
Deadlock

� processes which share resources or
communicate are permanently blocked ->
deadlock

� if processes request resources without
releasing the resources they hold,
deadlock may occur

Deadlock

P1
req(D);
lock(D);

req(T);
lock(T);

<………>
unlock(T);

unlock(D);

P2
req(T);
lock(T);

req(D);
lock(D);

<………>
unlock(D);

unlock(T);

Deadlock potential !

Deadlock

Example: 200K memory is available for processes in a
system. Assume no other processes use the
memory, the following series of requests have a
deadlock potential.

P1 P2
req(80K); req(70K);
... ...
req(60K); req(80K);
... ...

Deadlock

Example: If receive_msg works in blocking mode, then
the following scenario has a deadlock potential.

P1 P2

receive_msg(P2); receive msg(P1);

... ...

send_msg(P2); send_msg (P1);

... ...

Deadlock

� if a resource is unavailable when
requested:
� process is blocked until resource becomes

available
� process receives an error message and tries

later

Conditions for Deadlock

� mutual exclusion condition
� only one process can use a shared resource at a time

� hold and wait condition
� processes wait for a requested resource until it becomes available

while holding onto its own resources

� no pre-emption condition
� resources allocated to a process cannot be taken back without the

process’ consent

� circular wait condition
� two or more processes wait for the other’s resource while not

releasing its own in a circular fashion

Conditions for Deadlock

� a graph representation may be used
� nodes in graph:

� circle: process
� square: resource

� edges in graph:
� process → resource : process requests resource
� resource → process : resource allocated to process

P1

P2

K2 K1

Deadlock with circular wait.

Deadlock Example

P1 P2 P3
req(K1); req(K2); req(K3);
lock(K1); lock(K2); lock(K3);
req(K2); req(K3); req(K1);
lock(K2); lock(K3); lock(K1);
<…….> <……..> <………>
unlock(K2); unlock(K3); unlock(K1);
unlock(K1); unlock(K2); unlock(K3);

P1

K1

P2

K2

P3

K3

Deadlock

� strategies used for dealing with deadlock
� prevention: structure the system negating one

of the deadlock conditions
� detection and recovery: let deadlocks occur,

detect them and take action
� avoidance

� don’t start processes whose requests may cause
a deadlock

� don’t grant requests which may cause a
deadlock

� ignore

Deadlock Avoidance

� the Banker’s algorithm
� Dijkstra, 1965
� fixed no. of processes and resources in the

system
� system state: current allocation of resources to

processes
� state: resource and free vectors, has and

max_request matrices

Banker’s Algorithm

� resource: shows all resources in system
� free: shows all free resources in system
� has: shows the amount of each resource

allocated to each process
� max_istek: shows the maximum no. of

requests a process will make during its
lifetime for each type of resource

Banker’s Algorithm

safe state: a state is safe if it is not
deadlocked and there exists some
scheduling order in which every process
can run to completion even if all of them
request their maximum no. of resources
immediately.

unsafe state: such a scheduling order
cannot be found

Banker’s Algorithm

� when a process requests a resource, the
request is granted if:

� (resources process already has) + (resources

it requests) ≤ (max_request)

� if after granting this request, some scheduling
order in which every process can run to
completion even if all of them request their
maximum no. of resources immediately still
exists

Banker’s Algorithm – Example
One Type of Resource

Example 1: Total no. of resources
= 12

Safe state √

1. give 2 resources to B

2. B releases 6 resources when it is
completed

3. A and C can run to completion.

Process Has Max_
Request

Remaining_
Request

A 1 4 3

B 4 6 2

C 5 8 3

Allocated=10 Free=2

Banker’s Algorithm – Example
One Type of Resource

Example 2: Total no. of resources
= 12

Unsafe state X

� potential deadlock

Process Has Max_
Request

Remaining_
Request

A 8 10 2

B 2 5 3

C 1 3 2

Allocated=11 Free=1

Banker’s Algorithm – Example
One Type of Resource

Example 3: Total no. of resources = 12

� system is in safe state of example 1.

� C requests one more resource

Q: Is this request granted?

� update the system state as if the
request has been granted

� check if the new state is safe

Unsafe state X

� Request is NOT granted!

Process Has Max_
Request

Remaining_
Request

A 1 4 3

B 4 6 2

C 6 8 2

Allocated=11 Free=1

Banker’s Algorithm – Example
One Type of Resource

Example 4: Total no. of resources = 12
� system is in safe state of example 1.
� B requests one more resource
Q: Is this request granted?

Banker’s Algorithm – One Type of
Resource

free = total_resources;
for i= 1 to no_of_processes do
begin

free = free – has[i],
may_not_finish[i] = TRUE;
remaining_request[i] = max_request[i] – has[i];

end;
flag = TRUE;
while (flag) do
begin

flag = FALSE;
for i=1 to no_of_processes do
begin

if ((may_not_finish[i]) AND
(remaining_request[i] LE free)) then

begin
may_not_finish[i] = FALSE;
free = free + has[i];
flag = TRUE;

end;
end;

end;
if (free EQ total_resources) then

----- SAFE STATE ------
else

----- UNSAFE STATE -----

Banker’s Algorithm – Multiple Type of
Resources

Example

K1 K2 K3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

K1 K2 K3

P1 1 0 0

P2 6 1 2

P3 2 1 1

P4 0 0 2

Max_Request Matrix Has Matrix

K1 K2 K3

P1 2 2 2

P2 0 0 1

P3 1 0 3

P4 4 2 0

Remaining_Request Matrix

K1 K2 K3

9 3 6

Resource Vector

K1 K2 K3

0 1 1

Free Vector

if processes are executed in the order
P2, P3, (P1 or P4) all may run to
completion

⇒ SAFE STATE √

Banker’s Algorithm – Multiple Type of
Resources

Example
Q: When the system is in the safe state

given in the previous slide, if P3 requests
one more K3, will this request be granted?

A: Granting this request will cause an
unsafe state, so it will not be granted.

Application of the Banker’s
Algorithm

1. Are there any rows in the remaining_request matrix ≤
free vector ?

if not: unsafe state

2. Assume that the process corresponding to the row
chosen above, requests all the resources it needs and
finishes.

3. Mark the process as completed and add all its
resources to the free vector

4. Repeat steps 1 and 2 until either all processes are
marked as “completed” (safe state) or until a deadlock
occurs (unsafe state)

Banker’s Algorithm

� to be able to apply the algorithm:
� all processes must declare all their resource requests when

they start execution
� number of resources and processes must be fixed
� order of process execution should not be important
� any process holding a resource should not exit without

releasing all its resources

� the algorithm grants or rejects requests based on the
worst case scneario
� not all rejected requests would cause a deadlock (inefficient

use of resources)

� the algorithm is executed each time a request is
made (high cost)

Deadlock Detection

� not as restrictive as avoidance strategies
� all requests are granted
� system is checked for deadlock periodically

� if deadlock is detected:
� terminate all deadlocked processes
� or terminate processes one by one until

deadlock is removed
� or ...

� has lower cost since it is not executed on each
request

� provides more efficient resource use
� period for checking for deadlock is set based on the

frequency of deadlock on the system

Deadlock Detection

� Has matrix and Free vector used.
� Q Request matrix defined. qij shows the

amount of j type resources process i
requests

� algorithm determines processes which are
not deadlocked and marks them

� initially all processes are unmarked

Deadlock Detection Steps

� Step 1: Mark all processes which
correspond to rows with all 0’s in the Has
matrix

� Step 2: Create a temporary W vector to
represent the Free vector

� Step 3: Find an i for which all
corresponding values in the Q matrix are
LE than those in the W vector (Pi must be
unmarked).

Qik ≤ Wk , 1 ≤ k ≤ m

Deadlock Detection Steps

� Step 4: Terminate algorithm if no such
row exists

� Step 5: If such a row exists, mark the ith
process and add the corresponding row in
the Has matrix to the W vector

Wk = Wk + Aik , 1 ≤ k ≤ m

� Step6: Return to step 3.

Deadlock Detection

� when algorithm terminates, if there are
unmarked processes ⇒ Deadlock exists
� unmarked processes are deadlocked

� algorithm only detectes if a deadlock
exists in the current state or not

Deadlock Detection

1) Mark P4
2) W = (0 0 0 0 1)
3) P3’s request LE W ⇒ Mark P3

W = W + (0 0 0 1 0) = (0 0 0 1 1)
4) No other such processes can be found ⇒ Terminate
algorithm

P1 and P2 remain unmarked ⇒⇒⇒⇒ deadlocked!

Strategies to Apply
After Deadlock Detection

� terminate all deadlocked processes
� roll-back all deadlocked processes to a

previous control point in time and resume
from there
� same deadlock may occur again

� terminate deadlocked processes one by
one until deadlock no longer exists

� remove allocated resources from
deadlocked processes one by one until
deadlock no longer exists

Which Deadlocked Process
to Select for
Termination
� select the one which has used the least

amount of CPU
� select the one which has the longest

expected time to completion
� select the one which has the least no of

allocated resources
� select the one with the lowest priority
� …..

