
1

1

File System

2

Longterm Storage

� store very large amounts of data

� data should not be lost after process
terminates

� processes should be able to share
access to the data

3

File System Functions

� file naming

� file access
� file use
� protection and sharing

� implementation

4

File System Properties

� from the point of view
of the user

– file contents
– file names
– file protection and

sharing
– file operations
– ...

⇒ User interface

� from the point of view of
the designer

– implementation of files
– free space handling
– logical block size
–

⇒ File system
implementation

5

File Types

� Files
– ASCII files
– binary files

� Catalogs
– in most operating systems catalogs ≈ files

6

Access within a File

� sequential access

� random access

2

7

File Attributes

� access rights
� password
� creator
� owner
� read-only flag
� hidden flag
� system flag
� archive flag
� ASCII/binary flag
� random access flag

� locking flags
� record length
� key location
� key length
� time of creation
� time of last access
� time of last change
� file size
� maximum file size

8

File Operations

� create / delete
� rename
� open / close
� read / write / append
� position file pointer
� query/change file attributes

⇒ through system calls (open, creat, read, write, close,
.....)

9

Hierarchical Catalog Systems

� users wish to
keep their files
in a logical
grouping

� catalog tree
� used in modern

operating
systems

(Note: letters show the owners of the files/directories)

Example: UNIX
catalog tree

11

Catalog Operations

� create / erase

� open / close
� reading

– example: list files
– must open before reading

� rename
� link / unlink

– in UNIX this is similar to erasing a file

12

File System Implementation

Example file system structure

3

13

File System Implementation

� using contiguous allocation
– keep a list of addresses of first blocks and number of

blocks for each file
– advantages

� easy implementation
� more efficient “read” operation

– disadvantages
� fragmentation on disk (need to compact disk)
� keep a list of free spaces

– file size must be known at creation (cannot change)
– limited maximum file size

– good for CD-ROM file systems (only one write)

(a) contiguous allocation example: 7 files
(b) view of the disk after files D and E have been deleted

15

File System Implementation

� using linked lists
– first word of each block is a pointer to the next block
– no fragmentation (internal fragmentation only in the last block)
– only the address of the first block of a file is kept
– access to data in a file

� easy sequential access
� random access is harder

– data size in blocks are no longer a power of 2
� few bytes taken up by pointer
� most reads performed in sizes as powers of 2

– need to read two blocks to achieve the required amount of data Using linked lists

17

File System Implementation

� using file tables in memory
– keep the pointers in a table in memory (instead of in

the blocks on the disk)
– FAT (File Allocation Table)
– easier random access

� since table is in memory

– only need to know the address of the starting block
– the whole table must be in memory !
– size of table depends on size of disk

� e.g.: for a 20 GB disk and a block size 1K: need 20 million
records of a minimum of 3 bytes in the table (20MB) using file tables in memory

4

19

File System Implementation

� keep an i-node (index-node) for each file
– contains file attributes
– contains disk addresses of blocks

� keep only the i-nodes of open files in memory
– total memory size needed is proportional to the number

of maximum files allowed to be open at the same time

� in the simplest implementation, the maximum
number of blocks for a file is limited

– solution: reserve the last entry of the i-node for a pointer
to a block containing more block addresses

example i-node

21

Disk Space Management

� files split up into blocks of fixed size which do not
need to be adjacent on disk

� what should the block size be (unit of allocation) ?
– same as sector, track, cylinder size?

� device dependent
– selection of the size of blocks is crucial

� performance and efficient disk space usage are contradictory
objectives

� better to choose depending on average file size
� size is usually pre-determined for each system

– UNIX systems: usually 1K

Boş Blokların Yönetimi

Storing the free space info: (a) in a linked list (b) as a bitmap

Keeping Track of Free Blocks on Disk

23

UNIX V7 File System

� tree structure starts
at root catalog

� file name max. 14
characters

� attributes in i-nodes
– file size

� creation time
� last access time
� last change time
� owner
� group
� protection bits
� no of connections

UNIX V7 catalog entry

UNIX V7 File System

UNIX i-node structure

