
1

Nature-Inspired Computing

Genetic Algorithms

Dr. Şima Uyar

September 2006

Genetic Algorithms

• components of a GA

– representation for potential solutions

–method for creating initial population

–evaluation function to rate potential
solutions

–genetic operators to alter composition
of offspring

–various parameters to control a run

Genetic Algorithms

• parameters of a GA

–no. of generations

• or other stopping criteria

–population size

– chromosome length

–probability of applying some
operators

Simple GA

Simple GA - SGA

• a.k.a. Canonical GA

• Operators of a SGA

–selection

– cross-over

–mutation

SGA

generate initial population

repeat

evaluate individuals

perform reproduction

select pairs

recombine pairs

apply mutation

until end_of_generations

2

Representation & Encoding

• population size constant

• individual has one chromosome
(haploid)

• chromosome length constant

• individual has a fitness value

• binary genes (0/1)

• generational

Initial Population

random initial population

⇓

each gene value for each individual
determined randomly to be either

0 or 1

with equal probability

Fitness Evaluation

• fitness function

–objective function(s)

– constraints

• shows fitness of individual

–degree to which solution candidate
meets objective

• apply fitness function to individual

Example Problem: One-Max

Objective: maximize the number of
1s in a string of length 5,
composed only of 1s and 0s

⇒ population size = 4

chromosome length = 5

fitness function = no. of genes that are 1

Example Population

individual 1:

chromosome = 11001

fitness = 3

individual 2:
chromosome = 00001
fitness = 1

individual 3:
chromosome = 11111
fitness = 5

individual 4:
chromosome = 01110
fitness = 3

Reproduction

• consists of

–selection

•mating pool (size same as population)

• possibly more than one copy of some
individuals

–cross-over

–mutation

3

Selection

• uses roulette wheel selection

– fitness proportionate

• expected no. of representatives of each
individual is proportional to its fitness

sizepopj
fitness

fitness
prob

j

j

i
i1, ==
∑

Example Selection

Current Population:

i1: 11001, 3

i2: 00001, 1

i3: 11111, 5

i4: 01110, 3

Probability of each individual
being selected:
prob(i1) = 3/12 = 0.25
prob(i2) = 1/12 = 0.08
prob(i3) = 5/12 = 0.42
prob(i4) = 3/12 = 0.25

Expected copies of
each individual in pool:

i1: (3/12*4) 1
i2: (1/12*4) 0
i3: (5/12*4) 2
i4: (3/12*4) 1

Assume:
wheel is turned 4 times

1 copy of i1
2 copies of i3
1 copy of i4

is copied into mating pool

Example Pairing

Current mating pool:

mate 1: 11001 (i1)
mate 2: 11111 (i3)
mate 3: 11111 (i3)
mate 4: 01110 (i4)

Assume:
As a result of random drawing

(mate 1, mate 3)
and

(mate 2, mate 4)
are paired off for reproduction.

Pairs:
Pair 1: Pair 2:
11001 11111
11111 01110

Recombination

• new individuals formed from pairs
of parents

• one point cross-over

• probability of cross-over: pc
–a.k.a. cross-over rate

– typically in range [0.5, 1.0]

One-Point Cross-Over Example Cross-Over

Assume pc=1.0

for pair 1:
cross-over site: 3
110 | 01 → 11011
111 | 11 → 11101

for pair 2:
cross-over site: 1
1 | 1111 → 11110
0 | 1110 → 01111

the new individuals:

i1: 11011 i3: 11110
i2: 11101 i4: 01111

4

Mutation

• bitwise mutation

• probability of mutation: pm
–a.k.a. mutation rate

–equal probability for each gene

– chromosome of length L; expected
no. of changes: L*pm

– typically chosen to be small

• depends on nature of problem

Bitwise Mutation

Example Mutation

Assume:

as a result of random draws,

1st gene of i1

and

4th gene of i3

are found to undergo mutation

i1: 11011 → 01011

i3: 11110 → 11100

Population Dynamics

• generational GA

–non-overlapping populations

–offspring replace parents

Example New Population

individual 1:
chromosome =01011
fitness = 3

individual 2:
chromosome =11101
fitness = 4

individual 3:
chromosome =11100
fitness = 3

individual 4:
chromosome =01111
fitness = 4

Stopping Criteria

• main loop repeated until stopping
criteria met

– for a predetermined no. of

generations √√√√
–until a goal is reached

–until population converges

5

Convergence

• progression towards uniformity

• gene convergence: when 95% of
the individuals have the same
value for that gene

• population convergence: when all
genes have converged

–average fitness approaches best

Example Stopping Criteria

Case 1:

number of generations= 250

– loop repeated 250 times

–best individual at each generation found

–overall best individual becomes solution

Example Stopping Criteria

Case 2:

objective: maximize the number of 1s

goal: to find the individual with 1 for
all gene locations

– loop repeated forever

–best individual at each generation found

– terminates when goal individual found

Example Stopping Criteria

Case 3:

95% of 4 is 4

gene convergence: 4 individuals must have same
value for a gene location

population convergence: 5 gene locations must
be converged

Example converged populations:
Example 1: Example 2: Example 3:
i1: 11010 i1: 00000 i1: 11111
i2: 11010 i2: 00000 i2: 11111
i3: 11010 i3: 00000 i3: 11111
i4: 11010 i4: 00000 i4: 11111

Example Problems

Function Optimization

Objective:

Find the set of integers xi which
maximize the function f.

f(xi)=ΣΣΣΣixi
2 i=1,2,3

-512 < xi ≤≤≤≤ 512

6

Function Optimization

Representation:

–1024 integers in given interval

–10 bits needed

0 : 0000000000 (-511)
1 : 0000000001 (-510)
2 : 0000000010 (-509)
... ...

1023 : 1111111111 (512)

Function Optimization

Individual:

• function has 3 parameters:

x1, x2, x3 (-512 < xi ≤≤≤≤ 512)

• 10 bits for each xi
• chromosome has 30 bits

Function Optimization

Example chromosome:

110010101011000000000000000110

x1 x2 x3

x1 = (810 - 511) = 299

x2 = (768 - 511) = 257

x3 = (6 - 511) = -505

fitness = (299)2 + (257)2 + (-505)2

= 410475

Function Optimization

what if xi were real numbers?

interval: -5.12 < xi ≤≤≤≤ 5.12

• possible to use binary

–precision of 2 digits after decimal

–use 1024 different integers (divide
number by 100)

• use other representations (e.g. real)

Function Optimization

what if representation has
redundancy?

e.g. interval: -5.4 < xi < 5.4

0/1 Knapsack Problem

Objective:

∑ ≤

=∑

i
W

i
x

i
wtosubject

countitemi
i

ii xv

*

_,...2,1*max

xi = 0 / 1 (shows whether item i is in sack or not)

7

0/1 Knapsack Problem

Example item set:

(1) w= 2, v=10

(2) w= 6, v= 3

(3) w=10, v= 8

(4) w= 7, v=16

(5) w= 4, v=25

Example feasible solutions:
items: {1,2,5} ⇒ weight=12

value= 38
items: {3} ⇒ weight=10

value= 8
items: {4,5} ⇒ weight=11

value= 41
items: {2} ⇒ weight=6

value= 3

Example knapsack
capacity: W = 12

0/1 Knapsack Problem

Representation:

5 items ⇒ chromosome length 5

Example chromosomes:

11001 ⇒ items {1,2,5} included in sack

00100 ⇒ items {3} included in sack

00011 ⇒ items {4,5} included in sack

01000 ⇒ items {2} included in sack

0/1 Knapsack Problem

• Can fitness be total weight of
subset?

–what if overweight?

• how to handle overweight subsets?

–delete?

–penalize?

• by how much?

–make correction?

Exercise Problem

In the Boolean satisfiability problem (SAT), the task
is to make a compound statement of Boolean
variables evaluate to TRUE. For example consider
the following problem of 16 variables given in
conjunctive normal form:

)()(

)()()(

103151181

14971326416125

xxxxxx

xxxxxxxxxxF

∨∧∨∨∨
∧∨∨∨∨∧∨∧∨∨=

Here the task is to find the truth assignment for each
variable xi for all i=1,2,…,16 such that F=TRUE.
Design a GA to solve this problem.

Genetic Algorithms:
Representation of Individuals

Binary Representations

• simplest and most common

• chromosome: string of bits

–genes: 0 / 1

example: binary representation of
an integer

3: 00011

15: 01111

16: 10000

8

Binary Representations

problem: Hamming distance
between consecutive integers may
be > 1

example: 5 bit binary representation

14: 01110 15: 01111 16: 10000

Probability of changing 15 into 16 by
independent bit flips (mutation) is not same
as changing it into 14! (hamming cliffs)

√√√√ Gray coding solves problem.

Gray Coding

• Hamming distance 1

Example: 3-bit Gray Code

integer 0 1 2 3 4 5 6 7

standard 000 001 010 011 100 101 110 111

gray 000 001 011 010 110 111 101 100

• algorithms exist for

–gray ⇒ binary coding

–binary ⇒ gray coding

Integer Representations

• binary representations may not
always be best choice

–another representation may be more
natural for a specific problem

• e.g. for optimization of a function
with integer variables

Integer Representations

• values may be

–unrestricted (all integers)

– restricted to a finite set

• e.g. {0,1,2,3}

• e.g. {North,East,South,West}

Integer Representations

• any natural relations between
possible values?

–obvious for ordinal attributes (e.g.
integers)

–maybe no natural ordering for
cardinal attributes (e.g. set of
compass points)

Real-Valued / Floating Point
Representations

• when genes take values from a
continuous distribution

• vector of real values

– floating point numbers

• genotype for solution becomes the
vector <x 1,x 2,…,x k> with xi∈ℜ

9

Permutation Representations

• deciding on sequence of events

–most natural representation is
permutation of a set of integers

• in ordinary GA numbers may occur
more than once on chromosome

– invalid permutations!

• new variation operators needed

Permutation Representations

• two classes of problems

–based on order of events

• e.g. scheduling of jobs

– Job-Shop Scheduling Problem

–based on adjacencies

• e.g. Travelling Salesperson Problem (TSP)

– finding a complete tour of minimal length
between n cities, visiting each city only once

Permutation Representations

• two ways to encode a permutation

– ith element represents event that
happens in that location in a sequence

–value of ith element denotes position
in sequence in which ith event occurs

Permutation Representations

Example (TSP):

4 cities A,B,C,D and permutation
[3,1,2,4] denotes the tours:

first encoding type:
[C→A→ B→ D]

second encoding type:
[B→C→ A→ D]

Genetic Algorithms:
Mutation

Mutation

• a variation operator

• create one offspring from one
parent

• acts on genotype

• occurs at a mutation rate: pm
–behaviour of a GA depends on pm

10

Bitwise Mutation

• flips bits

–0→1 and 1→0

• setting of pm depends on nature of
problem

–usually (expected occurence)
between 1 gene per generation and 1
gene per offspring

Bitwise Mutation
(Binary Representations)

Integer Representations:
Random Resetting

• bit flipping extended

• acts on genotype

• mutation rate: pm

• a permissible random value chosen

• most suitable for cardinal
attributes

Integer Representations:
Creep Mutation

• designed for ordinal attributes

• acts on genotype

• mutation rate: pm

Integer Representations:
Creep Mutation

• add small (positive / negative)
integer to gene value

– random value

– sampled from a distribution

• symmetric around 0

• with higher probability of small changes

Integer Representations:
Creep Mutation

• step size is important

–controlled by parameters

– setting of parameters important

• different mutation operators may
be used together

–e.g. “big creep” with “little creep”

–e.g. “little creep” with “random
resetting” (different rates)

11

Floating-Point Representations:
Mutation

• allele values come from a
continuous distribution

• previously discussed mutation
forms not applicable

• special mutation operators
required

Floating-Point Representations:
Mutation Operators

• change allele values randomly
within its domain

–upper and lower boundaries

• Ui and Li respectively

[]iiii

nn

ULxxwhere

xxxxxx

,,

,...,,,...,, 2121

∈′
>′′′<→><

Floating-Point Representations:
Uniform Mutation

• values of xi drawn uniformly
randomly from the [Li,Ui]

–analogous to

• bit flipping for binary representations

• random resetting for integer
representations

• usually used with positionwise
mutation probability

Floating-Point Representations:
Non-Uniform Mutation with a

Fixed Distribution

• most common form

• analogous to creep mutation for
integer representations

• add an amount to gene value

• amount randomly drawn from a
distribution

Floating-Point Representations:
Non-Uniform Mutation

• Gaussian distribution (normal
distribution)

–with mean 0

–user-specified standard deviation

–may have to adjust to interval [Li,Ui]

Floating-Point Representations:
Non-Uniform Mutation

• Gaussian distribution

–2/3 of samples lie within one
standard deviation of mean

•most changes small but probability of
very large changes > 0

• Cauchy distribution with same
standard deviation

–probability of higher values more
than in gaussian distribution

12

Floating-Point Representations:
Non-Uniform Mutation

• usually

–applied to each gene with probability 1

–pm used to determine standard
deviation of distribution

• determines probability distribution of size
of steps taken

Permutation Representations:
Mutation Operators

• not possible to consider genes
independently

• move alleles around in genome

• mutation probability shows
probability of a string undergoing
mutation

Permutation Representations:
Swap Mutation

Permutation Representations:
Insert Mutation

Permutation Representations:
Scramble Mutation

• May act on whole string or a subset

Permutation Representations:
Inversion Mutation

13

Genetic Algorithms:
Recombination

Recombination

• process for creating new individual

– two or more parents

• term used interchangably with
crossover

–mostly refers to 2 parents

• crossover rate pc
– typically in range [0.5,1.0]

–acts on parent pair

Recombination

• two parents selected randomly

• a r.v. drawn from [0,1)

• if value < pc two offspring created
through recombination

• else two offspring created
asexually

–copy of parents

Binary Representations:
One-Point Crossover

Binary Representations:
N-Point Crossover

Example: N=2

Binary Representations:
Uniform Crossover

Assume array: [0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36]]

14

Binary Representations:
Crossover

• positional bias

–e.g. in 1-point crossover bias against
keeping bits at head and tail of string
together

• distributional bias

– in uniform crossover bias is towards
transmitting 50% of genes from each
parent

Integer Representations:
Crossover

• same as in binary representations

• blending is not useful

–averaging even and odd integers
produce a non-integer !

Floating-Point Representations:
Recombination

• discrete recombination

–similar to crossover operators for bit-
strings

–alleles have floating-point
representations

–offspring z, parents x and y

value of allele i in offspring:

z i =x i or z i = y i with equal probability

Floating-Point Representations:
Recombination

• intermediate or arithmetic
recombination

– for each gene position

–new allele value between those of parents
z i =αx i +(1- α)y i where α in [0,1]

–new allelele values

–averaging reduces range of values in
population

Floating-Point Representations:
Arithmetic Recombination

• sometimes random α
• usually constant α =0.5

–uniform arithmetic recombination

• 3 types

–simple a. r.

– single a. r.

–whole a. r.

Floating-Point Representations:
Simple Arithmetic Recombination

• pick random recombination point k

child1:
<x 1,...,x k, αyk+1+(1- α)x k+1 ,…, αyn+(1- α)x n>

child2:
<y 1,...,y k, αxk+1+(1- α)y k+1 ,…, αxn+(1- α)y n>

15

Floating-Point Representations:
Simple Arithmetic Recombination

Example: k=8, α=0.5

Floating-Point Representations:
Single Arithmetic Recombination

• pick a random allele k

child1:
<x 1,...,x k-1 , αyk+(1- α)x k, x k+1 ,…, x n>

child2:
<y 1,...,y k-1 , αxk+(1- α)y k, y k+1 ,…, y n>

Floating-Point Representations:
Single Arithmetic Recombination

Example: k=3, α=0.5

Floating-Point Representations:
Whole Arithmetic Recombination

• most commonly used

• takes weighted sum of alleles from
parents

xyChild

yxChild

.)1(.2

.)1(.1

αα

αα

−+=

−+=

Floating-Point Representations:
Whole Arithmetic Recombination

Note: if α=0.5 two offspring are identical!

Permutation Representations:
Recombination

• for adjacency
representations

– partially mapped
crossover (PMX)

– edge crossover

• for order based
representations

– order crossover

– cycle crossover

• requires specially designed operators

16

Multiparent Recombination

• more than two parents

• may be advantageous for some
groups of problems

• not widely used in EC

• approaches grouped as:

–based on allele frequencies

• generalizing uniform crossover

Multiparent Recombination

–based on segmentation and
recombination (e.g. diagonal
crossover)

• generalizing n-point crossover

–based on numerical operations on
real valued alleles (e.g. the center of
mass crossover)

• generalizing arithmetic recombination
operators

Genetic Algorithms:
Fitness Functions

Fitness

• Fitness shows how good a solution
candidate is

• Not always possible to use real
(raw) fitness

–Fitness determined by objective
function(s) and constraint(s)

–Sometimes approximate fitness
functions needed

Fitness

• population convergence ⇒ fitness
range decreases

–premature convergence

• good individuals take over population

–slow finishing

• when average nears best,

• not enough diversity

• can’t drive population to optima

i.e. best and medium get equal chances

Fitness

• Fitness remapping schemes
needed

–Fitness scaling

– Fitness windowing

17

Linear Scaling

If

f: raw fitness and f’:scaled fitness

then linear relationship,

f’=af+b

Linear Scaling

a and b chosen such that

f’avg = favg and f’max=Cmult*favg

where

Cmult: expected no. of copies of
best individual in population

(Note: Typically for populations of size 50 to 100,
Cmult=1.2 to 2 is used.)

Linear Scaling

Raw Fitness

Scaled
Fitness

0 f min f avg f max

f’ min

f’ avg

2*f’ avg

0

Linear Scaling

• In later runs,

–average close to maximum

–some very bad individuals greatly
below population average

⇒ possible negative scaled fitnesses

• Solution: map minimum raw
fitness to f’min=0

Linear Scaling

Raw Fitness

Scaled
Fitness

fmin favg fmax

f’ min

f’ avg

2*f’ avg

0

Sigma Scaling

• developed as improvement to
linear scaling

– to deal with negative values

– to incorporate problem dependent
information into the mapping

–population average and standard
deviation

18

c: small integer (usually set to 2)

σσσσ: population’s standard deviation

if f’ <0 then set f’=0

Sigma Scaling

)*(' σcfff −+=

Window Scaling

• Scaling window

f’=F-f where F is a constant and
F>f(x) for all x

–scaling window W: determines how
often F is updated

•W>0 ⇒ F=max{f(x)} for the last W
generations

•W=0 ⇒ infinite window size, i.e.
F=max{f(x)} over all evaluations

Genetic Algorithms:
Population Models

Population Models

• generational model

• steady state model

Generational Model

• population of individuals : size N

• mating pool (parents) : size N

• offspring formed from parents

• offspring replace parents

• offspring are next generation : size N

Steady State Model

• not whole population replaced

• N: population size (M≤N)
–M individuals replaced by M offspring

• generational gap

–percentage of replaced

–equal to M/N

• competition based on fitness

19

Genetic Algorithms:
Parent Selection

Fitness Proportional Selection

• FPS

• e.g. roulette wheel selection

• selection probability depends on
absolute fitness of individual
compared to absolute fitness of
rest of the population

Selection

• Selection scheme: process that
selects an individual to go into the
mating pool

• Selection pressure: degree to
which the better individuals are
favoured

– if higher selection pressure, better
individuals favoured more

Selection Pressure

• determines convergence rate

– if too high, possible premature
convergence

– if too low, may take too long to find
good solutions

Selection Schemes

• two types:

–proportionate

–ordinal based

Fitness Proportionate Selection

• e.g. roulette-wheel selection (RWS)

• problems with FPS

–premature convergence

–almost no selection pressure when
fitness values close together

–may behave differently on transposed
versions of same fitness function

• e.g. consider f(x) and y(x)=f(x)+10;

20

Fitness Proportionate Selection

• solutions

–scaling

–windowing

Roulette-Wheel Selection

f1

f2

f3

f4
f5

f6

f7

m=7

begin
set current_member=1;
while (current_member ≤≤≤≤ m)do

pick uniform r.v. r from [0,1];
set i=1;
while (ai < r) do

set i=i+1;
od
set mating_pool[current_member]=parents[i];
set current_member=current_member+1;

od
end

Roulette-Wheel Selection

m: population size ∑ == i

seli miiPa
1

,...,2,1)(

Stochastic Universal Sampling

• SUS

• one spin of wheel with m equally
spaced arms

• cumulative selection probabilities
[a1, a2, ……, am]

Stochastic Universal Sampling

f1

f2f3

f4

m=4

begin
set current_member=i=1;
pick uniform r.v. r from [0,1/m];
while (current_member ≤≤≤≤ m) do

while (r ≤≤≤≤ a[i]) do
set mating_pool[current_member]=parents[i];
set r=r+1/m;
set current_member=current_member+1;

od
set i=i+1;

od
end

Stochastic Universal Sampling

m: population size ∑ == i

seli miiPa
1

,...,2,1)(

21

Ranking Selection

• ordinal based

• population sorted by fitness

• selection probabilities based on rank

• constant selection pressure

• how to allocate probabilities to ranks

–can be any linear or non-linear function

• e.g. linear ranking selection (LRS)

Linear Ranking

• parameter s: 1.0 < s ≤ 2.0

– in generational GA s: no. of expected
offspring allotted to best

Assume best has rank m and worst 1

–selection probability of individual with
rank i:

)1(

)1(2)2(
)_(

−
−+−=

mm

si

m

s
irankpsel

FPS x LRS

A

B

Sum

C

1

5

4

10

Fitness Rank FP LR (s=2) LR (s=1.5)

1

3

2

0.1

0.5

0.4

1.0

0

0.67

0.33

1.0

0.167

0.5

0.33

1.0

Exponential Ranking

• with linear mapping

– range of selection pressure limited

•max s=2 (median fitness has 1 chance)

– if wish to select above average more

• exponential ranking

c

e
irankp

i

sel

−−= 1
)_(c: normalization factor

Tournament Selection

• ordinal based

• RWS and SUS uses info on whole
population

– info may not be available

• population too large

• population distributed on a parallel system

•maybe no universal fitness definition (e.g.
game playing, evol. art, evol. design)

Tournament Selection

• TS

• relies on an ordering relation to
rank any n individuals

• most widely used approach

• tournament size k

– if k large, more of the fitter individuals

– controls selection pressure

• k=2 : lowest selection pressure

22

begin
set current_member=1;
while (current_member ≤≤≤≤ m)do

pick k inividuals randomly;
select best from k individuals;
denote this individual i;
set mating_pool[current_member]=i;
set current_member=current_member+1;

od
end

Tournament Selection

m: population size k: tournament size

Genetic Algorithms:
Survivor Selection

Survivor Selection

• a.k.a. replacement

• determines who survives into next
generation

– reduces (m+l) to m

•m population size (also no. of parents)

• l no. of offspring at end of generation

• several replacement strategies

Age-Based Replacement

• fitness not taken into account

• each inidividual exists for same
number of generations

– in SGA only for 1 generation

• e.g. create 1 offspring and insert into
population at each generation

–FIFO

– replace random (has more performance
variance than FIFO; not recommended)

Fitness-Based Replacement

• uses fitness to select m individuals from
(m+l) (m parents, l offspring)

– fitness based parent selection techniques

– replace worst

• fast increase in population mean

• possible premature convergence

• use very large populations or no-duplicates

–elitism

• keeps current best in population

• replaces an individual (worst, most similar, etc)

