
Deadlock

� processes  which share resources or 
communicate are permanently blocked -> 
deadlock

� if  processes request resources without 
releasing the resources they hold, 
deadlock may occur

Deadlock

P1
req(D);
lock(D);

req(T);
lock(T);

<………>
unlock(T);

unlock(D);

P2
req(T);
lock(T);

req(D);
lock(D);

<………>
unlock(D);

unlock(T);

Deadlock potential !

Deadlock

Example: 200K memory is available for processes in a 
system.  Assume no other processes use the 
memory, the following series of requests have a 
deadlock potential.

P1 P2
req(80K); req(70K);
... ...
req(60K); req(80K);
... ...

Deadlock

Example: If receive_msg works in blocking mode, then 
the following  scenario has a deadlock potential.

P1 P2

receive_msg(P2); receive msg(P1);

... ...

send_msg(P2); send_msg (P1);

... ...

Deadlock

� if a resource is unavailable when 
requested: 
� process is blocked until resource becomes 

available
� process receives an error message and tries 

later



Conditions for Deadlock

� mutual exclusion condition
� only one process can use a shared resource at a time

� hold and wait condition
� processes wait for a requested resource until it becomes available 

while holding onto its own resources

� no pre-emption condition
� resources allocated to a process cannot be taken back without the 

process’ consent

� circular wait condition
� two or more processes wait for the other’s resource while not 

releasing its own in a circular fashion

Conditions for Deadlock

� a graph representation may be used
� nodes in graph:

� circle: process
� square: resource

� edges in graph:
� process → resource : process requests resource
� resource → process : resource allocated to process

P1

P2

K2 K1

Deadlock with circular wait.

Deadlock Example

P1 P2 P3
req(K1); req(K2); req(K3);
lock(K1); lock(K2); lock(K3);
req(K2); req(K3); req(K1);
lock(K2); lock(K3); lock(K1);
<…….> <……..> <………>
unlock(K2); unlock(K3); unlock(K1);
unlock(K1); unlock(K2); unlock(K3);

P1

K1

P2

K2

P3

K3

Deadlock

� strategies used for dealing with deadlock
� prevention: structure the system negating one 

of the deadlock conditions
� detection and recovery: let deadlocks occur, 

detect them and take action
� avoidance

� don’t start processes whose requests may cause 
a deadlock

� don’t grant requests which may cause a 
deadlock

� ignore

Deadlock Avoidance

� the Banker’s algorithm
� Dijkstra, 1965
� fixed no. of processes and resources in the 

system
� system state: current allocation of resources to 

processes
� state: resource and free vectors, has and 

max_request matrices

Banker’s Algorithm

� resource: shows all resources in system
� free: shows all free resources in system
� has: shows the amount of each resource 

allocated to each process
� max_istek: shows the maximum no. of 

requests a process will make during its 
lifetime for each type of resource



Banker’s Algorithm

safe state: a state is safe if it is not 
deadlocked and there exists some 
scheduling order in which every process 
can run to completion even if all of them 
request their maximum no. of  resources 
immediately. 

unsafe state: such a scheduling order 
cannot be found

Banker’s Algorithm

� when a process requests a resource, the 
request is granted if:

� (resources process already has)  + (resources 

it requests)  ≤ (max_request)

� if after granting this request, some scheduling 
order in which every process can run to 
completion even if all of them request their 
maximum no. of  resources immediately  still
exists

Banker’s Algorithm – Example  
One Type of Resource

Example 1: Total no. of  resources 
= 12

Safe state √

1. give 2 resources to B

2. B releases 6 resources when it is 
completed

3. A and C can run to completion.

Process Has Max_
Request

Remaining_
Request

A 1 4 3

B 4 6 2

C 5 8 3

Allocated=10 Free=2

Banker’s Algorithm – Example  
One Type of Resource

Example 2: Total no. of  resources 
= 12

Unsafe state X

� potential deadlock

Process Has Max_
Request

Remaining_
Request

A 8 10 2

B 2 5 3

C 1 3 2

Allocated=11 Free=1

Banker’s Algorithm – Example  
One Type of Resource

Example 3: Total no. of  resources = 12

� system is in  safe state of example 1. 

� C requests one more resource

Q: Is this request granted?

� update the system state as if the 
request has been granted

� check if the new state is safe

Unsafe state X

� Request is NOT granted!

Process Has Max_
Request

Remaining_
Request

A 1 4 3

B 4 6 2

C 6 8 2

Allocated=11 Free=1

Banker’s Algorithm – Example  
One Type of Resource

Example 4: Total no. of  resources = 12
� system is in  safe state of example 1. 
� B requests one more resource
Q: Is this request granted?



Banker’s Algorithm – One Type of 
Resource

free = total_resources;
for i= 1 to no_of_processes do
begin

free = free – has[i],
may_not_finish[i] = TRUE;
remaining_request[i] = max_request[i] – has[i];

end;
flag = TRUE;
while (flag) do
begin

flag = FALSE;
for i=1 to no_of_processes do
begin

if ((may_not_finish[i]) AND 
(remaining_request[i] LE free)) then

begin
may_not_finish[i] = FALSE;
free = free + has[i];
flag = TRUE;

end;
end;

end;
if (free EQ total_resources) then

----- SAFE STATE ------
else

----- UNSAFE STATE -----

Banker’s Algorithm – Multiple Type of 
Resources

Example

K1 K2 K3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

K1 K2 K3

P1 1 0 0

P2 6 1 2

P3 2 1 1

P4 0 0 2

Max_Request Matrix Has Matrix

K1 K2 K3

P1 2 2 2

P2 0 0 1

P3 1 0 3

P4 4 2 0

Remaining_Request Matrix

K1 K2 K3

9 3 6

Resource Vector

K1 K2 K3

0 1 1

Free Vector

if processes are executed in the order
P2, P3, (P1 or P4) all may run to 
completion

⇒ SAFE STATE √

Banker’s Algorithm – Multiple Type of 
Resources

Example
Q: When the system is in the safe state 

given in the previous slide, if P3 requests 
one more K3, will this request be granted?

A: Granting this request will cause an 
unsafe state, so it will not be granted.

Application of the Banker’s 
Algorithm

1. Are there any rows in the remaining_request matrix  ≤
free vector ?

if not: unsafe state

2. Assume that the process corresponding to the row 
chosen above, requests all the resources it needs and 
finishes. 

3. Mark the process as completed and add all its 
resources to the free vector

4. Repeat steps 1 and 2 until either all processes are 
marked as “completed” (safe state) or until a deadlock 
occurs (unsafe state)

Banker’s Algorithm

� to be able to apply the algorithm:
� all processes must declare all their resource requests when 

they start execution
� number of resources and processes must be fixed
� order of process execution should not be important
� any process holding a resource should not exit without 

releasing all its resources

� the algorithm grants or rejects requests based on the 
worst case scneario
� not all rejected requests would cause a deadlock (inefficient 

use of resources)

� the algorithm is executed each time a request is 
made (high cost)

Deadlock Detection

� not as restrictive as avoidance strategies
� all requests are granted
� system is checked for deadlock periodically

� if deadlock is detected:
� terminate all deadlocked processes
� or  terminate processes one by one until 

deadlock is removed
� or  ...

� has lower cost since it is not executed on each 
request

� provides more efficient resource use
� period for checking for deadlock is set based on the 

frequency of deadlock on the system



Deadlock Detection

� Has matrix and Free vector used. 
� Q Request matrix defined. qij shows the 

amount of j type resources process i 
requests

� algorithm determines processes which are 
not deadlocked and marks them

� initially all processes are unmarked

Deadlock Detection Steps

� Step 1: Mark all processes which 
correspond to rows with all 0’s in the Has
matrix

� Step 2: Create a temporary W vector to 
represent the Free vector

� Step 3: Find an i for which all 
corresponding values in the Q matrix are 
LE than those in the W vector (Pi must be 
unmarked). 

Qik ≤ Wk ,  1 ≤ k ≤ m

Deadlock Detection Steps

� Step 4: Terminate algorithm if no such 
row exists

� Step 5: If such a row exists, mark the ith 
process and add the corresponding row in 
the Has matrix to the W vector

Wk = Wk + Aik , 1 ≤ k ≤ m

� Step6: Return to step 3.

Deadlock Detection

� when algorithm terminates, if there are 
unmarked processes ⇒ Deadlock exists
� unmarked processes are deadlocked

� algorithm only detectes if a deadlock 
exists in the current state or not

Deadlock Detection

1) Mark P4
2) W = (0 0 0 0 1)
3) P3’s request LE W ⇒ Mark P3

W = W + (0 0 0 1 0) = (0 0 0 1 1)
4) No other such processes can be found ⇒ Terminate 
algorithm

P1 and P2 remain unmarked ⇒⇒⇒⇒ deadlocked!

Strategies to Apply 
After Deadlock Detection

� terminate all deadlocked processes
� roll-back all deadlocked processes to a 

previous control point in time and resume 
from there
� same deadlock may occur again

� terminate deadlocked processes one by 
one until deadlock no longer exists

� remove allocated resources from 
deadlocked processes one by one until 
deadlock no longer exists



Which Deadlocked Process 
to Select for 
Termination
� select  the one which has used the least 

amount of CPU
� select  the one which has the longest 

expected time to completion
� select  the one which has the least no of 

allocated resources
� select  the one with the lowest priority
� …..


