

Introduction

- universal behavior of individuals leads to cultural adaptation:
 - evaluate
 - compare
 - imitate
- these can be modeled in computer programs to solve hard problems

- tendency to evaluate stimuli as positive or negative / good or bad
- leads to learning
 - individual can learn to distinguish the features of the environment as good or bad

Compare

- individuals in a population compare themselves to others
- serves as a motivation to learn and change
- standards for social behavior set by comparing to others

Imitate

• imitating a behavior which has led an individual to be superior

PSO

- population based
- stochastic
- developed by Eberhart, Kennedy, 1995
- inspired by social behavior of bird flocking or fish schooling

PSO

- random initial population
- search for optima through updating generations
- potential solutions: particles
- particles move through system following the current optimum particles

PSO

- two variations
 binary PSO
 - continuous (real-valued) PSO
 more popular version

PSO Applications

- function optimization
- ANN training
- fuzzy system control
- similar areas EAs are applied to

PSO

- each particle (solution)
 - has fitness value (objective function)
 - has velocity (directing flight)
 - has position
- each particle made up of
 - string of binary decision variables binary PSO
 - vector of real-valued variables continuous PSO

PSO

- available info for each particle - its own experience
 - experience of those around it
- particles follow two current best
 - pbest: best solution it has achieved so far
 - gbest: best solution any particle has achieved so far (global)
 - if only topological neighbors considered: lbest

for each particle initialize particle; do { for each particle { calculate fitness; if fitness > pbest set current value as pbest; } choose gbest; for each particle { calculate particle velocity; update particle position; } } while max. no of iterations or min. error ctiteria not met;

Continuous PSO

• particle velocity update rule:

v[] = v[] + c1*rnd*(pbest[] - present[]) + c2*rnd*(gbest[] - present[])present[] = present + v[]

where

- v[]: particle velocity
- present[]: current best solution
- rnd: random number in [0,1]c1 and c2: learning factors
 - usually c1=c2=2 or c1+c2=4

Continuous PSO

• V_{max}

- determines max change amount for each particle for one iteration
- usually range is used
- -e.g. if x is in [-10,10] V_{max} is 20

Binary PSO

- an individual needs to make a set of decisions based on
 - its past experience
 - inputs from the social environment
 - its current position regarding issue

Binary PSO

Probability of an individual's answer:

$P(x_{id}(t) = 1) = f(x_{id}(t-1), v_{id}(t-1), p$	$p_{id}, p_{gd})$	
--	-------------------	--

where

$P(x_{id}(t) = 1)$	is the probability that individual i will choose 1 for ${\rm d}{\it th}$ bit
$x_{id}(t)$	is the current state of individual i for d <i>th</i> bit
$v_{id}(t-1)$	is the individual i's current prob. of choosing 1 for $d {\it th}$ bit
P_{id}	is the individual i's best state found so far for $\mathrm{d}\mathit{th}$ bit
p_{ad}	is the neighborhood best state found so far for d <i>th</i> bit

Binary PSO * shows individuals predisposition to choose 1 • determines a probability threshold • for higher values, individual more likely to choose 1 • has to be between 0 and 1 • want to adjust individual's disposition towards its success and that of the community • will be updated at eeach step

Binary PSO

$$v_{id}(t) = v_{id}(t-1) + \varphi_1(p_{id} - x_{id}(t-1)) + \varphi_2(p_{gd} - x_{id}(t-1))$$

usually $(\varphi_1 + \varphi_2 = 4.0)$
if $\rho_{id} < s(v_{id}(t))$ then $x_{id}(t) = 1$; else $x_{id}(t) = 0$
 $s(v_{id}) = \frac{1}{1 + \exp(-v_{id})}$
 ρ_{id} is a vector of uniformly distributed random numbers between 0.0 and 1.0
 $v_{min} \le v_{id} \le v_{max}$
 v_{max} similar to
mutation rate in EAs
so that $s(v_{max}) \approx 0.018 \iff$ mallest prob. of a bit changing

PSO x GA

- both use random initial populations
- both use a fitness function to evaluate solution candidates
- both update populations through generations to search for optima
- both do not guarantee success

PSO x GA

- in PSO: no evolutionary operators
- in GA: selection, crossover, mutation operators
- in GA: chromosomes share info
- in PSO: only best share info but only one way

PSO x GA

- PSO has memory
- in PSO all particles converge quickly (possibly to local optima)
- PSO is easier to implement
- PSO has fewer parameters to tune
- PSO (most commonly) uses real numbers for representing particles

Applying PSO

- when applying PSO determine

 representation of solution
 - parameter settings
 - fitness function

Parameters in PSO

- no of particles
 - -typically 20-40
 - sometimes 10 enough
 - for hard problems try 100-200

Parameters in PSO

- dimension of particles
 depends on problem
- range of particles
 - depends on problem
 - dimensions may have different ranges

Parameters in PSO

- c1 and c2
 - learning factors
 - -typically c1=c2=2
 - in some studies c1=c2 and in [0,4]

Parameters in PSO

- stopping condition
 - max no of iterations
 - min error requirement
- global x local versions

 global is faster but possibly converges to local optima
 - possible to use global for getting a solution quickly and local for refining