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Issues Considered

• experimental design
– algorithm design

– experiment design

• test problems

• performance criteria

• appropriate statistics

Experimentation

• define a set of goals / objectives
– formulate a question or hypothesis

– design the experiments (algorithm runs may be 
considered as experiments)

• collect necessary data

• analyze data

• design further experiments

Goals for Experimentation

• obtain a good solution for a given problem

• show that a specific approach is 
applicable in a problem domain

• show that a proposed algorithm improves 
a benchmark case

• show that an algorithm outperforms
traditional algorithms

Goals for Experimentation

• find the best parameter setup for an algorithm

• explain an algorithm behavior

• show if an algorithm scales-up with problem 
size

• experiment with effect of parameter settings on 
performance

Different Goals

• find a very good solution at least once -
design

• find a good solution at almost every run -
production

• must meet scientific standards for 
publication
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Test Problems

• benchmark problems
• real-world problems
• randomly generated problems
• choice of test problem has severe implications on

– generalizability
– scope of the results
– conclusions usually depend even on the chosen problem 

instances

Test Problems

• using real-world data

• advantages:
– results very relevant from the application point of view

• disadvantages
– can be over-complicated

– can be few available sets of real data

– may be commercial sensitive – difficult to publish and 
to allow others to compare

– results are hard to generalize

Test Problems

• use standard data sets in problem repositories, e.g.:
– OR-Library

http://www.ms.ic.ac.uk/info.html
– UCI Machine Learning Repository

www.ics.uci.edu/~mlearn/MLRepository.html

• advantage: 
– well-chosen problems and instances
– much other work on these � results comparable

• disadvantage:
– not real – might miss crucial aspect
– algorithms get tuned for popular test suites

Test Problems
• random problem instance generators, e.g.:

– GA/EA Repository of Test Problem Generators
http://www.cs.uwyo.edu/~wspears/generators.html

• advantage:
– allow very systematic comparisons because they:
– can produce many instances with the same characteristics
– enable gradual increase / decrease of hardness)
– can be shared allowing comparisons with other 

researchers
• disadvantage

– not real – might miss crucial aspects of problem
– a generator might have hidden bias

Analysis of Results

• NIHs are stochastic, i.e.,
– do not draw conclusions based on a single run 

– perform sufficient number of independent 
runs

– use statistical measures (averages, 
standard deviations, ...) 

– use statistical tests

Analysis of Results

• for comparisons:
– always do a fair competition
– use the same amount of resources for the 

competitors
– use the same performance measures   
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What to Measure

• average result in given time
• average time for given result
• proportion of runs within % of target
• best result over n runs
• amount of computing required to reach 

target in given time with % confidence
• …

What Time Units?

• elapsed time? 
– depends on computer, network, etc…

• CPU time?
– depends on skill of programmer, implementation, etc…

• generations / iterations?
– difficult to compare when parameters like population size 

change

• evaluations?
– evaluation time could depend on algorithm, e.g. direct vs. 

indirect representation

Measures
• performance measures (offline)

– efficiency (speed)
• CPU time

• no. of steps, i.e., generated points in the search space

– effectivity (alg. quality)
• success rate

• solution quality at termination

Measures

• “working” measures (online)

– population distribution (genotypic)

– fitness distribution

– improvements per time unit or per 
genetic operator

– …

Performance Measures
• no. of generated points, i.e. no. of fitness evaluations

• AES: average no. of evaluations to solution

• SR: success rate = % of runs finding a solution 
(individual with acceptable quality / fitness)

• MBF: mean best fitness at termination, i.e., best per 
run, mean over a set of runs

• SR ≠≠≠≠ MBF

– low SR, high MBF: good approximizer (more time 
helps?

– high SR, low MBF

Fair Experimentation

• allow all algorithms the same amount of 
running time

• allow each NIH to compare, the same no. of 
evaluations, but 
– look out for hidden labour, e.g. in heuristic 

mutation operators
– lookout for the possibility of fewer evaluations 

by smart operators
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No Free Lunch Theorem - NFL

There does not exist any algorithm which is 
better than another over all possible 
instances of optimization problems.

Analysis of Algorithms

• worst-case analysis

• average-case analysis

• experimental analysis

Experimental Research

• experimental design

• experimental analysis

Most Common Errors

• reporting result of 1 run is sufficient

• reporting best result of several runs is 
sufficient

• using plots is sufficient; no statistics needed
– obvious from plots !

• reporting averages of several runs is 
sufficient

Why Need Statistics?

• need to draw strongest possible conclusions 
from limited data
– two problems:

• important differences may be obscured by 
experimental imprecision

– hard to distinguish between real differences and random 
variation

• tendency to over-generalize from limited data

Why Need Statistics?

• statistics allow general conclusions
– extrapolating from SAMPLE to POPULATION

• sample: data collected from experiments

• population: data from all possible experiments
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What can Statistics Do?

• statistical estimation
– estimate population mean from sample mean

• statistical hypothesis testing
– decide whether observed difference is likely to be 

caused by chance

• statistical modeling
– test how well experimental data fit a model

• e.g. linear regression

Why are Averages not Sufficient?

• assume two methods: A and B

• want to show method A better than method 
B
– is the difference between means greater than 0?

Why are Averages not Sufficient?
Assume 7 samples:
Average of A: 10.5
Average of B: 9.5

Average of A > Average of B

10.59.5

x x x x x x x

x x x x xxx

A

B

BUT

Why are Averages not Sufficient?

• interested in distribution of mean of n 
samples
– as n gets bigger, distribution approaches true 

mean

• want to be able to say:

In x% of all possible experiments, the true 
mean of this distribution will lie within a 
specified interval.

Confidence Intervals

• confidence interval of a proportion

• confidence interval of a mean

Confidence Interval of a Mean

• CI is a range of values
– e.g. 95%CI: can be 95% sure that CI includes 

true population mean
• no uncertainty about sample mean!!!!

– commonly shown as 
• 20.0 to 32.0

• [20.0, 32.0]
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Confidence Interval of a Mean

• assumption: population distributed according to 
Gaussian distribution
– not too important if large samples used

– central limit theorem

• to calculate CI:
– sample mean

– sample SD

– sample size

– how much confidence?
• typically 95% (sometimes 99%: wider interval)

Central Limit Theorem

• CLT: sum of independent, identically distributed (IID) 
random variables approaches a Gaussian 

• CLT: regardless of the distribution of values in population, 
for large sample sizes, the distribution of means from 
independently chosen samples will approximate a 
Gaussian distribution

• how large?
– depends on definition of “approximately” and the distribution of

population 
• even if weird distribution, 100 samples enough 
• if approximately symmetrical and unimodal, 10 – 20 samples enough

Comparing Groups with Confidence 
Intervals

• CI of a difference between means
– can be x% sure that value of true difference between 

populations lies within CI 
(implicit t-test)

Comparing Groups with Confidence 
Intervals

• Are CI sufficient for a comparison?

Assume two approaches A and B:

Case 1:
95%CI for A: 125 to 750

95%CI for B: 900 to 1800

Case 2:
95%CI for A: 125 to 1300

95%CI for B: 900 to 1800

p-Values

• for comparing two groups
– CI of difference between means

• question: How large is the difference in the overall 
population?

– using p-values
• question: How sure are we that there is a difference 

between the populations?
– observed difference may be due to coincidence or random 

sampling

• tells you how rare such a coincidence is 

p-Values

• p-value : if both are from the samedistribution,  
probabilitythat difference the between the means 
of randomly selected samples will be larger than 
or equal to observed

• null hypothesis (H0): distributions in the two 
populations are the same

• t-test
– t-test assumes Gaussian distribution and equal SDs
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p-Values

Example:
• assume p value is 0.034

3.4% of all experiments will result in a difference ≥
observed

• two possible interpretations:
– they have different means
– they have identical means and observed 

difference is a coincidence

• can’t say if H0 is correct or not !

Statistical Significance & 
Hypothesis Testing

Hypothesis Testing:
1. assume samples randomly selected from populations
2. state null hypothesis: distribution of values in two 

populations same
3. define threshold for declaring p value significant 

(significance level of test : α)
– usually α chosen as 0.05

4. select test and calculate p
5. if p < α → difference is statistically significant and 

reject null hypothesis

Significance

• if α=0.05: is p=0.04 more significant then 
p=0.004?
– based on definition: no

– sometimes “verysignificant” and “extremely
significant” used

• commonly:
p<0.05  : significant

p<0.01  : highly significant

p<0.001: extremely significant

Significance

• if α=0.05:
– p = 0.049 shows a significant difference

– p = 0.051 shows a not significant difference

– look at p value itself

• if p is slightly greater than α
– sometimes “marginally significant” or “almost 

significant” is used

– or add a third category: significant, not significant and 
inconclusive 

Significance

• if not significant
– can not say null hypothesis is true !

– means data not strong enough to reject null 
hypothesis

Non-Parametric Tests

• does not assume Gaussian distribution
• Mann-Whitney rank sum test
• Wilcoxon rank sum test

– usually called Mann-Whitney-Wilcoxon test
– works on ranks of values
– rank data points regardless of group

• if a tie occurs, give average of the ranks

– add up ranks in each group
– question: if distribution of ranks between two groups were random, 

what is the probability that the difference between the sums would 
be so large? 

– use p-value

• alternately use t-test on ranks
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Parametric x Non-Parametric Tests

• use non-parametric if:
– definitely sure that no Gaussian distribution

– data has very large outliers

• if parametric tests used with non-Gaussian 
distributions
– OK if large sample sizes

– what is large? 

Comparing Three or More Means
• ANOVA : one-way analysis of variance

– analyzes variance among values
– tests null hypothesis that all populations have identical means
– calculates p-value
– if null hypothesis were true, what is the probability that the 

means of randomly selected samples will vary as much as or 
more than what has occurred?

– has same assumptions as t-test
– can’t say which is better

Multiple Comparison Post Tests

• many tests
– compare control group mean to all others? –

Dunnett’s test

– compare all – Bonferroni, Tukey, Student-
Newman-Keuls

• Bonferoni: easiest and most common but too large 
CIs (do not use if ≥ 5 groups)

• for non-parametric testing
– Kruskal-Wallis test

MANOVA

• use MANOVA if comparing
– multiple groups and

– effects of multiple factors
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