

Multi-objective Optimization

- MOP: Multi-objective Optimization Problem
- optimization problems with multiple, often conflicting objectives
- two part problem:
 - finding set of good solutions
 - choosing best solution for particular application

Multi-objective Optimization

- · MOPs present uncountable set of solutions
- solutions produce vectors representing tradeoffs in objective space
- decision maker chooses among these set of possible solutions

Multi-objective Optimization Problem

- a.k.a. multi-criteria optimization, multiperformance or vector optimization problem
- problem of finding a vector of decision variables which satisfies some constraints and optimizes a vector function whose elements represent the (usually conflicting) objective functions
 - acceptable solutions to decision maker

- progressive preference articulation:
 - (decide \leftrightarrow search)
 - decision making and optimization interwined
 - partial preference information provides updated set of solutions for decision maker

Solution Classification

- a posteriori preference articulation:
 - (search \rightarrow decide)
 - decision maker presented with set of Pareto optimal candidate solutions
 - decision maker chooses from set

Pareto Optimality

- definition usually gives a set of solutions called the *Pareto optimal set*
- solutions in the Pareto optimal set are called *nondominated* solutions
- plot of objective functions with nondominated vectors in Pareto optimal set is called *Pareto front*

Advantages of NIC Aproaches

- population-based nature of search

 can simultaneously find several Pareto optimal solutions in one run
- traditional mathematical programming techniques can find Pareto optimum per run
- don't have to make guesses about which combinations of weights might be useful
- makes no assumptions about shape of Pareto front - can be convex / discontinuous etc
 - causes problems for most traditional mathematical programming techniques

Requirements of NIC Aproach

- way of assigning fitness,
 - usually based on dominance
- preservation of diverse set of points – similarities to multi-modal problems
- remembering all the nondominated points encountered
 - usually using elitism or an archive