
1

Nature-Inspired Computing

Particle Swarm Optimization

Dr. Şima Uyar

September 2006

Introduction

• universal behavior of individuals
leads to cultural adaptation:

–evaluate

– compare

– imitate

• these can be modeled in computer
programs to solve hard problems

Evaluate

• tendency to evaluate stimuli as
positive or negative / good or bad

• leads to learning

– individual can learn to distinguish the
features of the environment as good
or bad

Compare

• individuals in a population
compare themselves to others

• serves as a motivation to learn and
change

• standards for social behavior set
by comparing to others

Imitate

• imitating a behavior which has led
an individual to be superior

PSO

• population based

• stochastic

• developed by Eberhart, Kennedy,
1995

• inspired by social behavior of bird
flocking or fish schooling

2

PSO

• random initial population

• search for optima through
updating generations

• potential solutions: particles

• particles move through system
following the current optimum
particles

PSO

• two variations

–binary PSO

–continuous (real-valued) PSO

•more popular version

PSO Applications

• function optimization

• ANN training

• fuzzy system control

• similar areas EAs are applied to

PSO

• each particle (solution)

–has fitness value (objective function)

–has velocity (directing flight)

–has position

• each particle made up of

–string of binary decision variables – binary
PSO

–vector of real-valued variables –
continuous PSO

PSO

• available info for each particle

– its own experience

–experience of those around it

• particles follow two current best

–pbest: best solution it has achieved so far

–gbest: best solution any particle has
achieved so far (global)

• if only topological neighbors considered: lbest

for each particle
initialize particle;

do {
for each particle {

calculate fitness;
if fitness > pbest

set current value as pbest;
}
choose gbest;
for each particle {

calculate particle velocity;
update particle position;

}
} while max. no of iterations or min.

error ctiteria not met;

!! velocities in each dimension have a Vmax!!

3

Continuous PSO

• particle velocity update rule:

[][]

[])[](**2[])[](**1[][]

vpresentpresent

presentgbestrndcpresentpbestrndcvv

+=
−+−+=

where
• v[]: particle velocity
• present[]: current best solution
• rnd: random number in [0,1]
• c1 and c2: learning factors

• usually c1=c2=2 or c1+c2=4

Continuous PSO

• Vmax

–determines max change amount for
each particle for one iteration

–usually range is used

–e.g. if x is in [-10,10] Vmax is 20

Binary PSO

• an individual needs to make a set
of decisions based on

– its past experience

– inputs from the social environment

– its current position regarding issue

Binary PSO

),),1(),1(()1)((gdidididid pptvtxftxP −−==

)1)((=txP id

)(txid

Probability of an individual’s answer:

where

is the probability that individual i will choose 1 for dth bit

is the current state of individual i for dth bit

)1(−tvid is the individual i’s current prob. of choosing 1 for dth bit

idp

gdp

is the individual i’s best state found so far for dth bit

is the neighborhood best state found so far for dth bit

Binary PSO

)1(−tvid • shows individuals predisposition to choose 1
• determines a probability threshold
• for higher values, individual more likely to
choose 1
• has to be between 0 and 1
• want to adjust individual’s disposition
towards its success and that of the community
• will be updated at eeach step

Binary PSO

))1(())1(()1()(21 −−+−−+−= txptxptvtv idgdidididid ϕϕ

0)(;1)())((==< txelsetxthentvsif ididididρ

)exp(1

1
)(

id
id v

vs
−+

=

ρid is a vector of uniformly distributed random numbers between 0.0 and 1.0

)0.4(21 =+ϕϕusually

018.0)(

0.4

max

max

maxmin

≈
±=

≤≤

Vsthatso

Vaschosenusually

VvV id
! Vmax similar to
mutation rate in EAs

⇐ smallest prob. of a bit changing

4

PSO x GA

• both use random initial populations

• both use a fitness function to
evaluate solution candidates

• both update populations through
generations to search for optima

• both do not guarantee success

PSO x GA

• in PSO: no evolutionary operators

• in GA: selection, crossover,
mutation operators

• in GA: chromosomes share info

• in PSO: only best share info but
only one way

PSO x GA

• PSO has memory

• in PSO all particles converge
quickly (possibly to local optima)

• PSO is easier to implement

• PSO has fewer parameters to tune

• PSO (most commonly) uses real
numbers for representing particles

Applying PSO

• when applying PSO determine

– representation of solution

–parameter settings

– fitness function

Parameters in PSO

• no of particles

– typically 20-40

– sometimes 10 enough

– for hard problems try 100-200

Parameters in PSO

• dimension of particles

–depends on problem

• range of particles

–depends on problem

–dimensions may have different
ranges

5

Parameters in PSO

• c1 and c2

– learning factors

– typically c1=c2=2

– in some studies c1=c2 and in [0,4]

Parameters in PSO

• stopping condition

–max no of iterations

–min error requirement

• global x local versions

–global is faster but possibly
converges to local optima

–possible to use global for getting a
solution quickly and local for refining

