

Overview

- developed in the USA
- typically applied to:
- machine learning tasks such as prediction, classification ...
- properties
- very large populations (thousands)
- slow
- has non-linear chromosomes: trees, graphs
- mutation not always used

Tree-based Representation

- trees can represent:
- an arithmetic formula
- a logical formula
- a program

Tree-based Representation

$2 \cdot \pi+\left((x+3)-\frac{y}{5+1}\right)$

Tree-based Representation

Tree-based Representation

- chromosomes as:
- bit strings, integer string, real-valued vectors, permutations \Rightarrow linear structures (GAs and ES)
- trees \Rightarrow non-linear structures (GPs)
- in Gas and ES: fixed chromosome size
- in GP: tree (chromosome) depth/width may change

Tree-based Representation

- a symbolic expression can be defined by,
- a terminal set: T
- a function set: F
- typically, expressions in GP are not typed
- closure property: any $f \in F$ can take any $\mathrm{g} \in \mathrm{F}$ as argument

Terminal Set

- composed of:
- inputs (variables)
- constants
- zero-argument functions
- are the leaves of the tree
- terminal nodes have an arity of zero

Function Set

- composed of:
- statements
- operators
- functions
- members of set determined based on application

Function Set

- boolean functions (AND, OR, NOT, ...)
- arithmetic functions ($+,-, *, /, \ldots$)
- transcendental functions (trigonometric and logarithmic functions)
- variable assignment functions (=)
- conditional statements (if-then-else, switch-case, ...)
- control transfer statements (goto, jump, ...)
- loop statements (while - do, repeat - until, for, ...)
- subroutines

Choosing the Function Set

- not too small or too large
- if too small, cannot solve problem
- if too large, large search space
- good starting point:
-+, -, *, /, AND, OR, XOR
- must have closure property:
- division by zero is a problem; closure property violated \Rightarrow define protected division operator instead

Offspring Generation

- GAs use crossover AND mutation (probabilistically)
- GPs use crossover OR mutation (chosen probabilistically)

Offspring Generation

- GP operators: crossover, mutation, reproduction
- there is a probability for selection of each operator
- p_{m} : probabilitiy of mutation
- p_{c} : probabilitiy of crossover
$-\mathrm{p}_{\mathrm{r}}$: probabilitiy of reproduction
- $p_{m}+p_{c}+p_{r}=1$

Reproduction

- one individual selected
- copy of individual made
- copy added to offspring pool
- has parameter pr_{r}

Recombination

- typical recombination: exchange two randomly chosen sub-trees among parents

Mutation

- typical mutation: replace randomly chosen sub-tree by randomly generated tree

Mutation

- has two parameters:
- probability p_{m} to choose mutation vs. recombination
- probability to chose an internal point as the root of the sub-tree to be replaced
- p_{m} is advised to be 0 (Koza'92) or very small, like 0.05 (Banzhaf et al. '98)
- size of the child can be larger than the parent

Recombination
- typical recombination: exchange
two randomly chosen sub-trees
among parents

Recombination

- has two parameters:
- probability p_{c} to choose recombination vs. mutation
- probability to chose an internal point within each parent as crossover point
- size of the children may be larger than the parents

Selection

- typical parent selection: fitness proportionate
- truncation selection also used - (μ, λ)
$-(\mu+\lambda)$
- ranking selection, tournament selection possible

Selection

- typical survivor selection: generational scheme
- recently steady-state is becoming popular due to its elitism

Initialization

- maximum initial depth of trees: $D_{\max }$
- full method (each branch has depth = $D_{\text {max }}$)
- nodes at depth $\mathrm{d}<\mathrm{D}_{\text {max }}$ randomly chosen from function set F
- nodes at depth $\mathrm{d}=\mathrm{D}_{\text {max }}$ randomly chosen from terminal set T

Initialization

- grow method (each branch has depth $\leq \mathrm{D}_{\text {max }}$)
- nodes at depth $d<D_{\text {max }}$ randomly chosen from $F \cup T$
- nodes at depth $d=D_{\text {max }}$ randomly chosen from T

Initialization

- typical GP initialisation: ramped half-and-half
- grow method and full method each used to generate half of the initial population

Bloat

- bloat = "survival of the fattest", i.e., tree sizes increase over time
- must be prevented
- do not allow very big children
- parsimony pressure: apply penalty for being oversized

Preparatory Steps

- determining the set of terminals
- determining the set of functions
- determining the fitness measure
- determining the parameters
- population size
- maximum tree depth
- p_{c}, p_{m}, p_{r}
- number of generations
- determining the method for
- designating a result and
- the criteria for termination
the criteria for termination

Introns

- extra code segments which, if removed, will not alter the result
-e.g. $a=a+0$
-e.g. $b=\mathrm{b} * 1$
- bloat mainly caused by introns

Example application: symbolic regression

- given some points in $\mathbf{R}^{2},\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- find function $f(x)$ s.t. $\forall i=1, \ldots, n: f\left(x_{i}\right)=y_{i}$
- possible GP solution:
- representation: $\mathrm{F}=\{+,-, /, \sin , \cos \}, \mathrm{T}=\mathbf{R} \cup\{\mathrm{x}\}$
- fitness is the error
- all standard operators used $\quad \operatorname{err}(f)=\sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}$
- all standard operators used
- population size: 1000, ramped half-half initialization
- termination: n "hits" or 50000 fitness evaluations reached (where "hit" is if $\left|f\left(x_{i}\right)-y_{i}\right|<0.0001$)

Modularization - Automatically Defined Functions (ADFs)

- individual tree consists of two subtrees:
- result-producing branch (main)
- function defining branch (function definitions)

GP with ADF

- a defun node per ADF
- "Values" nodes determine the result (overall or from ADF)
- argument list in ADF, determines the ADF's input variables
- becomes part of terminal set of ADF
- all evolution takes place in ADF bodies and the result producing branchS
- possible to have hierarchies between ADFs, determining which ADF is able to call which ADF (depends on system set up)

GP with ADF

- first determine architecture
- number of ADFs
- the number of arguments for each ADF
- this is a weakness since architecture must be determined by user
- adds a new parameter to GP
- architecture altering operations (type of mutation)
- initialization done accordingly
- function-defining bodies and resultproducing bodies generated randomly

Steps when Applying GP with ADFs

- choose number of function defining branches
- fix number of arguments for each ADF
- determine allowable referencing between ADFs
- determine all function and terminal sets (may be different for all)
- define fitness measure, fix parameters and termination criteria

