
1

Processes and Process
Management

Processes

� multiple jobs may be active at the same time

� each job may be a different running program

⇒PROCESS

What is a Process?

Definition:
A process is a sequence of actions resulting

form a run of a sequential program written for
a specific function.

� process ⇔ task

What is a Process?

� process = a running program

� a process consists of a
– sequential program code,
– program counter,
– register contents,
– and variables.

What is a Process?

� more than one process for one program
� through system calls, processes

– use system resources
– communicate with each other
– communicate with the world

Program ⇔⇔⇔⇔ Process

Example: A programmer bakes a bake using a
recipe.

recipe → program
ingredients → inputs
programmer → processor

Process → programmer reads recipe, obtains
ingredients, performs necessary operations.

2

Program ⇔⇔⇔⇔ Process

(example cntd.) His son enters the kitchen
shouting that a bee has stung him.
Programmer marks where he left off on the
recipe, stops what he is doing, picks up the
first aid book and starts the necessary
treatment on his son.

treatment method → program
medicines → inputs
programmer → processor

Process → applying first aid using the treatment
given in the book

Program ⇔⇔⇔⇔ Process

(example cntd.)
Result: processor shared by two processes in

time (time-sharing)
� the process which will have the processor

determined through an algorithm

Processes

� only one processor in system
� time-sharing operation

– quantum

� only one of each system register
– program counter, stack pointer, condition code register,

general purpose registers, index register, ...

⇒ How is time-sharing achieved?

Time-Sharing

time

processes

A

B

C

D

Time-Sharing

� cannot predict when a process will have
the processor
– no time dependent operations in program code!

Time-Sharing

Example: what can be said about the contents
of file_A and file_B?

fileProcess A Process B
read read

file_A file_B

write write

3

Time-Sharing

� process
– RUNNING ⇒ has processor
– NOT RUNNING ⇒ does not have processor

not running runningstart end

run

wait

Question: Why would a process wait?

Process States

� processes are in different states throughout
their lifetimes

� basic three states
– running: is using processor
– ready: can use processor when it gets it
– suspended: waits for an event; cannot use

processor even if it gets it

Process States

end

running

ready suspended

start

1

2

3

4

Process States
new process

processor

end

ready queue

suspended queue

Question: is ONE suspended queue sufficient?

Process States

processor
end

ready queuenew process

event 1 queue

event 2 queue

event n queue

Implementing Processes

� operating system keeps info on all entities it
manages
– a different table for each

� I/O tables
� memory tables
� file tables
� proces tables

4

Implementing Processes

Process Table

Process 1

Process 2

Process n

image of process 1

image of process 2

image of process n

Implementing Processes

Image of Process

process id (pid)

processor state

process control info

user stack

private user address space
(program and data blocks)

shared address space

Process
Control
Block
(PCB)

Process
Components

Implementing Processes

� info regarding process in process descriptor field
– process control block – PCB

� data that holds info on process

� all operations on process through PCB
– must have fast access to PCB

� in some systems through a hardware register
� in some systems special instructions to access PCB

Process Control Block (PCB)

1. process identification info
– process id
– id of process’ parent process
– owner of process

2. current state of process and event it waits
for (if any)

3. priority of process

4. scheduling info

Process Control Block (PCB)

5. pointers to resources used by process
– e.g. open files

6. pointer to virtual memory allocated to process
7. area where contents of system registers and user

accessible (through machine code instructions)
processor registers are stored

– general purpose registers, program counter, condition
code register, index register, stack pointer,
⇒ processor context

Operations on Processes

� crate process
– in UNIX type systems only another process

creates a process
– a hierarchy among processes
– creator process: parent proses
– created process: child proses
– a process may create multiple child processes

5

Operations on Processes

DB C

E

A

F

G

Operations on Processes

– when a process is created:
� if process table full, process NOT created
� if process table entry available,

– process is assigned a unique id
– process is assigned initial priorities
– PCB is created and initialized

– initial resources assigned (memory etc)
– process is added to ready queue

Operations on Processes

� destroy a process
– process removed from system
– resources returned to system
– pid returned to system
– PCB and process table entry deleted
– necesssary operations on children performed

� either keep entry until all children exit
� or children assigned to another parent

– e.g. in UNIX to the init process (pid=1)

Operations on Processes

� suspend a process
– for short term suspension, resources not removed
– for long term suspension, depending on

resources, some may be removed

� resume a process
– to resume operation of a process from where it

left off in its previous execution

� change priority of a process

Steps Performed during a Process
State Change

� processor context saved
� PCB of running process updated
� running process added to appropriate queue (ready /

suspended)
� new process to run determined
� PCB of selected process updated
� info on memory management updated
� context of selected process loaded onto registers

