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Overview

e developed in the USA
e typically applied to:

- machine learning tasks such as prediction,
classification ...

e properties
- very large populations (thousands)
- slow
- has non-linear chromosomes: trees, graphs
- mutation not always used

Typical GP

Representation Tree structures

Recombination Exchange subtrees

Mutation Random change in trees

Parent selection |Fitness proportional

Survivor selection | Generational replacement

Tree-based Representation

e trees can represent:
-an arithmetic formula
-a logical formula
—-a program

Tree-based Representation
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Tree-based Representation
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Tree-based Representation

e chromosomes as:

- bit strings, integer string, real-valued
vectors, permutations = linear structures
(GAs and ES)

—trees = non-linear structures (GPs)
¢ in Gas and ES: fixed chromosome size

e in GP: tree (chromosome) depth/width
may change

Tree-based Representation

e a symbolic expression can be
defined by,
- aterminal set: T
- a function set: F

o typically, expressions in GP are
not typed

- closure property: any f O F can take
any g O F as argument

Terminal Set

e composed of:
-inputs (variables)
- constants
- zero-argument functions
¢ are the leaves of the tree

e terminal nodes have an arity of zero

Function Set

e composed of:
- statements
- operators
- functions
e members of set determined based on
application




Function Set

boolean functions (AND, OR, NOT, ...)
arithmetic functions (+, -, *, /, ...)

transcendental functions (trigonometric and
logarithmic functions)

variable assignment functions (=)

conditional statements (if-then-else,
switch-case, ...)

control transfer statements (goto, jump,

¢ |loop statements (while - do, repeat - until,

e subroutines

Choosing the Function Set

not too small or too large

if too small, cannot solve problem
if too large, large search space
good starting point:

-+, -, %, /, AND, OR, XOR

must have closure property:

—division by zero is a problem; closure
property violated = define protected
division operator instead

Offspring Generation

e GAs use crossover AND mutation
(probabilistically)

e GPs use crossover OR mutation
(chosen probabilistically)

Offspring Generation

e GP operators: crossover, mutation,
reproduction

e there is a probability for selection of
each operator
- pm : probabilitiy of mutation
- pc : probabilitiy of crossover
- pr : probabilitiy of reproduction

*pPmt+p.+tpr=1

GA flowchart

next generation e i=?population size +—————

1n0

select two individuals

|

perform crossover with pc

|

perform mutation with pm

|

add offspring to intermediate pool

i=i+1

GP flowchart

next generation +—== i=?population size

1“0

select variation operator

with pe with p with p,

select 2 individuals select 1 individual select 1 individual

| | )
perform crossover perform mutation make a copy
| ! |
add offspring to add offspring to add offspring to
intermediate pool intermediate pool intermediate pool
| | )

i=i+2 i=i+1 i=i+1
L L ]




Reproduction

¢ one individual selected

e copy of individual made

e copy added to offspring pool
¢ has parameter p,

Mutation

¢ typical mutation: replace randomly
chosen sub-tree by randomly
generated tree

Mutation
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Mutation

¢ has two parameters:
- probability p,, to choose mutation vs.
recombination
- probability to chose an internal point as
the root of the sub-tree to be replaced

® p,, is advised to be 0 (Koza’92) or very small,
like 0.05 (Banzhaf et al. '98)

e size of the child can be larger than
the parent

Recombination

e typical recombination: exchange
two randomly chosen sub-trees
among parents

Recombination

¢ has two parameters:
- probability p. to choose recombination
vs. mutation
- probability to chose an internal point
within each parent as crossover point
e size of the children may be larger
than the parents
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Selection

e typical parent selection: fitness
proportionate

e truncation selection also used
_(“/A)
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. ranki_m[; selection, tournament selection
possible

Selection

e typical survivor selection: generational
scheme

-recently steady-state is becoming popular
due to its elitism

Initialization

e maximum initial depth of trees: D,

o full method (each branch has depth =
Dinax)
- nodes at depth d < D,,,, randomly chosen from
function set F

- nodes at depth d = D, randomly chosen from
terminal set T

Initialization

e grow method (each branch has depth
< Dmax)
- nodes at depth d < D, randomly chosen
fromFOT

-nodes at depth d = D,,,, randomly chosen
from T

Initialization

e typical GP initialisation: ramped half-
and-half

-grow method and full method each used
to generate half of the initial population




Bloat

¢ bloat = “survival of the fattest”,
i.e., tree sizes increase over time
e must be prevented
—-do not allow very big children

- parsimony pressure: apply penalty for
being oversized

Introns

* extra code segments which, if
removed, will not alter the result
-eg.a=a+0
-e.g.b=b*1

e bloat mainly caused by introns

Preparatory Steps

e determining the set of terminals
e determining the set of functions
e determining the fitness measure
e determining the parameters

- population size

— maximum tree depth

= Pcs Pm/s Pr

- number of generations
e determining the method for

- designating a result and

- the criteria for termination

Example application:
symbolic regression

e given some points in R2, (X, Y1), -y (Xns Yn)
¢ find function f(x) s.t. Oi = 1, ..., n : f(X;) = ;
e possible GP solution:
- representation: F={+, -, /, sin, cos}, T=R O {x}
- fitness is the error err(f)=§n:(f(>s)-)ﬂ)2
- all standard operators used i
- population size: 1000, ramped half-half
initialization
- termination: n “hits” or 50000 fitness evaluations
reached (where “hit” is if | f(x;) — y;| < 0.0001)

Modularization — Automatically
Defined Functions (ADFs)

e individual tree consists of two sub-
trees:
-result-producing branch (main)

- function defining branch (function
definitions)

GP with ADF

argument
list

body of ADFO body of result
function producing
definition branch




GP with ADF

¢ a defun node per ADF

“Values” nodes determine the result (overall
or from ADF)

argument list in ADF, determines the ADF’s
input variables

- becomes part of terminal set of ADF

all evolution takes place in ADF bodies and
the result producing branchS

possible to have hierarchies between ADFs,
determining which ADF is able to call which
ADF (depends on system set up)

GP with ADF

o first determine architecture
- number of ADFs
- the number of arguments for each ADF

¢ this is a weakness since architecture must
be determined by user
- adds a new parameter to GP
- architecture altering operations (type of

mutation)

e initialization done accordingly

¢ function-defining bodies and result-
producing bodies generated randomly

Example: ADF for x3 and result producing branch uses ADF
to get x®

Steps when Applying GP with ADFs

e choose number of function defining
branches

¢ fix number of arguments for each ADF

e determine allowable referencing
between ADFs

e determine all function and terminal
sets (may be different for all)

o define fithess measure, fix
parameters and termination criteria




