Nature-Inspired Computing

Genetic Algorithms

Dr. Sima Uyar
September 2006

Genetic Algorithms

e components of a GA
- representation for potential solutions
- method for creating initial population

- evaluation function to rate potential
solutions

- genetic operators to alter composition

of offspring
- various parameters to control a run

Genetic Algorithms

e parameters of a GA
-no. of generations

e or other stopping criteria Slmple GA
- population size
- chromosome length
- probability of applying some
operators
Simple GA - SGA SGA

¢ a.k.a. Canonical GA
e Operators of a SGA
- selection
— Cross-over
- mutation

generate initial population
r epeat
eval uat e individual s
performreproduction
sel ect pairs
reconbi ne pairs
apply nmutation
until end_of _generations

Representation & Encoding

¢ population size constant

¢ individual has one chromosome
(haploid)

e chromosome length constant

e individual has a fitness value

¢ binary genes (0/1)

e generational

Initial Population

random initial population

U

each gene value for each individual
determined randomly to be either
Oor1

with equal probability

Fitness Evaluation

o fitness function
- objective function(s)
- constraints
¢ shows fitness of individual

- degree to which solution candidate
meets objective

¢ apply fitness function to individual

Example Problem: One-Max

Objective: maximize the number of
1s in a string of length 5,
composed only of 1s and 0s

= population size = 4
chromosome length = 5
fitness function = no. of genes that are 1

Example Population

individual 1: individual 2:
chromosome = 11001 chromosome = 00001
fitness = 3 fitness = 1
individual 3: individual 4:
chromosome = 11111 chromosome = 01110

fitness = 5 fithness = 3

Reproduction

e consists of
- selection
e mating pool (size same as population)

e possibly more than one copy of some
individuals

- cross-over
- mutation

probi =

Selection

e uses roulette wheel selection
- fitness proportionate

e expected no. of representatives of each
individual is proportional to its fitness

fitnessi
Z fitness
i

,j =1...pop.size

Example Selection

Current Population: Probability of each individual

i1: 11001, 3 being selected:
i2: 00001, 1 prob(il) = 3/12 =

o, prob(i2) = 1/12
i3: 11111, 5 prob(i3) = 5/12

0.25
0.08
0.42

i4: 01110, 3 prob(i4) = 3/12 = 0.25

Expected coples of [assume:

each individual in pool: ||\ -c/is turned 4 times

. 1 copy of il

!1: (3/12%4) 1 2 cogiyes of i3

i2: 51512:43 0 1 copy of i4

i3: (5/12*4) 2 . U .

i4: (3/12%4) 1 is copied into mating pool

Example Pairing

Current mating pool:

mate 1: 11001 (i1)
mate 2: 11111 (i3)
mate 3: 11111 (i3)
mate 4: 01110 (i4)

Pairs:

Pair 1: Pair 2:
11001 11111
11111 01110

Assume:
As a result of random drawing
(mate 1, mate 3)
and
(mate 2, mate 4)
are paired off for reproduction.

Recombination

¢ new individuals formed from pairs
of parents

e one point cross-over

e probability of cross-over: p.
—-a.k.a. cross-over rate
-typically in range [0.5, 1.0]

One-Point Cross-Over

[ofoTofofolofolo[1
_

[1[1]o[1[4Tololol0

Example Cross-Over
[Assume p.=1.0

for pair 1: for pair 2:
cross-over site: 3 cross-over site: 1
110] 01 - 11011 1]1111 - 11110
11111 - 11101 01110 - 01111

the new individuals:

il: 11011 i3: 11110
i2: 11101 i4: 01111

Mutation

e bitwise mutation

e probability of mutation: pn
-a.k.a. mutation rate
-equal probability for each gene

—-chromosome of length L; expected
no. of changes: L*pn,

- typically chosen to be small
e depends on nature of problem

Bitwise Mutation

[1[o[4[0[o[o[ofiT0] — [t]of@fAIolo[0f0T0]

Example Mutation

Assume:
as a result of random draws,
1st gene of il il: 11011 - 01011
and
4th gene of i3

i3: 11110 - 11100

are found to undergo mutation

Population Dynamics

e generational GA
—-non-overlapping populations
- offspring replace parents

Example New Population

individual 1: individual 2:
chromosome =01011 chromosome =11101
fitness = 3 fitness = 4
individual 3: individual 4:

chromosome =11100 chromosome =01111
fitness = 3 fitness = 4

Stopping Criteria

e main loop repeated until stopping
criteria met

-for a predetermined no. of
generations v

-until a goal is reached

- until population converges

Convergence

e progression towards uniformity

e gene convergence: when 95% of
the individuals have the same
value for that gene

e population convergence: when all
genes have converged
- average fitness approaches best

Example Stopping Criteria

Case 1:

number of generations= 250
-loop repeated 250 times
- best individual at each generation found
-overall best individual becomes solution

Example Stopping Criteria

Case 2:
objective: maximize the number of 1s
goal: to find the individual with 1 for
all gene locations
- loop repeated forever
- best individual at each generation found
-terminates when goal individual found

Example Stopping Criteria

Case 3:
95% of 4 is 4

gene convergence: 4 individuals must have same
value for a gene location

population convergence: 5 gene locations must
be converged

Example converged populations:
Example 1: Example 2: Example 3:
i1: 11010 il1: 00000 il: 11111
i2: 11010 i2: 00000 i2: 11111
i3: 11010 i3: 00000 i3: 11111
i4: 11010 i4: 00000 i4: 11111

Example Problems

Function Optimization

Objective:
Find the set of integers x; which
maximize the function f .

f(x;)=%x;? i=1,2,3
-512 < X, < 512

Function Optimization

Representation:

-1024 integers in given interval
- 10 bits needed

0 :0000000000 (-511)
1 :0000000001 (-510)
2 :0000000010 (-509)

1023 : 1111111111 (512)

Function Optimization

Individual:
e function has 3 parameters:

X1, X2, X3 (- 512 < X; S 512)
¢ 10 bits for each x;

e chromosome has 30 bits

Function Optimization

Example chromosome:
110010101011000000000000000110
X1 X2 X3
X; = (810 - 511) = 299
X, = (768 - 511) = 257

X3= (6 - 511) = -505
fitness = (299)2 + (257)2 + (-505)2
= 410475

Function Optimization

what if x; were real numbers?
interval: -5.12 < xi<£5.12
e possible to use binary

- precision of 2 digits after decimal

—-use 1024 different integers (divide
number by 100)

e use other representations (e.g. real)

Function Optimization

what if representation has
redundancy?

e.g. interval: -5.4 < x; < 5.4

0/1 Knapsack Problem
Objective:
max ' vi*x i=12,..item_count

subject to Zwi £ X < W
i

X; = 0/ 1 (shows whether item i is in sack or not)

0/1 Knapsack Problem

Example item set:
(1) w= 2,v=10
(2) w= 6,v=3
(3) w=10, v= 8

Example feasible solutions:
items: {1,2,5} = weight=12

value= 38

(4) w= 7,v=16 items: {3} = weight=10
(5) w= 4, v=25 value= 8

items: {4,5} = weight=11

value= 41

Example knapsack jiems: {2} = weight=6
capacity: W = 12 value= 3

0/1 Knapsack Problem

Representation:
5 items = chromosome length 5

Example chromosomes:

11001 = items {1,2,5} included in sack
00100 = items {3} included in sack
00011 = items {4,5} included in sack
01000 = items {2} included in sack

0/1 Knapsack Problem

¢ Can fitness be total weight of
subset?
-what if overweight?
e how to handle overweight subsets?
- delete?
- penalize?
e by how much?
- make correction?

Exercise Problem

In the Boolean satisfiability problem (SAT), the task
is to make a compound statement of Boolean
variables evaluate to TRUE. For example consider
the following problem of 16 variables given in
conjunctive normal form:

F=(%CX,Cxe) DX EX) E (X EXa EX CX Ex,) C
(% 0% O3, 0%5) D% 0%)
Here the task is to find the truth assignment for each

variable x; for all i=1,2,...,16 such that F=TRUE.
Design a GA to solve this problem.

Genetic Algorithms:
Representation of Individuals

Binary Representations

e simplest and most common
e chromosome: string of bits
-genes: 0/ 1
example: binary representation of
an integer
3: 00011

15: 01111
16: 10000

Binary Representations

problem: Hamming distance
between consecutive integers may
be > 1
example: 5 bit binary representation
14: 01110 15: 01111 16: 10000

Probability of changing 15 into 16 by
independent bit flips (mutation) is not same
as changing it into 14! (hamming cliffs)

v Gray coding solves problem.

Gray Coding

e Hamming distance 1
Example: 3-bit Gray Code

integer V] 1 2 3 4 5 6 7
standard 000 001 010 011 100 101 110 111
gray 000 001 011 010 110 111 101 100

e algorithms exist for
—-gray = binary coding
-binary = gray coding

Integer Representations

e binary representations may not
always be best choice
- another representation may be more
natural for a specific problem
¢ e.g. for optimization of a function
with integer variables

Integer Representations

¢ values may be
—unrestricted (all integers)
-restricted to a finite set
ee.g. {0,1,2,3}
e e.g. {North,East,South,West}

Integer Representations

e any natural relations between
possible values?
- obvious for ordinal attributes (e.g.
integers)
-maybe no natural ordering for
cardinal attributes (e.g. set of
compass points)

Real-Valued / Floating Point
Representations

e when genes take values from a
continuous distribution

e vector of real values
- floating point numbers

e genotype for solution becomes the
vector <xi,x ,,....x > With x,00

Permutation Representations

e deciding on sequence of events

- most natural representation is
permutation of a set of integers

¢ in ordinary GA numbers may occur
more than once on chromosome
-invalid permutations!

e new variation operators needed

Permutation Representations

e two classes of problems

—-based on order of events
e e.g. scheduling of jobs
- Job-Shop Scheduling Problem
- based on adjacencies

e e.g. Travelling Salesperson Problem (TSP)

- finding a complete tour of minimal length
between n cities, visiting each city only once

Permutation Representations

e two ways to encode a permutation
- ith element represents event that
happens in that location in a sequence
-value of jith element denotes position
in sequence in which ith event occurs

Permutation Representations

Example (TSP):
4 cities A,B,C,D and permutation
[3,1,2,4] denotes the tours:

first encoding type:
[C-A- B- D]

second encoding type:
[B-C- A- D]

Genetic Algorithms:
Mutation

Mutation

¢ a variation operator

e create one offspring from one
parent

e acts on genotype

e occurs at a mutation rate: pn
- behaviour of a GA depends on pn

Bitwise Mutation

o flips bits
-0-1and1-0

e setting of p,, depends on nature of
problem

—usually (expected occurence)
between 1 gene per generation and 1
gene per offspring

Bitwise Mutation
(Binary Representations)

[1[o[4[0[o[o[ofiT0] — [t]of@fAIolo[0f0T0]

Integer Representations:
Random Resetting

e bit flipping extended

e acts on genotype

e mutation rate: pn

¢ a permissible random value chosen

e most suitable for cardinal
attributes

Integer Representations:
Creep Mutation

e designed for ordinal attributes
e acts on genotype
e mutation rate: pn

Integer Representations:
Creep Mutation

e add small (positive / negative)
integer to gene value
-random value
-sampled from a distribution
e symmetric around 0
e with higher probability of small changes

Integer Representations:
Creep Mutation

e step size is important
- controlled by parameters
- setting of parameters important
o different mutation operators may
be used together
-e.g. “big creep” with “little creep”

-e.g. “little creep” with “random
resetting” (different rates)

10

Floating-Point Representations:

Mutation

¢ allele values come from a
continuous distribution

e previously discussed mutation
forms not applicable

e special mutation operators
required

Floating-Point Representations:

Mutation Operators

e change allele values randomly
within its domain

—upper and lower boundaries
e U; and L; respectively

Ot O ddl
wherex, X O[L,,U]

Floating-Point Representations:

Uniform Mutation

¢ values of x; drawn uniformly
randomly from the [L;,U;]
-analogous to
e bit flipping for binary representations
e random resetting for integer
representations
e usually used with positionwise
mutation probability

Floating-Point Representations:

Non-Uniform Mutation with a
Fixed Distribution

e most common form

¢ analogous to creep mutation for
integer representations

e add an amount to gene value

e amount randomly drawn from a
distribution

Floating-Point Representations:

Non-Uniform Mutation

e Gaussian distribution (normal
distribution)
—-with mean 0
- user-specified standard deviation
- may have to adjust to interval [L;,Ui]

Floating-Point Representations:

Non-Uniform Mutation

e Gaussian distribution
- 2/3 of samples lie within one
standard deviation of mean

e most changes small but probability of
very large changes > 0

e Cauchy distribution with same
standard deviation

- probability of higher values more
than in gaussian distribution

11

Floating-Point Representations:
Non-Uniform Mutation

e usually
—-applied to each gene with probability 1

- Pm Used to determine standard
deviation of distribution

e determines probability distribution of size
of steps taken

Permutation Representations:

Mutation Operators

e not possible to consider genes
independently

e move alleles around in genome

e mutation probability shows
probability of a string undergoing
mutation

Permutation Representations:
Swap Mutation

(1[2]3]4[5]6[7[8[9] ——> [1[5]3[4[2]6]7]8]9]

Permutation Representations:

Insert Mutation

[112]3]4[6]6[7[8[s] ——> [1[2[E]3[4]6]7[8]9]

Permutation Representations:
Scramble Mutation

e May act on whole string or a subset

1[2[8l4[5]e[7]8le] ——>» [1[8[5]4[2]6]7[8]0]

Permutation Representations:

Inversion Mutation

2[3[4l5]6]7[8]9] —» [1[5[4l3]2]6]7]8]9]

12

Genetic Algorithms:
Recombination

Recombination

e process for creating new individual
—two or more parents

e term used interchangably with
crossover
- mostly refers to 2 parents

e crossover rate p.
-typically in range [0.5,1.0]
—acts on parent pair

Recombination

e two parents selected randomly

e ar.v. drawn from [0,1)

o if value < p. two offspring created
through recombination

¢ else two offspring created
asexually
- copy of parents

Binary Representations:
One-Point Crossover

[o[ofolo|1[o[ofol0] [ofoTofolofoofo[1]
s
[1]1To[1]ofoofo]1] (1]1]o[1[4Tolofol0]

Binary Representations:
N-Point Crossover

[oJo[ofo|1To]oTol0] [oToToTolo[o[oToT0]
E—
[1[1]o[1[ofo]oTo]1] 1[1]o[1[4T0]ofo[1]
Example: N=2

Binary Representations:
Uniform Crossover

[ofofofo[1]o[0fo[0] [o]1ToTofo[o[0]0[0]
 ——
(11To[1Tofo[ofo[1] (1[olo[1 [ATol oo 1]

Assume array: [0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36]]

13

Binary Representations:
Crossover

¢ positional bias

-e.g. in 1-point crossover bias against
keeping bits at head and tail of string
together

e distributional bias

—in uniform crossover bias is towards
transmitting 50% of genes from each
parent

Integer Representations:
Crossover

e same as in binary representations

¢ blending is not useful

—-averaging even and odd integers
produce a non-integer !

Floating-Point Representations:

Recombination

e discrete recombination
—-similar to crossover operators for bit-
strings
- alleles have floating-point
representations
- offspring z, parents x and y

value of allele i in offspring:
z;=x; or z;=y; with equal probability

Floating-Point Representations:
Recombination

e intermediate or arithmetic
recombination
- for each gene position
-new allele value between those of parents
z;=ax; +(1- a)y; where a in[0,1]
-new allelele values

- averaging reduces range of values in
population

Floating-Point Representations:

Arithmetic Recombination

e sometimes random a
¢ usually constant a =0.5

- uniform arithmetic recombination
e 3 types

-simple a. r.

-single a. r.

-whole a. r.

Floating-Point Representations:
Simple Arithmetic Recombination

¢ pick random recombination point k

child1:

KpeeX ok Wit X e ay,+(1- a)x >
child2:

YienY ke X H(L QY e axp+(1- a)y >

14

Floating-Point Representations:
Simple Arithmetic Recombination

[o1]o2[o3[o4[os[os]o7[0s0g] [o1[o2[o3[o4[os[os[0[05[0e]

(03[02[03[02[03[02Jo3[02[03] (03[02[03[02[03[o2[0E[0E[HE]

Example: k=8, a=0.5

Floating-Point Representations:
Single Arithmetic Recombination

e pick a random allele k

child1:

NKpenX s AV OX G X g X >

YaenY ks O QY G Y ke Y 0>

Floating-Point Representations:
Single Arithmetic Recombination

[0:o2[03[04[os[0s[07]0s[og]

[04]02[0:3]o4[os[o6[07[0s[0s)]

EEEE R

Example: k=3, a=0.5

Floating-Point Representations:
Whole Arithmetic Recombination

e most commonly used

o takes weighted sum of alleles from
parents

Childl=g.x+(1-a).y

Child2=a.y+(-a).X

Floating-Point Representations:
Whole Arithmetic Recombination

[04[02[03[o405[oc[07[08[0g] (02oZodoR[o4oA[oso 8[oe]
e
[03]02[o3[02[03[02[03]02[03 (620203 oR[o 4 oA[lsa 80

Note: if a=0.5 two offspring are identical!

Permutation Representations:
Recombination

e requires specially designed operators

o for order based
representations
— order crossover
- cycle crossover

o for adjacency
representations
- partially mapped
crossover (PMX)
- edge crossover

15

Multiparent Recombination

e more than two parents

e may be advantageous for some
groups of problems

e not widely used in EC

e approaches grouped as:

-based on allele frequencies
e generalizing uniform crossover

Multiparent Recombination

- based on segmentation and
recombination (e.g. diagonal
crossover)

¢ generalizing n-point crossover

-based on numerical operations on
real valued alleles (e.g. the center of
mass crossover)

¢ generalizing arithmetic recombination
operators

Genetic Algorithms:
Fitness Functions

Fitness

¢ Fithess shows how good a solution
candidate is

¢ Not always possible to use real
(raw) fitness
- Fitness determined by objective
function(s) and constraint(s)
- Sometimes approximate fitness
functions needed

Fitness

¢ population convergence = fitness

range decreases
- premature convergence

¢ good individuals take over population
-slow finishing

e when average nears best,

e not enough diversity

e can’t drive population to optima

i.e. best and medium get equal chances

Fitness

¢ Fitness remapping schemes
needed
- Fitness scaling
- Fitness windowing

16

Linear Scaling

Linear Scaling

If

f: raw fitness and f’":scaled fitness
then linear relationship,

f'=af+b

a and b chosen such that
flavg = favg and f,max=cmult*favg
where

Cmuit: expected no. of copies of
best individual in population

(Note: Typically for populations of size 50 to 100,
Cmuit=1.2 to 2 is used.)

Linear Scaling

Scaled
Fitness

2% ayg

0 fmn Favg f max Raw Fitness

Linear Scaling

e In later runs,
—average close to maximum

-some very bad individuals greatly
below population average

= possible negative scaled fitnesses

e Solution: map minimum raw
fitness to f'min=0

Linear Scaling

Scaled
Fitness

2 g

0
Jy/ favg fmax Raw Fitness
' min

Sigma Scaling

e developed as improvement to
linear scaling
-to deal with negative values
-to incorporate problem dependent
information into the mapping
- population average and standard
deviation

17

Sigma Scaling

f'=f+(f -c*o)

c: small integer (usually set to 2)
a: population’s standard deviation

if f <0 then set f'=0

Window Scaling

e Scaling window
f’=F-f where Fis a constant and
F>f(x) for all x
—-scaling window W: determines how
often F is updated
e W>0 = F=max{f(x)} for the last W
generations
e W=0 = infinite window size, i.e.
F=max{f(x)} over all evaluations

Genetic Algorithms:
Population Models

Population Models

e generational model

o steady state model

Generational Model

e population of individuals : size N

e mating pool (parents) : size N

¢ offspring formed from parents

¢ offspring replace parents

¢ offspring are next generation : size N

Steady State Model

¢ not whole population replaced
¢ N: population size (M<N)
- M individuals replaced by M offspring
e generational gap
- percentage of replaced
-equal to M/N
e competition based on fitness

18

Genetic Algorithms:
Parent Selection

Fitness Proportional Selection

e FPS

¢ e.g. roulette wheel selection

e selection probability depends on
absolute fitness of individual
compared to absolute fitness of
rest of the population

Selection

e Selection scheme: process that
selects an individual to go into the
mating pool

e Selection pressure: degree to
which the better individuals are
favoured

-if higher selection pressure, better
individuals favoured more

Selection Pressure

e determines convergence rate
- if too high, possible premature
convergence
- if too low, may take too long to find
good solutions

Selection Schemes

e two types:
- proportionate
-ordinal based

Fitness Proportionate Selection

¢ e.g. roulette-wheel selection (RWS)

e problems with FPS
- premature convergence

—-almost no selection pressure when
fitness values close together
- may behave differently on transposed
versions of same fitness function
e e.g. consider f(x) and y(x)=f(x)+10;

19

Fitness Proportionate Selection

e solutions
-scaling
-windowing

Roulette-Wheel Selection

f3
f4

Roulette-Wheel Selection

begi n
set current_menber=1;
while (current_nenber < njdo
pick uniformr.v. r from[O,1];

set i=1;

while (a < r) do
set i=i+1;

od

set mating_pool [current _menber] =parents[i];
set current _nenber =current_nenber +1;
od
end

m: population size g :le Py() i=12..m

Stochastic Universal Sampling

e SUS
e one spin of wheel with m equally
spaced arms
e cumulative selection probabilities
[a1, @z, ooy am)]

Stochastic Universal Sampling

Stochastic Universal Sampling

begin
set current_nenber=i =1;
pick uniformr.v. r from[O0,1/n];
while (current_nenber < m do
while (r < af[i]) do
set mating_pool [current_nenber] =parents[i];

set r=r+1l/m
set current_nenber=current_nmenber +1;
od
set i=i+1;
od
end
I . .
m: population size @ = lesd i 1=12,..m

20

Ranking Selection

e ordinal based

e population sorted by fitness

e selection probabilities based on rank
e constant selection pressure

e how to allocate probabilities to ranks

—-can be any linear or non-linear function
e e.g. linear ranking selection (LRS)

Linear Ranking

e parameter s: 1.0 <s < 2.0
-in generational GA s: no. of expected
offspring allotted to best
Assume best has rank m and worst 1
- selection probability of individual with
rank i:
- (2-9) - 2i(s-1

k
Fea (tan m m(m-1)

FPS x LRS
Fitness | Rank FP LR (s=2) LR (s=1.5)
1 1 0.1 0 0.167
B | 5 3 0.5 0.67 0.5
e | 2 0.4 0.33 0.33
Sum| 10 1.0 1.0 1.0

Exponential Ranking

e with linear mapping
-range of selection pressure limited
e max s=2 (median fitness has 1 chance)
- if wish to select above average more
e exponential ranking

o
Py (rank _i) :1 & c: normalization factor

Tournament Selection

¢ ordinal based

¢ RWS and SUS uses info on whole
population
-info may not be available
¢ population too large
e population distributed on a parallel system

e maybe no universal fitness definition (e.g.
game playing, evol. art, evol. design)

Tournament Selection

TS

e relies on an ordering relation to
rank any n individuals

e most widely used approach

e tournament size k
-if k large, more of the fitter individuals

- controls selection pressure
e k=2 : lowest selection pressure

Tournament Selection

begi n
set current_menber=1;
whil e (current_nmenber < nmdo
pick k inividuals randony;
sel ect best fromk individuals;
denote this individual i;
set mating_pool [current _nenber]=i;
set current_nmenber=current_nmenber +1;
od
end

m: population size k: tournament size

Genetic Algorithms:
Survivor Selection

Survivor Selection

¢ a.k.a. replacement
e determines who survives into next
generation

-reduces (m+l) to m
e m population size (also no. of parents)
¢ | no. of offspring at end of generation

e several replacement strategies

Age-Based Replacement

o fitness not taken into account
e each inidividual exists for same

number of generations
-in SGA only for 1 generation

e e.g. create 1 offspring and insert into

population at each generation
- FIFO

-replace random (has more performance
variance than FIFO; not recommended)

Fitness-Based Replacement

e uses fitness to select m individuals from
(m+l) (m parents, | offspring)
- fitness based parent selection techniques
-replace worst
o fast increase in population mean
* possible premature convergence
e use very large populations or no-duplicates
- elitism
* keeps current best in population
e replaces an individual (worst, most similar, etc)

22

