
1

Nature-Inspired Computing

Hybridization

Dr. Şima Uyar
September 2006

Why Hybridize

• NIH may be a part of a larger system

• to improve on existing techniques

• to improve NIH search

• ...

How to Hybridize?

• creation of initial solutions

• local improvement of candidate solutions

• intelligent decoders

• intelligent / heuristic variation operators

How to Hybridize?

• parallel populations
– same / different heuristic
– same / different metaheuristic
– different parameter settings
– different fitness functions

• approximate models
– costly fitness evaluation
– use approximate model for some evaluations
– use different levels of approximation for sub-populations
– hierarchical model

How to Hybridize?

• modify problem instance
– e.g. decrease search space size

• partition into sub-problems

• interactive iterations
– for local tuning

– for constraints

2

Where to Hybridise: Example EA Initialization

• initialise population with
– previously known solutions
– solutions found by other technique

• “inject” population with
– solutions from previous runs
– solutions found by other algorithms

Heuristics for Initializing Population

• n-way tournament among randomly created
solutions

• multi-start local search: pick N points randomly
to climb from

• constructive heuristics often exist

Heuristics for Initialising Population

• diversity is important
• advantage: good solutions found quickly
• disadvantage: possible to get stuck at local

optima (strong bias)

Intelligent Operators

• incorporating problem or instance specific
knowledge within operators

• usually with problem specific representations
• usually fast

Local Search Acting on Offspring

• to speed-up the NIH

• NIH for exploration, LS for eploitation

• makes search around good solutions more
systematic

• fast local optimizer needed

• smoothes fitness landscape

• introduces redundancy and plateaus

• very successful in practise

3

Example: Memetic Algorithms

• combination of EAs with local search in EA
loop: Memetic Algorithms

• also EAs using instance specific info in
operators

• shown to be faster and more accurate than EAs
on some problems

• are the “state of the art” on many problems: e.g.
scheduling and timetabling problems

Local Search

• neighbourhood concept

• N(x): set of points that can be reached from x
with one application of a move operator
– e.g. bit flipping search on binary problems

d
h

b

c

a

g

ef

⇐⇐⇐⇐ N(d) = {a,c,h}

Local Search

• degree of graph: max. no of edges coming
into/out of a single point

– size of biggest neighbourhood

• local search look at points in neighbourhood
of a solution

– complexity related to degree of graph
• bit-wise mutation on binary

Local Search

• is neighbourhood searched randomly, systematically or
exhaustively ?

• does search stop as soon as a fitter neighbour is found
(Greedy Ascent)

• or is whole set of neighbours examined and the best
chosen (Steepest Ascent)

•

Local Search
• local search in representation or solution

space ?
• how many iterations of local search ?
• local search applied to whole population?

– or just the best ?
– or just the worst ?

Two Models of Lifetime Adaptation

• Lamarkian
– traits acquired by individual during lifetime transmitted to

offspring

– e.g. replace individual with fitter neighbour

• Darwinian
– traits acquired by individual during lifetime not transmitted

to offspring

– e.g. individual receives fitness (but not genotype) of fitter
neighbour

4

Two Models of Lifetime Adaptation

• Baldwinian effect: individual learning improves
evolutionary learning by changing fitness
landscape (both models)

• Lamarckian good in stationary environments
• Darwinian good in dynamic environments

Intelligent Decoders

• indirect representation
• use a decoding function

– decoding function uses problem specific info
• representations

– permutations
– random keys
– weight codings

• good with handling constraints
• time consuming
• locality problem

Hybrid Algorithms Summary

• hybridize especially for real world problems
• hybridization may involve

– use of operators from other algorithms
– incorporation of domain-specific knowledge

• hyrid algorithms
– shown to be much faster and more accurate on some problems
– the “state of the art” on many problems

• more problem specific
• requires more parameter settings
• possible loss of creativity

