
1

Nature-Inspired Computing

Handling Constraints

Dr. Şima Uyar
September 2006

Introduction

• many practical problems are constrained

• not all combinations of variable values
represent valid solutions
– feasible solutions

– infeasible solutions

• constraint handling not straightforward
– most variation operators blind to constraints

Terminology

• problem given in terms of variables (v1,....,vn)

• each variable has domains (D1,...,Dn)

• free search space: S=D1xD2x...xDn

• problems distinguished by presence / absence
of
– an objective function

– constraints

Problem Types

Yes No
Yes Constrained Optimization Poblem Constraint Satisfaction Problem

No Free Optimization Problem ---

Free Optimization Problem -
FOP

• defined by the pair <S,f>
– S: free search space

– f: objective function on S

• solution of an FOP is

foptimalwithSs∈

Constraint Satisfaction Problems
- CSP

• defined by the pair <S, Φ >
– S: free search space

– Φ : a formula (Boolean function on S)
• usually called a feasibility condition

• typically compound entity derived from more
elementary constraints

• solution to a CSP:

TrueswithSs =∈)(φ

2

CSP Examples

• graph three-coloring problem
– G=(N,E), E⊆NxN

– color the nodes of a graph G with 3 colors in
such a way that no neighbour nodes have the
same color

• neighbour node: nodes connected by an edge

• boolean satisfiability problem (SAT)

CSP

• main challenges
– no objective function to define fitness
– extreme case of needle-in-a-haystack-

problem
• large plateaus at zero level (False)
• some singular peaks (True)

• basic approach
– transform constraints into optimization

objectives

Constrained Optimization
Problem - COP

• combination of FOP and CSP

• defined by a triple <S,f,φ>
– S: free search space

– f: objective function on S

– φ: a formula (Boolean function on S)

COP Example - TSP

• n cities C=(c1,c2,...,cn)

• S=Cn

• objective function: minimization

11 11),()(sasdefinedswithssdsf
n

i nii∑ = ++=

COP
• similar to CSP

– transform constraints into optimization function
• becomes FOP

– indirect constraint handling
• done before NIH run

• leave constraints as constraints
– explicitly ensure feasibility of solutions

– direct constraint handling
• enforced explicitly during run

Handling Constraints

• most CSPs are discrete

• two types of COPs
– discrete COPs (combinatorial optimization)

– continuous COPs

– constraint handling basically same

3

Constraint Types

• inequality / equality constraints

• linear / non-linear constraints

Search Space

F
F

F

S

Constraint Handling

• three main types
– indirect constraint handling

– direct constraint handling

– mapping constraint handling

Constraint Handling Methods
• indirect constraint handling

– penalty functions

• direct constraint handling
– repairing infeasible solution candidates
– preserving feasibility through special

representations and operators
– seperation of constraints and objectives

• mapping constraint handling
– using decoder functions

Penalty Functions

Aim: transforming a constrained optimization
problem into an unconstrained one by adding /
subtracting a value to / from the objective
function based on the amount of constraint
violation

fp = f ± p

Types of Penalty Functions

• death penalty

• static penalty

• dynamic penalty

• adaptive penalty

4

Death Penalty

• reject all infeasible solutions

• easiest and computationally most efficient
– no need to estimate degree of infeasibility

• only advisable if the feasible region is fairly large
– search may stagnate if the feasible region is very small

• no use of information from infeasible solutions

• a variation of this method assigns zero fitness to
infeasibles

Static Penalty

• penalty factors do not depend on current
generation number in any way
– remain constant during whole run

• it may not be a good idea to keep the same
penalty factors during the whole run

• penalty factors are problem-dependent

Static Penalty

• extinctive penalties
– very high penalties to prevent use of infeasibles

• binary penalties
– di is binary: 1 if constraint violated, else 0

• distance based penalties
• usually use square of Euclidean distance

Dynamic Penalty

• current generation number is involved in the
computation of the corresponding penalty
factors
– normally the penalty factors are defined in such

a way that they increase over time, i.e. over
generations

• difficult to derive good dynamic penalty
functions

• require setting of initial values

Adaptive Penalty

• penalty function takes feedback from the search
process

• not dependent on initial values

• e.g. penalty for the generation (t + 1)
– is decreased if all best individuals in the last k

generations were feasible

– is increased if they were all infeasible

– stays the same if there are some feasible and infeasible
individuals tied as best in the population

Adaptive Penalty

• setting the parameters of this type of
approach may be difficult

• tries to avoid either an all-feasible or an all-
infeasible population
– more recent constraint-handling approaches pay

attention to this issue.

5

Designing Penalty Functions

• ideal penalty factor cannot be known a priori for
an arbitrary problem
– if penalty too high and optimum lies at the boundaryof

the feasible region, algorithm will be pushed inside the
feasible region very quickly, and will not be able to
move back towards boundary

– if penalty too low, too much search time will be spent
exploring the infeasible region because penalty will be
negligible with respect to objective function.

Designing Penalty Functions

• appropriate choice of penalty method may depend on:
– ratio of feasible space to the whole search space

– topological properties of feasible search space

– evaluation function

– number of variables and constraints

• promising results from use of adaptive penalties

Repair Functions

• guarantee feasibility of solution

• infeasibles repaired to closest feasible

• require heuristic

• repair cost

• what to do with repaired solution
– replace infeasible (Lamarckian)

– do not replace infeasible (Darwinian /
Baldwinian)

Special Representation and
Operators

• preserve feasibility

• due to different representation, special
operators needed
– e.g. the TSP with EAs

Seperation of Constraints and
Objectives

• constraints and objectives handled
seperately
– multi-objective concepts

– co-evolution

– superiority of feasibles

Mapping Constraint Handling

• using decoders to map solutions from the
infeasible region into the feasible region

• in some cases, special operators to produce
solutions that lie on the boundary of the
feasible region have been defined

• main idea is to transform the whole feasible
region into a different shape which is easier
to explore by the NIH

6

Example Problem:
Multidimensional Knapsack
Problem with EAs (MKP)

0/1 Single Knapsack Problem

definition:
– single knapsack of capacity C and n items

– each object has
• weight wi

• profit pi

– find a vector x=(x1,x2,...xn) where xi∈{0,1} such that:

∑∑
==

=≤
n

i
ii

n

i
ii xpxPCxw

11

maximizedis)(whichfor

MKP - Definition

• MKP is a generalization of the 0/1 knapsack
problem

• m knapsacks of capacities c1,...,cm

• n objects with profits p1,...,pn

• each object has m possible weights
– objecti has weight wij when considered for

inclusion in the jth knapsack

MKP - Definition
• objective: find a vector x=(x1,...,xn) that

– guarantees no knapsacks are overfilled
– and yields maximum profit

• solution lies close to boundary of feasible
region

mjcxw

xp

n

i
jiij

n

i
ii

,...,2,1fortosubject

max

1

1

=≤∑

∑

=

=

Real-World Application Examples

• diet problem
– n different food items

– m different elements (vitamin A, B, ...,
magnesium, ..., calories etc)

– each element has lower and / or upper limit for
intake

– each food item has cost

– objective is to minimize cost and adhere to
nutritional requirements

Real-World Application Examples

• selecting projects to fund
– n different projects

– plan for m years

– budget determined for each year

– each project provides a profit

– objective is to maximize profit and not exceed
yearly budgets

7

MKP - Constraint Handling

• direct search in the complete search space
– penalty functions

• direct search in the feasible search space
– clever initialization
– repair and local search

• indirect search in the feasible search space
– permutation representation
– ordinal representation
– real valued representation

• random keys
• weight coding

MKP - Representations

• binary representation
– if ith position is:

• 1: ith item included in all knapsacks
• 0: ith item is not included in any of the knapsacks

– a string may lead to infeasible solution candidates

• permutation / ordinal representation
– string shows order to include items

• real valued representation
– shows a heuristic / random weight for including each item

• random keys
• weight coding

Penalty Function

• used with binary representation

• penalty approach proposed by Khuri et al
[Khuri,1994]

– allows infeasible strings to join population

– applies penalty to reduce fitness of infeasible string

– penalty term gets higher when solution farther away
from feasibility

Penalty Function

• new graded fitness function defined - f(x)
– penalty depends on number of overfilled

knapsacks
• i.e. number of violated constraints

knapsacksoverfilledofno.isswhere

)max(.)()(
1

i

n

i
ii psxpxf −= ∑

=

! Does not guarantee all feasible solutions. Check !

Penalty Function

• better penalty function which guides population
towards boundary of feasible region – proposed by
Gottlieb [Gottlieb, 1999]

• new graded fitness function defined - f(x)
– penalty depends on amount of constraint violation

}|),(max{
1

)()(
min

max

1

IiixCV
w

p
xpxf

n

i
ii ∈+−= ∑

=

Repair and Local Search

• infeasibles repaired by removing items
– randomly

– based on profit-weight ratios

• locally improve found good solutions

• Chu-Beasley, 1998

8

Permutation Representation

• considers permutations of all items
• a first-fit algorithm is used to decode a permutation

into a feasible solution
– starts with the feasible solution x = (0, . . . , 0)
– considers each item in the order determined by the

permutation
– each corresponding decision variable increased from 0 to 1

if the inclusion of item does not violate any capacity
constraints

• all permutation operators may be used
– uniform order based crossover and swap mutation reported

as good

Ordinal Representation

• solution represented by a vector v = (v1, . . . , vn) with vk ε
{1, . . . , n − k + 1} for k ε {1, . . . , n}.

• vector mapped to a permutation of the items {1, . . . , n},
which is further decoded to a feasible solution via a first-fit
heuristic

• example,
– assume v = (3, 1, 2, 1)
– initially, the ordered list L = (1, 2, 3, 4)
– vectorv is decoded by successively removing the elements 3, 1, 4,

2 from L yielding the permutation (3, 1, 4, 2)

• classical operators may be used
• poor performance

Random Key Representation

• based on real-valued vectors w = (w1, . . . ,wn), where
each item j is assigned a weight wj ε [0, 1]

• decoder sorts all items according to their weights,
which yields a permutation in increasing order of
weights

• the permutation is decoded via the first-fit heuristic
• two point crossover and gaussian mutation have been

used
• performance reported to be inferior to permutation

representation

Weight Biased Representation

• solution represented by a vector of real-
valued weights

• to obtain phenotype from weight vector:
– first, the original problem P is temporarily

modified to P’ by biasing certain problem
parameters according to the weights

– secondly, a problem specific heuristic is used to
derive a solution for P’

– solution to P’ is interpreted and evaluated for
the original (unbiased) problem P

Weight Biased Representation

• classical positional crossover and mutation
operators can be used

• when a suitable biasing scheme and
decoding heuristic is used, only feasible
candidate solutions are created

• weight-coding approach [Raidl 1999]

