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Experimentation

define a set of goals / objectives
— formulate a question or hypothesis

— design the experiments (algorithm runs may be
considered as experiments)

collect necessary data
analyze data
design further experiments

Goals for Experimentation

find the best parameter setup for an algorithm
explain an algorithm behavior

show if an algorithm scales-up with problem
size

experiment with effect of parameter settings o
performance

=

Issues Considered

experimental design
— algorithm design

— experiment design
test problems
performance criteria
appropriate statistics

Goals for Experimentation

* obtain a good solution for a given problem

» show that a specific approach is
applicable in a problem domain

» show that a proposed algorithm improves
a benchmark case

 show that an algorithm outperforms
traditional algorithms

Different Goals

« find a very good solution at least once -

design
find a good solution at almost every run -
production

must meet scientific standards for
publication




Test Problems

benchmark problems
real-world problems
randomly generated problems

choice of test problem has severe implications on
— generalizability
— scope of the results

— conclusions usually depend even on the chosengmmob
instances

Test Problems

using real-world data
« advantages:
— results very relevant from the application poinvigfw
¢ disadvantages
— can be over-complicated
— can be few available sets of real data

— may be commercial sensitive — difficult to publastd
to allow others to compare

— results are hard to generalize

Test Problems

use standard data sets in problem repositories, e.g
— OR-Library
http://www.ms.ic.ac.uk/info.html
— UCI Machine Learning Repository
www.ics.uci.edu/~mlearn/MLRepository.html
advantage:
— well-chosen problems and instances
— much other work on thes® results comparable
« disadvantage:
— not real — might miss crucial aspect
— algorithms get tuned for popular test suites

Analysis of Results

* NIHs are stochastic, i.e.,
— do not draw conclusions based on a single run

— perform sufficient number of independent
runs

— use statistical measures (averages,
standard deviations, ...)

— use statistical tests

Test Problems

« random problem instance generators, e.g.:
— GA/EA Repository of Test Problem Generators
http://www.cs.uwyo.edu/~wspears/generators.html

¢ advantage:
— allow very systematic comparisons because they:
— can produce many instances with the same chasitter
— enable gradual increase / decrease of hardness)

— can be shared allowing comparisons with other
researchers

« disadvantage

— not real — might miss crucial aspects of problem
— agenerator might have hidden bias

Analysis of Results

« for comparisons:
— always do a fair competition

— use the same amount of resources for the
competitors

— use the same performance measures




What to Measure

 average result in given time

* average time for given result
proportion of runs within % of target
best result oven runs

« amount of computing required to reach
target in given time with % confidence

What Time Units?

elapsed time?

— depends on computer, network, etc...

CPU time?

— depends on skill of programmer, implementation,.etc

generations / iterations?

— difficult to compare when parameters like populatize
change

evaluations?

— evaluation time could depend on algorithm, e.gedivs.
indirect representation

Measures

« performance measures (offline)
— efficiency (speed)
» CPU time
* no. of steps, i.e., generated points in the sespele
— effectivity (alg. quality)
* success rate
« solution quality at termination

Measures

* “working” measures (online)
— population distribution (genotypic)
—fitness distribution

—improvements per time unit or per
genetic operator

Performance Measures

* no. of generated points, i.e. no. of fithess evidna

» AES: average no. of evaluations to solution

* SR: success rate = % of runs finding a solution
(individual with acceptable quality / fitness)

« MBF: mean best fitness at termination, i.e., ipest
run, mean over a set of runs

* SR MBF
— low SR, high MBF: good approximizer (more time

helps?

— high SR, low MBF

Fair Experimentation

« allow all algorithms the same amount of
running time
« allow each NIH to compare, the same no. of
evaluations, but
— look out for hidden labour, e.g. in heuristic
mutation operators

— lookout for the possibility of fewer evaluations
by smart operators




No Free Lunch Theorem - NFL

There does not exist any algorithm which is
better than another over all possible
instances of optimization problems.

Analysis of Algorithms

e worst-case analysis
¢ average-case analysis
« experimental analysis

Experimental Research

 experimental design
 experimental analysis

Most Common Errors

* reporting result of 1 run is sufficient

« reporting best result of several runs is
sufficient

« using plots is sufficient; no statistics needed
— obvious from plots !

¢ reporting averages of several runs is
sufficient

Why Need Statistics?

* need to draw strongest possible conclusions
from limited data

— two problems:
« important differences may be obscured by
experimental imprecision

— hard to distinguish between real differences andom
variation

« tendency to over-generalize from limited data

Why Need Statistics?

« statistics allow general conclusions
— extrapolating from SAMPLE to POPULATION
» sample: data collected from experiments
« population: data from all possible experiments




What can Statistics Do?

* statistical estimation
— estimate population mean from sample mean
« statistical hypothesis testing

— decide whether observed difference is likely to be
caused by chance

* statistical modeling

— test how well experimental data fit a model
« e.g. linear regression

Why are Averages not Sufficient?

Assume 7 samples:
Average of A: 10.5
Average of B: 9.5
Average of A > Average of B

BUT

Why are Averages not Sufficient?

* assume two methods: A and B

« want to show method A better than method
B

— is the difference between means greater than 07

Why are Averages not Sufficient?

« interested in distribution of mean of n
samples

— as n gets bigger, distribution approaches true
mean

« want to be able to say:
In x% of all possible experiments, the true

mean of this distribution will lie within a
specified interval.

Confidence Intervals

« confidence interval of a proportion
» confidence interval of a mean

Confidence Interval of a Mean

» Clis arange of values
— e.g. 95%CIl: can be 95% sure that Cl includes
true population mean
* no uncertainty about sample mean!!!!
— commonly shown as
+ 20.0t0 32.0
+ [20.0, 32.0]




Confidence Interval of a Mean

» assumption: population distributed according to
Gaussian distribution

— not too important if large samples used

— central limit theorem

to calculate CI:

— sample mean

— sample SD

— sample size

— how much confidence?
« typically 95% (sometimes 99%: wider interval)

Central Limit Theorem

e CLT: sum of independent, identically distributedD}
random variables approaches a Gaussian

« CLT: regardless of the distribution of values opplation,
for large sample sizes, the distribution of meaomf
independently chosen samples will approximate a
Gaussian distribution

* how large?
— depends on definition of “approximately” and thstrbution of
population
« even if weird distribution, 100 samples enough
« if approximately symmetrical and unimodal, 10 — 20 s@®phough

Comparing Groups with Confidence
Intervals

 CI of a difference between means
— can be x% sure that value of true difference betwe
populations lies within CI
(implicit t-test)

Comparing Groups with Confidence
Intervals

¢ Are Cl sufficient for a comparison?

Assume two approaches A and B:
Case 1:

95%CI for A: 125 to 750

95%Cl for B: 900 to 1800
Case 2:

95%Cl for A: 125 to 1300

95%Cl for B: 900 to 1800

p-Values

« for comparing two groups
— CI of difference between means
« question: How large is the difference in the ollera
population?
— using p-values

« question: How sure are we that there is a diffeeen
between the populations?
— observed difference may be due to coincidencaratam
sampling
« tells you how rare such a coincidence is

p-Values

* p-value : if both are from the sardistribution,

probabilitythat difference the between the means
of randomly selected samples will be larger than
or equal to observed

« null hypothesis (B): distributions in the two

populations are the same

¢ t-test

— t-test assumes Gaussian distribution and equal SDs




p-Values

Example:
« assume p value is 0.034

3.4% of all experiments will result in a differenze
observed

* two possible interpretations:
— they have different means

— they have identical means and observed
difference is a coincidence

+ can't say if H is correct or not !

Statistical Significance &
Hypothesis Testing

Hypothesis Testing:

1.
2.

3.

assume samples randomly selected from populatior]

state null hypothesis: distribution of valuesvim
populations same

define threshold for declaring p value significan
(significance level of test : a)

— usuallya chosen as 0.05

4.
5.

select test and calculate p

if p<a - difference isstatistically significant and
reject null hypothesis

Significance

« if 0=0.05: is p=0.04 more significant then
p=0.0047?
— based on definition: no

— sometimes “vergignificant” and “extremely
significant” used
« commonly:
p<0.05 : significant
p<0.01 : highly significant
p<0.001: extremely significant

Significance

if 0=0.05:

— p = 0.049 shows a significant difference

— p =0.051 shows a not significant difference

— look at p value itself

if p is slightly greater than

— sometimes “marginally significant” or “almost
significant” is used

— or add a third category: significant, not sigrafit and
inconclusive

Significance

« if not significant
— can not say null hypothesis is true !

— means data not strong enough to reject null
hypothesis

Non-Parametric Tests

does not assume Gaussian distribution
Mann-Whitney rank sum test
Wilcoxon rank sum test
— usually called Mann-Whitney-Wilcoxon test
— works on ranks of values
— rank data points regardless of group
« if a tie occurs, give average of the ranks
add up ranks in each group

what is the probability that the difference betwésnsums would
be so large?

— use p-value
alternately use t-test on ranks

question: if distribution of ranks between two e were random,

7]



Parametric x Non-Parametric Tests

* use non-parametric if:
— definitely sure that no Gaussian distribution
— data has very large outliers
« if parametric tests used with non-Gaussian
distributions
— OK if large sample sizes
— what is large?

Comparing Three or More Means

« ANOVA : one-way analysis of variance

analyzes variance among values

— tests null hypothesis that all populations haesital means
— calculates p-value

— if null hypothesis were true, what is the probigpthat the
means of randomly selected samples will vary ashnascor
more than what has occurred?

— has same assumptions as t-test
can’t say which is better

Multiple Comparison Post Tests

» many tests

— compare control group mean to all others? —
Dunnett’s test

— compare all — Bonferroni, Tuke$tudent-
Newman-Keuls
« Bonferoni: easiest and most common but too large
Cls (do not use i& 5 groups)
« for non-parametric testing
— Kruskal-Wallis test

MANOVA

* use MANOVA if comparing
— multiple groups and
— effects of multiple factors
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