

System Calls

- for user programs to
 - interact with operating system
 - get operating system to perform a task for them
- a library routine for every system call
- user program uses library routine

Operating System Responsibilities

- resource sharing
- virtual machine

Resource Sharing

- sharing among users
- security
 - isolate users
- shared resources:
 - CPU
 - memory
 - I/O components
 - data

Resource Sharing

- objectives:
 - to maximize resource utilization
 - to maximize resource availability

Resource Sharing

- provided services:
 - define user interface
 - system calls
 - sharing and usage control of resources in multi-use systems
 prevent race for resources
 - mutual exclusion
 - allow users to share data (shared memory)
 - resource scheduling
 - I/O scheduling

- error handling

Resource Sharing

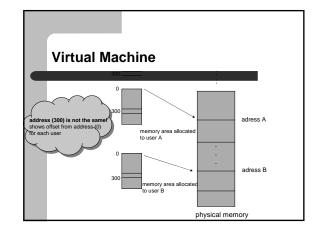
- example:
 - users cannot share printer
 possible to share screen

Virtual Machine

• as if single user

- resource sharing transparent to user
- virtual machine may be different from actual physical machine:
 - I/O
 - memory
 - file system
 - protection and error handling
 - program interaction
 - program control

Virtual Machine


• I/O

requires hardware dependent programmingdevice drivers

• memory

- different memory capacity in virtual machine
 - use disk as secondary memory
 - share among users
 - each user sees part of memory allocated to her

Virtual Machine

- file system
 - for longterm storage of program and data
 - on disk
 - use symbols to acces info instead of physical addresses
 - naming
 - all accessed as files in UNIX

Virtual Machine

protection and error handling
 isolate users in multi-user systems

Virtual Machine

- program interaction
 - in runtime
 - for example one program may use output of another program as input

Virtual Machine

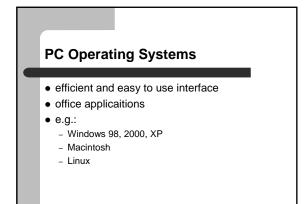
program control

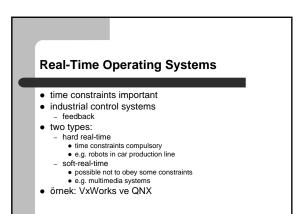
- provide user with high-level command set
 - shell commands
 - shell: command interpreter
 - shell not part of operating systembut shell uses system calls heavily

Types of Operating Systems

- mainframe operating systems
- server operating systems
- multi-processor operating systems
- PC operating systems
- real-time operating systems
- · embedded operating systems
- smartcard operating systems

Mainframe Operating Systems • for heavily I/O bound tasks three main services: batch mode non-interactive, routine tasks


- · e.g. preparing employee paychecks
 - transaction processing
 e.g. airline reservation systems
- time-sharing
 multiple remote users running tasks
- e.g. database
- e.g.: OS/390


Server Operating Systems

- on servers
 - PCs with high resource capacities
 - workstations
 - mainframe systems
- · services for multi-users over a network - hardware and software sharing
 - e.g: printer services, file sharing, web access
- e.g.: UNIX, Windows 2000

Multi-Processor Operating Systems

- for multi-processor systems
- to increase computing power
- based on interconnection between processors:
 - parallel systems _
 - networked computers
 - multi-processor computers
- special operating system features required
 - design objectives similar to server operating systems extra features for interconnection and communication between processors

Embedded Operating Systems

- palm computers and embedded systems
- limited operation
- special purpose
- e.g.: TV, microwave oven, cell phones, ...
- in some systems, size, memory and power consumption constraints
- e.g.: PalmOS, Windows CE

Smart-Card Operating Systems

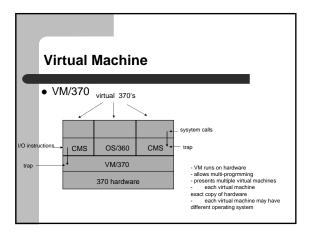
- smallest operating system
- on credit card sized cards with processor
- strict memory and CPU constraints
- some are dedicated e.g. elektronic payments
- some may have several functionalities
- usually special purpose operating systems developed by card companies

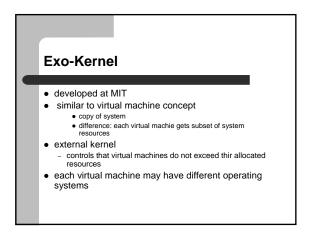
some Java based

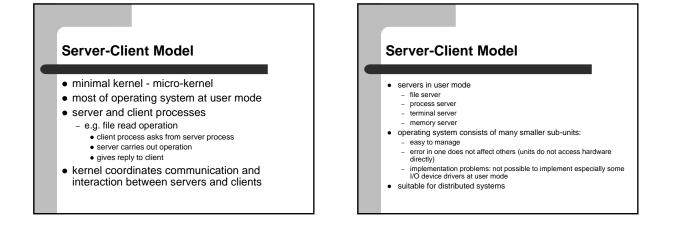
- possible to load and execute small JAVA programs (applet)
 - some may execute more than one applet
 multi-programming, scheduling, resource sharing and protection

Main Kernel Architectures

- monolithic
- layered
- virtual machine
- exo-kernel
- server-client model
- modular


Monolithic


- no general structure
- all services and functionalities included in operating system
- all functional procedures
 at the same level
 may interact with each other
- large


Modular

- minimal kernel
- services added to kernel at runtime as they are needed
 - e.g. device drivers
- small kernel size
- slower
- e.g.: LINUX

Layered layered structure - hierarchical • e.g.: THE operating system operator 5 layer 0: processor layer 1: memory management user programs 3 I/O control Each layer independent of operations of layers below. e.g.: for layer 2 operations, data may be on memory or disk operator - process interaction 2 1 memory and disk control CPU sharing and multi-programming 0

