Nature-Inspired Computing

Handling Constraints

Dr. Sima Uyar
September 2006

Introduction

« many practical problems are constrained
« not all combinations of variable values
represent valid solutions
— feasible solutions
— infeasible solutions
¢ constraint handling not straightforward
— most variation operators blind to constraints

Terminology

* problem given in terms of variables (v..,v,)
each variable has domains,(D,D,)
» free search space: Spi,x...xD,

problems distinguished by presence / absenc
of

— an objective function

— constraints

Problem Types

Yes No
Yes Constrained Optimization Poblem Constraint Satisfaction Problem
No Free Optimization Problem

Free Optimization Problem -
FOP
« defined by the pair <S,f>

— S: free search space
— f: objective function on S

« solution of an FOP is

sOS with optimal f

Constraint Satisfaction Problems
-CSP

+ defined by the pair <Sp >
— S: free search space

— & : a formula (Boolean function on S)
« usually called a feasibility condition

« typically compound entity derived from more
elementary constraints

* solution to a CSP:

sOS with ¢(s5) =True

CSP Examples

* graph three-coloring problem
— G=(N,E), EINxN
— color the nodes of a graph G with 3 colors in

such a way that no neighbour nodes have the

same color

« neighbour node: nodes connected by an edge

* boolean satisfiability problem (SAT)

CSP

¢ main challenges

— no objective function to define fitness

— extreme case of needle-in-a-haystack-
problem

* large plateaus at zero level (False)
« some singular peaks (True)
« basic approach

— transform constraints into optimization
objectives

Constrained Optimization
Problem - COP

» combination of FOP and CSP
« defined by a triple <S¢
— S: free search space
— f: objective function on S
— @ a formula (Boolean function on S)

¢ similar to CSP

leave constraints as constraints

COP

— transform constraints into optimization function
» becomes FOP

— indirect constraint handling
« done before NIH run

— explicitly ensure feasibility of solutions
— direct constraint handling
« enforced explicitly during run

COP Example - TSP
* n cities C=(g,c,,...,G)

* S=C
« objective function: minimization

f(5)=Y, d(s,5,) with s, defined as s

Handling Constraints

* most CSPs are discrete
 two types of COPs

— discrete COPs (combinatorial optimization)
— continuous COPs

— constraint handling basically same

Constraint Types

* inequality / equality constraints
¢ linear / non-linear constraints

Search Space

Constraint Handling

« three main types
— indirect constraint handling
— direct constraint handling
— mapping constraint handling

Constraint Handling Methods

indirect constraint handling

— penalty functions

direct constraint handling

— repairing infeasible solution candidates

— preserving feasibility through special
representations and operators

— seperation of constraints and objectives
mapping constraint handling
— using decoder functions

Penalty Functions

Aim: transforming a constrained optimization
problem into an unconstrained one by adding
subtracting a value to / from the objective
function based on the amount of constraint
violation

fo=fxp

Types of Penalty Functions

¢ death penalty
static penalty
¢ dynamic penalty
 adaptive penalty

Death Penalty

reject all infeasible solutions

easiest and computationally most efficient

— no need to estimate degree of infeasibility

only advisable if the feasible region is fairlyde
— search may stagnate if the feasible region is sevil
no use of information from infeasible solutions

a variation of this method assigns zero fitness to
infeasibles

Static Penalty

* penalty factors do not depend on current
generation number in any way
— remain constant during whole run

« it may not be a good idea to keep the same
penalty factors during the whole run

¢ penalty factors are problem-dependent

Static Penalty

extinctive penalties

— very high penalties to prevent use of infeasibles
binary penalties

— d is binary: 1 if constraint violated, else 0

distance based penalties
« usually use square of Euclidean distance

Dynamic Penalty

current generation number is involved in the

computation of the corresponding penalty

factors

— normally the penalty factors are defined in such
a way that they increase over time, i.e. over
generations

difficult to derive good dynamic penalty

functions

require setting of initial values

Adaptive Penalty

» penalty function takes feedback from the search
process

» not dependent on initial values

* e.g. penalty for the generation (t + 1)

— is decreased if all best individuals in the last k
generations were feasible

— is increased if they were all infeasible
— stays the same if there are some feasible andsibie
individuals tied as best in the population

Adaptive Penalty

* setting the parameters of this type of
approach may be difficult

« tries to avoid either an all-feasible or an all-
infeasible population

— more recent constraint-handling approaches pay
attention to this issue.

Designing Penalty Functions

* ideal penalty factor cannot be known a priori for
an arbitrary problem

— if penalty too high and optimum lies at the boundzry
the feasible region, algorithm will be pushed indide
feasible region very quickly, and will not be abte
move back towards boundary

— if penalty too low, too much search time will beesp

exploring the infeasible region because penalty gl
negligible with respect to objective function.

Repair Functions

« guarantee feasibility of solution
« infeasibles repaired to closest feasible
* require heuristic
* repair cost
« what to do with repaired solution
— replace infeasible (Lamarckian)

— do not replace infeasible (Darwinian /
Baldwinian)

Seperation of Constraints and
Objectives

« constraints and objectives handled
seperately
— multi-objective concepts
— co-evolution
— superiority of feasibles

Designing Penalty Functions

appropriate choice of penalty method may depend off
— ratio of feasible space to the whole search space
— topological properties of feasible search space
— evaluation function

— number of variables and constraints

promising results from use of adaptive penalties

Special Representation and
Operators

« preserve feasibility

« due to different representation, special
operators needed
— e.g. the TSP with EAs

Mapping Constraint Handling

« using decoders to map solutions from the
infeasible region into the feasible region

¢ in some cases, special operators to produce
solutions that lie on the boundary of the
feasible region have been defined

e main idea is to transform the whole feasible

region into a different shape which is easier
to explore by the NIH

Example Problem:
Multidimensional Knapsack
Problem with EAs (MKP)

0/1 Single Knapsack Problem

definition:
— single knapsack of capacity C and n items
— each object has
« weight w
« profitp
— find a vector x=(xX,,...X,) where x{0,1} such that:

> wx <C for which P(x)=) px is maximized

i=1 i=1

MKP - Definition

MKP is a generalization of the 0/1 knapsack
problem

m knapsacks of capacitieg.c,G,
n objects with profits ...,
each object has m possible weights

— objecti has weightv; when considered for
inclusion in thgth knapsack

MKP - Definition
« objective: find a vector x=¢x..,x,) that
— guarantees no knapsacks are overfilled
— and yields maximum profit

« solution lies close to boundary of feasible
region

maxy_ px
=

subjectto Y wx <c; for j=12,...m
i=1

Real-World Application Examples

« diet problem
— n different food items

— m different elements (vitamin A, B, ...,
magnesium, ..., calories etc)

— each element has lower and / or upper limit for
intake

— each food item has cost

— objective is to minimize cost and adhere to
nutritional requirements

Real-World Application Examples

« selecting projects to fund
— n different projects
— plan for m years
— budget determined for each year
— each project provides a profit

— objective is to maximize profit and not exceed
yearly budgets

MKP - Constraint Handling

direct search in the complete search space
— penalty functions
« direct search in the feasible search space
— clever initialization
— repair and local search
« indirect search in the feasible search space
— permutation representation
— ordinal representation

— real valued representation
« random keys
« weight coding

Penalty Function

« used with binary representation

» penalty approach proposed by Khuri et al
[Khuri, 1994]

— allows infeasible strings to join population
— applies penalty to reduce fitness of infeasihiegt

— penalty term gets higher when solution fartheryawa
from feasibility

MKP - Representations

binary representation
— if ith position is:
« 1:ithitem included irall knapsacks
« 0:ith item isnot included inany of the knapsacks
— a string may lead to infeasible solution candislate
¢ permutation / ordinal representation
— string shows order to include items
« real valued representation

— shows a heuristic / random weight for includinghresem
« random keys
« weight coding

Penalty Function

* new graded fitness function defined - f(x)

— penalty depends on number of overfilled
knapsacks

« i.e. number of violated constraints

f() =3 px)-smax(p)
i=1
where s is no. of overfilled knapsacks

! Does not guarantee all feasible solutions. Check !

Penalty Function

* better penalty function which guides population
towards boundary of feasible region — proposed by
Gottlieb[Gott1ieb, 1999]

» new graded fitness function defined - f(x)
— penalty depends on amount of constraint violation

f(%) =(i p.x)-pmﬁflmax{cwx,i)n 01}

min

Repair and Local Search

infeasibles repaired by removing items
— randomly

— based on profit-weight ratios

« locally improve found good solutions

¢ Chu-Beasley, 1998

Permutation Representation

considers permutations of all items

afirst-fit algorithm is used to decode a permutation

into a feasible solution

— starts with the feasible solutiar (0, . . . ,0)

— considers each item in the order determined by the
permutation

— each corresponding decision variable increased €réonl
if the inclusion of item does not violate any capaci
constraints

all permutation operators may be used

— uniform order based crossover and swap mutatjoorted
as good

Ordinal Representation

solution represented by a vector (v1, . . ., vi) with vk e

{1,...,n-k+forke{l,...,n}

vector mapped to a permutation of the itdhs . . , n}

which is further decoded to a feasible solutionaviast-fit

heuristic

example,

— assume'=(3,1,2,1)

— initially, the ordered list = (1, 2, 3, 4)

— vectorv is decoded by successively removing the elemerits&,
2 fromL yielding the permutation (3, 4, 2)

classical operators may be used

» poor performance

Random Key Representation

based on real-valued vectavs= (W1, . . . ,wr), where
each itenj is assigned a weightj ¢ [0, 1]

decoder sorts all items according to their weights
which yields a permutation in increasing order of
weights

the permutation is decoded via the first-fit hetici
two point crossover and gaussian mutation hava beg
used

performance reported to be inferior to permutation
representation

Weight Biased Representation

« solution represented by a vector of real-

valued weights

« to obtain phenotype from weight vector:

— first, the original problem P is temporarily
modified to P’ by biasing certain problem
parameters according to the weights

— secondly, a problem specific heuristic is used to
derive a solution for P’

— solution to P’ is interpreted and evaluated for
the original (unbiased) problem P

Weight Biased Representation

« classical positional crossover and mutation
operators can be used

« when a suitable biasing scheme and
decoding heuristic is used, only feasible
candidate solutions are created

 weight-coding approadhRai dI 1999]

