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Genetic Algorithms

• components of a GA

– representation for potential solutions

–method for creating initial population

–evaluation function to rate potential 
solutions

–genetic operators to alter composition 
of offspring

–various parameters to control a run

Genetic Algorithms

• parameters of a GA

–no. of generations

• or other stopping criteria

–population size

– chromosome length

–probability of applying some 
operators

Simple GA

Simple GA - SGA

• a.k.a. Canonical GA

• Operators of a SGA

–selection

– cross-over

–mutation

SGA

generate initial population

repeat

evaluate individuals

perform reproduction

select pairs

recombine pairs

apply mutation

until end_of_generations
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Representation & Encoding

• population size constant

• individual has one chromosome 
(haploid)

• chromosome length constant

• individual has a fitness value

• binary genes (0/1)

• generational

Initial Population

random initial population

⇓

each gene value for each individual 
determined randomly to be either 

0 or 1

with equal probability

Fitness Evaluation

• fitness function 

–objective function(s)

– constraints

• shows fitness of individual

–degree to which solution candidate 
meets objective 

• apply fitness function to individual

Example Problem: One-Max

Objective: maximize the number of 
1s in a string of length 5, 
composed only of 1s and 0s

⇒ population size = 4        

chromosome length = 5

fitness function = no. of genes that are 1

Example Population

individual 1:

chromosome = 11001

fitness = 3

individual 2:
chromosome = 00001
fitness = 1

individual 3:
chromosome = 11111
fitness = 5

individual 4:
chromosome = 01110
fitness = 3

Reproduction

• consists of

–selection

•mating pool (size same as population)

• possibly more than one copy of some 
individuals

–cross-over

–mutation
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Selection

• uses roulette wheel selection

– fitness proportionate

• expected no. of representatives of each 
individual is proportional to its fitness
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Example Selection

Current Population:

i1: 11001, 3

i2: 00001, 1

i3: 11111, 5

i4: 01110, 3

Probability of each individual 
being selected:
prob(i1) = 3/12 = 0.25
prob(i2) = 1/12 = 0.08
prob(i3) = 5/12 = 0.42
prob(i4) = 3/12 = 0.25

Expected copies of 
each individual in pool:

i1: (3/12*4) 1 
i2: (1/12*4) 0 
i3: (5/12*4) 2
i4: (3/12*4) 1

Assume: 
wheel is turned 4 times 

1 copy of i1
2 copies of i3
1 copy of i4

is copied into mating pool

Example Pairing

Current mating pool:

mate 1: 11001 (i1)
mate 2: 11111 (i3)
mate 3: 11111 (i3)
mate 4: 01110 (i4)

Assume:
As a result of random drawing

(mate 1, mate 3)
and

(mate 2, mate 4) 
are paired off for reproduction.

Pairs:
Pair 1: Pair 2:
11001          11111
11111          01110

Recombination

• new individuals formed from pairs 
of parents

• one point cross-over

• probability of cross-over: pc
–a.k.a. cross-over rate

– typically in range [0.5, 1.0]

One-Point Cross-Over Example Cross-Over

Assume pc=1.0

for pair 1:
cross-over site: 3
110 | 01 → 11011
111 | 11 → 11101

for pair 2:
cross-over site: 1
1 | 1111 → 11110
0 | 1110 → 01111

the new individuals:

i1: 11011            i3: 11110
i2: 11101            i4: 01111
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Mutation

• bitwise mutation

• probability of mutation: pm
–a.k.a. mutation rate

–equal probability for each gene

– chromosome of length L; expected 
no. of changes: L*pm

– typically chosen to be small

• depends on nature of problem

Bitwise Mutation

Example Mutation

Assume: 

as a result of random draws, 

1st gene of i1 

and 

4th gene of i3 

are found  to undergo mutation

i1: 11011 → 01011

i3: 11110 → 11100

Population Dynamics

• generational GA

–non-overlapping populations

–offspring replace parents

Example New Population

individual 1:
chromosome =01011
fitness = 3

individual 2:
chromosome =11101
fitness = 4

individual 3:
chromosome =11100
fitness = 3

individual 4:
chromosome =01111
fitness = 4

Stopping Criteria

• main loop repeated until stopping 
criteria met

– for a predetermined no. of 

generations √√√√
–until a goal is reached

–until population converges
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Convergence

• progression towards uniformity

• gene convergence: when 95% of 
the individuals have the same 
value for that gene

• population convergence: when all 
genes have converged

–average fitness approaches best 

Example Stopping Criteria

Case 1: 

number of generations= 250

– loop repeated 250 times

–best individual at each generation found

–overall best individual becomes solution

Example Stopping Criteria

Case 2: 

objective: maximize the number of 1s

goal: to find the individual with 1 for 
all gene locations 

– loop repeated forever

–best individual at each generation found

– terminates when goal individual found

Example Stopping Criteria

Case 3: 

95% of 4 is 4

gene convergence: 4 individuals must have same 
value for a gene location

population convergence: 5 gene locations must 
be converged

Example converged populations:
Example 1: Example 2: Example 3:
i1: 11010 i1: 00000 i1: 11111
i2: 11010 i2: 00000 i2: 11111
i3: 11010 i3: 00000 i3: 11111
i4: 11010 i4: 00000 i4: 11111

Example Problems

Function Optimization

Objective:

Find the set of integers xi which 
maximize the function f.

f(xi)=ΣΣΣΣixi
2 i=1,2,3

-512 < xi ≤≤≤≤ 512
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Function Optimization

Representation:

–1024 integers in given interval

–10 bits needed

0 : 0000000000 (-511)
1 : 0000000001 (-510)
2 : 0000000010 (-509)
...             ...

1023 : 1111111111 (512)

Function Optimization

Individual:

• function has 3 parameters: 

x1, x2, x3 (-512 < xi ≤≤≤≤ 512)

• 10 bits for each xi
• chromosome has 30 bits

Function Optimization

Example chromosome: 

110010101011000000000000000110

x1 x2 x3

x1 = (810 - 511) = 299

x2 = (768 - 511) = 257       

x3 = (6 - 511)     = -505 

fitness  =  (299)2 + (257)2 + (-505)2

=  410475

Function Optimization

what if xi were real numbers?

interval: -5.12 < xi ≤≤≤≤ 5.12

• possible to use binary 

–precision of 2 digits after decimal 

–use 1024 different integers (divide 
number by 100)

• use other representations (e.g. real)

Function Optimization

what if representation has 
redundancy?

e.g. interval: -5.4 < xi < 5.4

0/1 Knapsack Problem

Objective:

∑ ≤

=∑

i
W

i
x

i
wtosubject

countitemi
i

ii xv

*

_,...2,1*max

xi = 0 / 1 (shows whether item i is in sack or not)
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0/1 Knapsack Problem

Example item set:

(1) w=  2, v=10

(2) w=  6, v= 3

(3) w=10, v= 8

(4) w=  7, v=16

(5) w=  4, v=25

Example feasible solutions:
items: {1,2,5} ⇒ weight=12

value= 38
items: {3}       ⇒ weight=10

value= 8
items: {4,5}    ⇒ weight=11

value= 41
items: {2}       ⇒ weight=6

value= 3 

Example knapsack
capacity: W = 12

0/1 Knapsack Problem

Representation:

5 items ⇒ chromosome length 5

Example chromosomes:

11001 ⇒ items {1,2,5} included in sack

00100 ⇒ items {3} included in sack

00011 ⇒ items {4,5} included in sack

01000 ⇒ items {2} included in sack

0/1 Knapsack Problem

• Can fitness be total weight of 
subset?

–what if overweight?

• how to handle overweight subsets? 

–delete? 

–penalize?

• by how much?

–make correction?

Exercise Problem

In the Boolean satisfiability problem (SAT), the task 
is to make a compound statement of Boolean 
variables evaluate to TRUE. For example consider 
the following problem of 16 variables given in 
conjunctive normal form:

)()(

)()()(

103151181

14971326416125

xxxxxx

xxxxxxxxxxF

∨∧∨∨∨
∧∨∨∨∨∧∨∧∨∨=

Here the task is to find the truth assignment for each
variable xi for all i=1,2,…,16 such that F=TRUE. 
Design a GA to solve this problem.

Genetic Algorithms: 
Representation of Individuals

Binary Representations

• simplest and most common

• chromosome: string of bits

–genes: 0 / 1

example: binary representation of 
an integer

3: 00011

15: 01111

16: 10000
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Binary Representations

problem: Hamming distance 
between consecutive integers may 
be > 1 

example: 5 bit binary representation

14: 01110 15: 01111 16: 10000

Probability of changing 15 into 16 by 
independent bit flips (mutation) is not same 
as changing it into 14! (hamming cliffs)

√√√√ Gray coding solves problem.

Gray Coding

• Hamming distance 1

Example: 3-bit Gray Code

integer 0      1       2       3      4       5       6       7

standard 000   001   010   011   100   101   110   111

gray 000   001   011   010   110   111   101   100

• algorithms exist for 

–gray ⇒ binary coding

–binary ⇒ gray coding

Integer Representations

• binary representations may not 
always be best choice

–another representation may be more 
natural for a specific problem

• e.g. for optimization of a function 
with integer variables

Integer Representations

• values may be

–unrestricted (all integers)

– restricted to a finite set

• e.g. {0,1,2,3} 

• e.g. {North,East,South,West}

Integer Representations

• any natural relations between 
possible values?

–obvious for ordinal attributes (e.g. 
integers)

–maybe no natural ordering for 
cardinal attributes (e.g. set of 
compass points)

Real-Valued / Floating Point 
Representations

• when genes take values from a 
continuous distribution

• vector of real values

– floating point numbers

• genotype for solution becomes the 
vector <x 1,x 2,…,x k> with xi∈ℜ
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Permutation Representations

• deciding on sequence of events

–most natural representation is 
permutation of a set of integers

• in ordinary GA numbers may occur 
more than once on chromosome

– invalid permutations!

• new variation operators needed 

Permutation Representations

• two classes of problems

–based on order of events

• e.g. scheduling of jobs

– Job-Shop Scheduling Problem

–based on adjacencies

• e.g. Travelling Salesperson Problem (TSP)

– finding a complete tour of minimal length 
between n cities, visiting each city only once

Permutation Representations

• two ways to encode a permutation

– ith element represents event that 
happens in that location in a sequence

–value of ith element denotes position 
in sequence in which ith event occurs

Permutation Representations

Example (TSP): 

4 cities A,B,C,D and permutation 
[3,1,2,4] denotes the tours:

first encoding type:
[C→A→ B→ D]

second encoding type:
[B→C→ A→ D]

Genetic Algorithms: 
Mutation

Mutation

• a variation operator

• create one offspring from one 
parent

• acts on genotype

• occurs at a mutation rate: pm
–behaviour of a GA depends on pm
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Bitwise Mutation

• flips bits 

–0→1 and 1→0

• setting of pm depends on nature of 
problem

–usually (expected occurence) 
between 1 gene per generation and 1 
gene per offspring

Bitwise Mutation 
(Binary Representations)

Integer Representations: 
Random Resetting

• bit flipping extended

• acts on genotype

• mutation rate: pm

• a permissible random value chosen

• most suitable for cardinal 
attributes

Integer Representations: 
Creep Mutation

• designed for ordinal attributes

• acts on genotype

• mutation rate: pm

Integer Representations: 
Creep Mutation

• add small (positive / negative) 
integer to gene value

– random value

– sampled from a distribution

• symmetric around 0

• with higher probability of small changes 

Integer Representations: 
Creep Mutation

• step size is important

–controlled by parameters

– setting of parameters important

• different mutation operators may 
be used together

–e.g. “big creep” with “little creep”

–e.g. “little creep” with “random 
resetting” (different rates)
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Floating-Point Representations: 
Mutation

• allele values come from a 
continuous distribution

• previously discussed  mutation 
forms not applicable

• special mutation operators 
required

Floating-Point Representations: 
Mutation Operators

• change allele values randomly 
within its domain

–upper and lower boundaries 

• Ui and Li respectively

[ ]iiii

nn

ULxxwhere

xxxxxx
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Floating-Point Representations: 
Uniform Mutation

• values of xi drawn uniformly 
randomly from the [Li,Ui]

–analogous to 

• bit flipping for binary representations

• random resetting for integer 
representations

• usually used with positionwise 
mutation probability

Floating-Point Representations: 
Non-Uniform Mutation with a 

Fixed Distribution

• most common form

• analogous to creep mutation for 
integer representations

• add an amount to gene value

• amount randomly drawn from a 
distribution 

Floating-Point Representations: 
Non-Uniform Mutation

• Gaussian distribution (normal 
distribution)

–with mean 0 

–user-specified standard deviation

–may have to adjust to interval [Li,Ui]

Floating-Point Representations: 
Non-Uniform Mutation

• Gaussian distribution

–2/3 of samples lie within one 
standard deviation of mean

•most changes small but probability of 
very large changes > 0

• Cauchy distribution with same 
standard deviation

–probability of higher values more  
than in gaussian distribution
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Floating-Point Representations: 
Non-Uniform Mutation

• usually

–applied to each gene with probability 1

–pm used to determine standard 
deviation of distribution

• determines probability distribution of size 
of steps taken

Permutation Representations: 
Mutation Operators

• not possible to consider genes 
independently

• move alleles around in genome

• mutation probability shows 
probability of a string undergoing 
mutation

Permutation Representations: 
Swap Mutation

Permutation Representations: 
Insert Mutation

Permutation Representations: 
Scramble Mutation

• May act on whole string or a subset

Permutation Representations: 
Inversion Mutation
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Genetic Algorithms: 
Recombination

Recombination

• process for creating new individual

– two or more parents

• term used interchangably with 
crossover

–mostly refers to 2 parents

• crossover rate pc
– typically in range [0.5,1.0]

–acts on parent pair

Recombination

• two parents selected randomly

• a r.v. drawn from [0,1)

• if value < pc two offspring created 
through recombination

• else two offspring created 
asexually

–copy of parents

Binary Representations: 
One-Point Crossover

Binary Representations: 
N-Point Crossover

Example: N=2

Binary Representations: 
Uniform Crossover

Assume array: [0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36]]
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Binary Representations:
Crossover

• positional bias

–e.g. in 1-point crossover bias against 
keeping bits at head and tail of string 
together

• distributional bias

– in uniform crossover bias is towards 
transmitting 50% of genes from each 
parent

Integer Representations: 
Crossover

• same as in binary representations

• blending is not useful

–averaging even and odd integers 
produce a non-integer !

Floating-Point Representations:
Recombination

• discrete recombination

–similar to crossover operators for bit-
strings

–alleles have floating-point 
representations

–offspring z, parents x and y

value of allele i in offspring: 

z i =x i or z i = y i with equal probability

Floating-Point Representations:
Recombination

• intermediate or arithmetic 
recombination

– for each gene position

–new allele value between those of parents
z i =αx i +(1- α)y i where α in [0,1]

–new allelele values

–averaging reduces range of values in 
population

Floating-Point Representations:
Arithmetic Recombination

• sometimes random α
• usually constant α =0.5

–uniform arithmetic recombination

• 3 types

–simple a. r.

– single a. r.

–whole a. r.

Floating-Point Representations:
Simple Arithmetic Recombination

• pick random recombination point k

child1:
<x 1,...,x k, αyk+1+(1- α)x k+1 ,…, αyn+(1- α)x n> 

child2:
<y 1,...,y k, αxk+1+(1- α)y k+1 ,…, αxn+(1- α)y n>
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Floating-Point Representations:
Simple Arithmetic Recombination

Example: k=8, α=0.5

Floating-Point Representations:
Single Arithmetic Recombination

• pick a random allele k

child1:
<x 1,...,x k-1 , αyk+(1- α)x k, x k+1 ,…, x n> 

child2:
<y 1,...,y k-1 , αxk+(1- α)y k, y k+1 ,…, y n> 

Floating-Point Representations:
Single Arithmetic Recombination

Example: k=3, α=0.5

Floating-Point Representations:
Whole Arithmetic Recombination

• most commonly used

• takes weighted sum of alleles from 
parents

xyChild

yxChild

.)1(.2

.)1(.1

αα

αα

−+=

−+=

Floating-Point Representations:
Whole Arithmetic Recombination

Note: if α=0.5 two offspring are identical!

Permutation Representations:
Recombination

• for adjacency 
representations

– partially mapped 
crossover (PMX)

– edge crossover

• for order based 
representations

– order crossover

– cycle crossover

• requires specially designed operators
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Multiparent Recombination

• more than two parents

• may be advantageous for some 
groups of problems

• not widely used in EC

• approaches grouped as:

–based on allele frequencies

• generalizing uniform crossover

Multiparent Recombination

–based on segmentation and 
recombination (e.g. diagonal 
crossover)

• generalizing n-point crossover

–based on numerical operations on 
real valued alleles (e.g. the center of 
mass crossover)

• generalizing arithmetic recombination 
operators

Genetic Algorithms: 
Fitness Functions

Fitness

• Fitness shows how good a solution 
candidate is

• Not always possible to use real 
(raw) fitness

–Fitness determined by objective 
function(s) and constraint(s)

–Sometimes approximate fitness 
functions needed

Fitness

• population convergence ⇒ fitness 
range decreases

–premature convergence

• good individuals take over population

–slow finishing

• when average nears best, 

• not enough diversity

• can’t drive population to optima 

i.e. best and medium get equal chances

Fitness

• Fitness remapping schemes 
needed

–Fitness scaling 

– Fitness windowing
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Linear Scaling

If

f: raw fitness and f’:scaled fitness

then linear relationship,

f’=af+b

Linear Scaling

a and b chosen such that 

f’avg = favg and f’max=Cmult*favg

where

Cmult: expected no. of copies of 
best individual in population

(Note: Typically for populations of size 50 to 100, 
Cmult=1.2 to 2 is used.)

Linear Scaling

Raw Fitness

Scaled
Fitness

0 f min f avg f max

f’ min

f’ avg

2*f’ avg

0

Linear Scaling

• In later runs,

–average close to maximum

–some very bad individuals greatly  
below population average 

⇒ possible negative scaled fitnesses

• Solution: map minimum raw 
fitness to f’min=0 

Linear Scaling

Raw Fitness

Scaled
Fitness

fmin favg fmax

f’ min

f’ avg

2*f’ avg

0

Sigma Scaling

• developed as improvement to 
linear scaling

– to deal with negative values

– to incorporate problem dependent 
information into the mapping

–population average and standard 
deviation
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c: small integer (usually set to 2)

σσσσ: population’s standard deviation

if f’ <0 then set f’=0

Sigma Scaling

)*(' σcfff −+=

Window Scaling

• Scaling window

f’=F-f where F is a constant and 
F>f(x) for all x

–scaling window W: determines how 
often F is updated

•W>0 ⇒ F=max{f(x)} for the last W 
generations

•W=0 ⇒ infinite window size, i.e. 
F=max{f(x)} over all evaluations

Genetic Algorithms: 
Population Models

Population Models

• generational model

• steady state model

Generational Model

• population of individuals : size N

• mating pool (parents) : size N

• offspring formed from parents

• offspring replace parents

• offspring are next generation : size N

Steady State Model

• not whole population replaced

• N: population size (M≤N)
–M individuals replaced by M offspring

• generational gap

–percentage of replaced

–equal to M/N

• competition based on fitness



19

Genetic Algorithms: 
Parent Selection

Fitness Proportional Selection

• FPS

• e.g. roulette wheel selection

• selection probability depends on 
absolute fitness of individual 
compared to absolute fitness of 
rest of the population

Selection

• Selection scheme: process that 
selects an individual to go into the 
mating pool

• Selection pressure: degree to 
which the better individuals are 
favoured 

– if higher selection pressure, better 
individuals favoured more

Selection Pressure

• determines convergence rate

– if too high, possible premature 
convergence

– if too low, may take too long to find 
good solutions

Selection Schemes

• two types:

–proportionate

–ordinal based

Fitness Proportionate Selection

• e.g. roulette-wheel selection (RWS)

• problems with FPS

–premature convergence

–almost no selection pressure when 
fitness values close together

–may behave differently on transposed 
versions of same fitness function

• e.g. consider f(x) and y(x)=f(x)+10;
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Fitness Proportionate Selection

• solutions

–scaling

–windowing

Roulette-Wheel Selection

f1

f2

f3

f4
f5

f6

f7

m=7

begin
set current_member=1;
while (current_member ≤≤≤≤ m)do

pick uniform r.v. r from [0,1];
set i=1;
while (ai < r) do

set i=i+1;
od
set mating_pool[current_member]=parents[i];
set current_member=current_member+1;

od
end

Roulette-Wheel Selection

m: population size ∑ == i

seli miiPa
1

,...,2,1)(

Stochastic Universal Sampling 

• SUS

• one spin of wheel with m equally 
spaced arms 

• cumulative selection probabilities 
[a1, a2, ……, am]

Stochastic Universal Sampling

f1

f2f3

f4

m=4

begin
set current_member=i=1;
pick uniform r.v. r from [0,1/m];
while (current_member ≤≤≤≤ m) do

while (r ≤≤≤≤ a[i]) do
set mating_pool[current_member]=parents[i];
set r=r+1/m;
set current_member=current_member+1;

od
set i=i+1;

od
end

Stochastic Universal Sampling

m: population size ∑ == i

seli miiPa
1

,...,2,1)(
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Ranking Selection

• ordinal based

• population sorted by fitness

• selection probabilities based on rank

• constant selection pressure

• how to allocate probabilities to ranks

–can be any linear or non-linear function

• e.g. linear ranking selection (LRS)

Linear Ranking

• parameter s: 1.0 < s ≤ 2.0

– in generational GA s: no. of expected 
offspring allotted to best

Assume best has rank m and worst 1

–selection probability of individual with 
rank i:

)1(

)1(2)2(
)_(

−
−+−=

mm

si

m

s
irankpsel

FPS x LRS

A

B

Sum

C

1

5

4

10

Fitness Rank FP LR (s=2) LR (s=1.5)

1

3

2

0.1

0.5

0.4

1.0

0

0.67

0.33

1.0

0.167

0.5

0.33

1.0

Exponential Ranking

• with linear mapping

– range of selection pressure limited

•max s=2 (median fitness has 1 chance)

– if wish to select above average more

• exponential ranking 

c

e
irankp

i

sel

−−= 1
)_( c: normalization factor

Tournament Selection

• ordinal based

• RWS and SUS uses info on whole 
population

– info may not be available

• population too large

• population distributed on a parallel system

•maybe no universal fitness definition (e.g. 
game playing, evol. art, evol. design) 

Tournament Selection

• TS

• relies on an ordering relation to 
rank any n individuals

• most widely used approach

• tournament size k

– if k large, more of the fitter individuals

– controls selection pressure

• k=2 : lowest selection pressure
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begin
set current_member=1;
while (current_member ≤≤≤≤ m)do

pick k inividuals randomly;
select best from k individuals;
denote this individual i; 
set mating_pool[current_member]=i;
set current_member=current_member+1;

od
end

Tournament Selection

m: population size      k: tournament size

Genetic Algorithms: 
Survivor Selection

Survivor Selection

• a.k.a. replacement

• determines who survives into next 
generation

– reduces (m+l) to m

•m population size (also no. of parents)

• l no. of offspring at end of generation

• several replacement strategies

Age-Based Replacement

• fitness not taken into account

• each inidividual exists for same 
number of generations

– in SGA only for 1 generation

• e.g. create 1 offspring and insert into 
population at each generation

–FIFO

– replace random (has more performance 
variance than FIFO; not recommended)

Fitness-Based Replacement

• uses fitness to select m individuals from 
(m+l) (m parents, l offspring)

– fitness based parent selection techniques 

– replace worst

• fast increase in population mean

• possible premature convergence

• use very large populations or no-duplicates

–elitism

• keeps current best in population

• replaces an individual (worst, most similar, etc )


