)

Storing the free space info: (a) in a linked list (b) as a bitmap

]

UNIX V7 File System

23

e tree structure starts
at root catalog Bytes 2 14

characters
e attributes in i-nodes

o file name max. 14
‘ ‘ File name

- file size T
e creation time

last access time

last change time

owner

group

protection bits

no of connections

UNIX V7 catalog entry

UNIX V7 File System

I-node
Avbutes | g,
I, indirect
I, block

Double

indirect

block

Disk addresses

/

Triple
indirect
block

UNIX i-node structure —

Addresses of
data blocks

L >

\

