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Introduction

• universal behavior of individuals 
leads to cultural adaptation:

–evaluate

– compare

– imitate

• these can be modeled in computer 
programs to solve hard problems

Evaluate

• tendency to evaluate stimuli as 
positive or negative / good or bad

• leads to learning

– individual can learn to distinguish the 
features of the environment as good 
or bad

Compare

• individuals in a population 
compare themselves to others

• serves as a motivation to learn and 
change

• standards for social behavior set 
by comparing to others 

Imitate

• imitating a behavior which has led 
an individual to be superior

PSO

• population based

• stochastic 

• developed by Eberhart, Kennedy, 
1995

• inspired by social behavior of bird 
flocking or fish schooling
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PSO

• random initial population

• search for optima through 
updating generations

• potential solutions: particles

• particles move through system 
following the current optimum 
particles

PSO

• two variations

–binary PSO

–continuous (real-valued) PSO

•more popular version

PSO Applications

• function optimization

• ANN training

• fuzzy system control

• similar areas EAs are applied to

PSO

• each particle (solution)

–has fitness value (objective function)

–has velocity (directing flight)

–has position

• each particle made up of 

–string of binary decision variables – binary 
PSO

–vector of real-valued variables –
continuous PSO

PSO

• available info for each particle

– its own experience

–experience of those around it

• particles follow two current best

–pbest: best solution it has achieved so far

–gbest: best solution any particle has 
achieved so far (global)

• if only topological neighbors considered: lbest

for each particle
initialize particle;

do {
for each particle {

calculate fitness;
if fitness > pbest

set current value as pbest;
}
choose gbest;
for each particle {

calculate particle velocity;
update particle position;

}
} while max. no of iterations or min.

error ctiteria not met;

!! velocities in each dimension have a Vmax!!
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Continuous PSO

• particle velocity update rule:
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where
• v[]: particle velocity
• present[]: current best solution
• rnd: random number in [0,1]
• c1 and c2: learning factors

• usually c1=c2=2 or c1+c2=4

Continuous PSO

• Vmax

–determines max change amount for 
each particle for one iteration

–usually range is used

–e.g. if x is in [-10,10] Vmax is 20

Binary PSO

• an individual needs to make a set 
of decisions based on

– its past experience

– inputs from the social environment

– its current position regarding issue

Binary PSO
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Probability of an individual’s answer:

where

is the probability that individual i will choose 1 for dth bit

is the current state of individual i for dth bit

)1( −tvid is the individual i’s current prob. of choosing 1 for dth bit

idp

gdp

is the individual i’s best state found so far for dth bit

is the neighborhood best state found so far for dth bit

Binary PSO

)1( −tvid • shows individuals predisposition to choose 1
• determines a probability threshold
• for higher values, individual more likely to 
choose 1
• has to be between 0 and 1
• want to adjust individual’s disposition 
towards its success and that of the community
• will be updated at eeach step

Binary PSO
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ρid is a vector of uniformly distributed random numbers between 0.0 and 1.0
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PSO x GA

• both use random initial populations

• both use a fitness function to 
evaluate solution candidates

• both update populations through 
generations to search for optima

• both do not guarantee success

PSO x GA

• in PSO: no evolutionary operators

• in GA: selection, crossover, 
mutation operators

• in GA: chromosomes share info

• in PSO: only best share info but 
only one way

PSO x GA

• PSO has memory

• in PSO all particles converge 
quickly (possibly to local optima)

• PSO is easier to implement

• PSO has fewer parameters to tune

• PSO (most commonly) uses real 
numbers for representing particles

Applying PSO

• when applying PSO determine

– representation of solution

–parameter settings

– fitness function

Parameters in PSO

• no of particles

– typically 20-40 

– sometimes 10 enough

– for hard problems try 100-200

Parameters in PSO

• dimension of particles

–depends on problem

• range of particles

–depends on problem

–dimensions may have different 
ranges
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Parameters in PSO

• c1 and c2

– learning factors

– typically c1=c2=2

– in some studies c1=c2 and in [0,4]

Parameters in PSO

• stopping condition

–max no of iterations

–min error requirement

• global x local versions

–global is faster but possibly 
converges to local optima

–possible to use global for getting a 
solution quickly and local for refining


