Nature-Inspired Computing

Particle Swarm Optimization

Dr. Sima Uyar
September 2006

Introduction

¢ universal behavior of individuals
leads to cultural adaptation:
—-evaluate
—compare
- imitate

¢ these can be modeled in computer
programs to solve hard problems

Evaluate

e tendency to evaluate stimuli as
positive or negative / good or bad
e |leads to learning

-individual can learn to distinguish the
features of the environment as good
or bad

Compare

¢ individuals in a population
compare themselves to others

e serves as a motivation to learn and
change

e standards for social behavior set
by comparing to others

Imitate

¢ imitating a behavior which has led
an individual to be superior

PSO

¢ population based

e stochastic

» developed by Eberhart, Kennedy,
1995

¢ inspired by social behavior of bird
flocking or fish schooling

PSO

e random initial population

e search for optima through
updating generations

¢ potential solutions: particles

e particles move through system
following the current optimum
particles

PSO

¢ two variations
- binary PSO
- continuous (real-valued) PSO
® more popular version

PSO Applications

e function optimization

¢ ANN training

e fuzzy system control

e similar areas EAs are applied to

PSO

e each particle (solution)
- has fitness value (objective function)
- has velocity (directing flight)
- has position
¢ each particle made up of
- string of binary decision variables - binary
PSO
- vector of real-valued variables -
continuous PSO

PSO

¢ available info for each particle
- its own experience
- experience of those around it
¢ particles follow two current best
- pbest: best solution it has achieved so far

- gbest: best solution any particle has
achieved so far (global)
« if only topological neighbors considered: Ibest

for each particle
initialize particle;
do {
for each particle {
cal culate fitness;
if fitness > pbest
set current value as pbest;
}
choose gbest;
for each particle {
cal culate particle velocity;
updat e particle position;
}
} while max. no of iterations or mn.
error ctiteria not net;

Il velocities in each dimension have g\!!

Continuous PSO

¢ particle velocity update rule:

V] =M] +c1* rnd * (pbest[] — present([]) +c2* rnd * (gbest[] — present[])
present[] = present +V{]

where
« V[]: particle velocity
« present[]: current best solution
< rnd: random number in [0,1]
« cl and c2: learning factors
« usually c1=c2=2 or c1+c2=4

Continuous PSO

® Vmax
—determines max change amount for
each particle for one iteration
—usually range is used
-e.g. if xisin [-10,10] V. is 20

Binary PSO

¢ an individual needs to make a set
of decisions based on
—its past experience
- inputs from the social environment
—its current position regarding issue

Binary PSO

Probability of an individual’s answer:
P(Xq(t) =1 = f (X4 (t = 1), Vg (t = 1), Py, Pyq)
where

P(xq(t) =1) is the probability that individual i will choose 1 for d¢# bit

Xq (1) is the current state of individual i for d¢A bit

Vig(t-1) is the individual i's current prob. of choosing 1 for d¢# bit
Pq is the individual i's best state found so far for d¢/ bit

Pyq is the neighborhood best state found so far for d¢A bit

Binary PSO

Viq(t=1) e shows individuals predisposition to choose 1
» determines a probability threshold
« for higher values, individual more likely to
choose 1
e has to be between 0 and 1
o want to adjust individual’s disposition
towards its success and that of the community
« will be updated at eeach step

Binary PSO

Vig (1) =Vig (t =) + @1(Pg = %a (t =1)) + ,(Pgy — X (t =1))
usually (¢, +¢, = 40)

if g <S(vy(D) then x,()=1 else x,(t)=0
1

T exp(-viy)

Pig is a vector of uniformly distributed random numbers between 0.0 and 1.0

Vi SVig <V, ! Vina similar to

min = max :)
mutation rate in EAs
usually chosen as V,,, = +40

so that s(V,,,,) =0.018 [smallest prob. of a bit changing

PSO x GA

e both use random initial populations

¢ both use a fitness function to
evaluate solution candidates

e both update populations through
generations to search for optima

e both do not guarantee success

PSO x GA

¢ in PSO: no evolutionary operators

¢ in GA: selection, crossover,
mutation operators

¢ in GA: chromosomes share info

¢ in PSO: only best share info but
only one way

PSO x GA

¢ PSO has memory

e in PSO all particles converge
quickly (possibly to local optima)

e PSO is easier to implement
¢ PSO has fewer parameters to tune

¢ PSO (most commonly) uses real
numbers for representing particles

Applying PSO

e when applying PSO determine
- representation of solution
- parameter settings
- fitness function

Parameters in PSO

¢ no of particles
-typically 20-40
-sometimes 10 enough
- for hard problems try 100-200

Parameters in PSO

e dimension of particles
—-depends on problem

¢ range of particles
- depends on problem

-dimensions may have different
ranges

Parameters in PSO Parameters in PSO

ecl and c2 » stopping condition
-learning factors —-max no of iterations
-typically c1=c2=2 - min error requirement
-in some studies c1=c2 and in [0,4] ¢ global x local versions

-global is faster but possibly
converges to local optima

- possible to use global for getting a
solution quickly and local for refining

