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Introduction

• many practical problems are constrained

• not all combinations of variable values 
represent valid solutions
– feasible solutions

– infeasible solutions

• constraint handling not straightforward
– most variation operators blind to constraints

Terminology

• problem given in terms of variables (v1,....,vn)

• each variable has domains (D1,...,Dn)

• free search space: S=D1xD2x...xDn

• problems distinguished by presence / absence 
of
– an objective function

– constraints

Problem Types

Yes No
Yes Constrained Optimization Poblem Constraint Satisfaction Problem

No Free Optimization Problem  ---

Free Optimization Problem -
FOP

• defined by the pair <S,f>
– S: free search space

– f: objective function on S

• solution of an FOP is

foptimalwithSs∈

Constraint Satisfaction Problems 
- CSP

• defined by the pair <S, Φ >
– S: free search space

– Φ : a formula (Boolean function on S)
• usually called a feasibility condition

• typically compound entity derived from more 
elementary constraints

• solution to a CSP:

TrueswithSs =∈ )(φ
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CSP Examples

• graph three-coloring problem
– G=(N,E), E⊆NxN

– color the nodes of a graph G with 3 colors in 
such a way that no neighbour nodes have the 
same color

• neighbour node: nodes connected by an edge

• boolean satisfiability problem (SAT)

CSP

• main challenges
– no objective function to define fitness
– extreme case of needle-in-a-haystack-

problem
• large plateaus at zero level (False)
• some singular peaks (True)

• basic approach 
– transform constraints into optimization 

objectives

Constrained Optimization 
Problem - COP

• combination of FOP and CSP

• defined by a triple <S,f,φ>
– S: free search space

– f: objective function on S

– φ: a formula (Boolean function on S)

COP Example - TSP

• n cities C=(c1,c2,...,cn)

• S=Cn

• objective function: minimization

11 11),()( sasdefinedswithssdsf
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COP
• similar to CSP

– transform constraints into optimization function
• becomes FOP

– indirect constraint handling
• done before NIH run

• leave constraints as constraints
– explicitly ensure feasibility of solutions

– direct constraint handling
• enforced explicitly during run

Handling Constraints

• most CSPs are discrete

• two types of COPs
– discrete COPs (combinatorial optimization)

– continuous COPs

– constraint handling basically same
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Constraint Types

• inequality / equality constraints

• linear / non-linear constraints

Search Space

F
F

F

S

Constraint Handling

• three main types
– indirect constraint handling

– direct constraint handling

– mapping constraint handling

Constraint Handling Methods
• indirect constraint handling

– penalty functions

• direct constraint handling
– repairing infeasible solution candidates
– preserving feasibility through special 

representations and operators
– seperation of constraints and objectives

• mapping constraint handling
– using decoder functions

Penalty Functions

Aim: transforming a constrained optimization 
problem into an unconstrained one by adding / 
subtracting a value to / from the objective 
function based on the amount of constraint 
violation

fp = f ± p

Types of Penalty Functions

• death penalty

• static penalty

• dynamic penalty

• adaptive penalty
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Death Penalty

• reject all infeasible solutions

• easiest and computationally most efficient
– no need to estimate degree of infeasibility

• only advisable if the feasible region is fairly large
– search may stagnate if the feasible region is very small

• no use of information from infeasible solutions

• a variation of this method assigns zero fitness to 
infeasibles

Static Penalty

• penalty factors do not depend on current 
generation number in any way
– remain constant during whole run

• it may not be a good idea to keep the same 
penalty factors during the whole run

• penalty factors are problem-dependent

Static Penalty

• extinctive penalties
– very high penalties to prevent use of infeasibles

• binary penalties
– di is binary: 1 if constraint violated, else 0

• distance based penalties
• usually use square of Euclidean distance 

Dynamic Penalty

• current generation number is involved in the 
computation of the corresponding penalty 
factors 
– normally the penalty factors are defined in such 

a way that they increase over time, i.e. over 
generations

• difficult to derive good dynamic penalty 
functions

• require setting of initial values

Adaptive Penalty

• penalty function takes feedback from the search 
process

• not dependent on initial values

• e.g. penalty for the generation (t + 1)
– is decreased if all best individuals in the last k 

generations were feasible

– is increased if they were all infeasible

– stays the same if there are some feasible and infeasible
individuals tied as best in the population

Adaptive Penalty

• setting the parameters of this type of 
approach may be difficult

• tries to avoid either an all-feasible or an all-
infeasible population
– more recent constraint-handling approaches pay

attention to this issue.
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Designing Penalty Functions

• ideal penalty factor cannot be known a priori for
an arbitrary problem
– if penalty too high and optimum lies at the boundaryof 

the feasible region, algorithm will be pushed inside the
feasible region very quickly, and will not be able to 
move back towards boundary 

– if penalty too low, too much search time will be spent 
exploring the infeasible region because penalty will be 
negligible with respect to objective function.

Designing Penalty Functions

• appropriate choice of penalty method may depend on:
– ratio of feasible space to the whole search space

– topological properties  of feasible search space

– evaluation function 

– number of variables and constraints

• promising results from use of adaptive penalties

Repair Functions

• guarantee feasibility of solution

• infeasibles repaired to closest feasible

• require heuristic

• repair cost

• what to do with repaired solution
– replace infeasible (Lamarckian)

– do not replace infeasible (Darwinian / 
Baldwinian)

Special Representation and 
Operators

• preserve feasibility

• due to different representation, special 
operators needed
– e.g. the TSP with EAs

Seperation of Constraints and 
Objectives

• constraints and objectives handled 
seperately
– multi-objective concepts

– co-evolution

– superiority of feasibles

Mapping Constraint Handling

• using decoders to map solutions from the 
infeasible region into the feasible region

• in some cases, special operators to produce 
solutions that lie on the boundary of the 
feasible region have been defined

• main idea is to transform the whole feasible 
region into a different shape which is easier 
to explore by the NIH
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Example Problem:
Multidimensional Knapsack 
Problem with EAs (MKP)

0/1 Single Knapsack Problem

definition:
– single knapsack of capacity C and n items

– each object has 
• weight wi

• profit pi

– find a vector x=(x1,x2,...xn) where xi∈{0,1} such that:
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MKP - Definition

• MKP is a generalization of the 0/1 knapsack 
problem

• m knapsacks of capacities c1,...,cm

• n objects with profits p1,...,pn

• each object has m possible weights
– objecti has weight wij when considered for 

inclusion in the jth knapsack

MKP - Definition
• objective: find a vector x=(x1,...,xn) that 

– guarantees no knapsacks are overfilled
– and yields maximum profit

• solution lies close to boundary of feasible 
region
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Real-World Application Examples

• diet problem
– n different food items

– m different elements (vitamin A, B, ..., 
magnesium, ..., calories etc)

– each element has lower and / or upper limit for 
intake

– each food item has cost

– objective is to minimize cost and adhere to 
nutritional requirements

Real-World Application Examples

• selecting projects to fund
– n different projects

– plan for m years

– budget determined for each year

– each project provides a profit

– objective is to maximize profit and not exceed 
yearly budgets
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MKP - Constraint Handling

• direct search in the complete search space
– penalty functions

• direct search in the feasible search space
– clever initialization
– repair and local search

• indirect search in the feasible search space
– permutation representation
– ordinal representation
– real valued representation

• random keys
• weight coding

MKP - Representations

• binary representation
– if ith position is:

• 1: ith item included in all knapsacks
• 0: ith item is not included in any of the knapsacks

– a string may lead to infeasible solution candidates

• permutation / ordinal representation
– string shows order to include items

• real valued representation
– shows a heuristic / random weight for including each item

• random keys
• weight coding

Penalty Function

• used with binary representation

• penalty approach proposed by Khuri et al
[Khuri,1994]

– allows infeasible strings to join population

– applies penalty to reduce fitness of infeasible string

– penalty term gets higher when solution farther away 
from feasibility 

Penalty Function

• new graded fitness function defined - f(x)
– penalty depends on number of overfilled 

knapsacks
• i.e. number of violated constraints

knapsacksoverfilledofno.isswhere
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! Does not guarantee all feasible solutions. Check !

Penalty Function

• better penalty function which guides population 
towards boundary of feasible region – proposed by 
Gottlieb [Gottlieb, 1999]

• new graded fitness function defined - f(x)
– penalty depends on amount of constraint violation
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Repair and Local Search

• infeasibles repaired by removing items
– randomly

– based on profit-weight ratios

• locally improve found good solutions

• Chu-Beasley, 1998
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Permutation Representation

• considers permutations of all items
• a first-fit algorithm is used to decode a permutation 

into a feasible solution
– starts with the feasible solution x = (0, . . . , 0)
– considers each item in the order determined by the 

permutation 
– each corresponding decision variable increased from 0 to 1 

if the inclusion of item does not violate any capacity 
constraints

• all permutation operators may be used
– uniform order based crossover and swap mutation reported 

as good

Ordinal Representation

• solution represented by a vector v = (v1, . . . , vn) with vk ε
{1, . . . , n − k + 1} for k ε {1, . . . , n}.

• vector mapped to a permutation of the items {1, . . . , n}, 
which is further decoded to a feasible solution via a first-fit 
heuristic 

• example, 
– assume v = (3, 1, 2, 1)
– initially, the ordered list L = (1, 2, 3, 4)
– vectorv is decoded by successively removing the elements 3, 1, 4, 

2 from L yielding the permutation (3, 1, 4, 2)

• classical operators may be used
• poor performance

Random Key Representation

• based on real-valued vectors w = (w1, . . . ,wn), where
each item j is assigned a weight wj ε [0, 1]

• decoder sorts all items according to their weights, 
which yields a permutation in increasing order of 
weights

• the permutation is decoded via the first-fit heuristic
• two point crossover and gaussian mutation have been 

used
• performance reported to be inferior to permutation 

representation

Weight Biased Representation

• solution represented by a vector of real-
valued weights

• to obtain phenotype from weight vector:
– first, the original problem P is temporarily 

modified to P’ by biasing certain problem 
parameters according to the weights

– secondly, a problem specific heuristic is used to 
derive a solution for P’

– solution to P’ is interpreted and evaluated for 
the original (unbiased) problem P

Weight Biased Representation

• classical positional crossover and mutation 
operators can be used

• when a suitable biasing scheme and 
decoding heuristic is used, only feasible 
candidate solutions are created

• weight-coding approach [Raidl 1999]


