
1

Nature-Inspired Computing

Genetic Programming

Dr. Şima Uyar

September 2006

Overview

• developed in the USA

• typically applied to:

– machine learning tasks such as prediction,
classification ...

• properties

– very large populations (thousands)

– slow

– has non-linear chromosomes: trees, graphs

– mutation not always used

Typical GP

Generational replacementSurvivor selection

Fitness proportionalParent selection

Random change in treesMutation

Exchange subtreesRecombination

Tree structuresRepresentation

Tree-based Representation

• trees can represent:

–an arithmetic formula

–a logical formula

–a program

Tree-based Representation










+
−++⋅

15
)3(2

y
xπ

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y)))

i =1;
while (i < 20)
{

i = i +1
}

Tree-based Representation










+
−++⋅

15
)3(2

y
xπ

2

Tree-based Representation

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y)))

Tree-based Representation

i =1;
while (i < 20)
{

i = i +1
}

Tree-based Representation

• chromosomes as:

–bit strings, integer string, real-valued
vectors, permutations ⇒ linear structures
(GAs and ES)

– trees ⇒ non-linear structures (GPs)

• in Gas and ES: fixed chromosome size

• in GP: tree (chromosome) depth/width
may change

Tree-based Representation

• a symbolic expression can be
defined by,
– a terminal set: T

– a function set: F

• typically, expressions in GP are
not typed
– closure property: any f ∈ F can take
any g ∈ F as argument

Terminal Set

• composed of:

– inputs (variables)

– constants

– zero-argument functions

• are the leaves of the tree

• terminal nodes have an arity of zero

Function Set

• composed of:

–statements

–operators

– functions

• members of set determined based on
application

3

Function Set

• boolean functions (AND, OR, NOT, ...)
• arithmetic functions (+, -, *, /, ...)
• transcendental functions (trigonometric and
logarithmic functions)

• variable assignment functions (=)
• conditional statements (if-then-else,
switch-case, ...)

• control transfer statements (goto, jump,
...)

• loop statements (while – do, repeat – until,
for, ...)

• subroutines

Choosing the Function Set

• not too small or too large

• if too small, cannot solve problem

• if too large, large search space

• good starting point:
–+, -, *, /, AND, OR, XOR

• must have closure property:
–division by zero is a problem; closure
property violated ⇒ define protected
division operator instead

Offspring Generation

• GAs use crossover AND mutation
(probabilistically)

• GPs use crossover OR mutation
(chosen probabilistically)

Offspring Generation

• GP operators: crossover, mutation,
reproduction

• there is a probability for selection of
each operator
–pm : probabilitiy of mutation

–pc : probabilitiy of crossover

–pr : probabilitiy of reproduction

• pm + pc + pr = 1

GA flowchart

next generation

select two individuals

perform crossover with pc

perform mutation with pm

add offspring to intermediate pool

i=i+1

i=?population size

no

yes

GP flowchart
next generation

select variation operator

perform crossover perform mutation

add offspring to
intermediate pool

i=i+1

i=?population size

no

yes

select 1 individualselect 2 individuals

with pc

add offspring to
intermediate pool

i=i+2

with pm

select 1 individual

make a copy

add offspring to
intermediate pool

i=i+1

with pr

4

Reproduction

• one individual selected

• copy of individual made

• copy added to offspring pool

• has parameter pr

Mutation

• typical mutation: replace randomly
chosen sub-tree by randomly
generated tree

Mutation

before mutation: after mutation:

Mutation

• has two parameters:

–probability pm to choose mutation vs.
recombination

–probability to chose an internal point as
the root of the sub-tree to be replaced

• pm is advised to be 0 (Koza’92) or very small,
like 0.05 (Banzhaf et al. ’98)

• size of the child can be larger than
the parent

Recombination

• typical recombination: exchange
two randomly chosen sub-trees
among parents

Recombination

• has two parameters:

–probability pc to choose recombination
vs. mutation

–probability to chose an internal point
within each parent as crossover point

• size of the children may be larger
than the parents

5

Child 2

Parent 1 Parent 2

Child 1

Selection

• typical parent selection: fitness
proportionate

• truncation selection also used
– (µ,λ)
– (µ+λ)

• ranking selection, tournament selection
possible

Selection

• typical survivor selection: generational
scheme

– recently steady-state is becoming popular
due to its elitism

Initialization

• maximum initial depth of trees: Dmax

• full method (each branch has depth =
Dmax)

– nodes at depth d < Dmax randomly chosen from
function set F

– nodes at depth d = Dmax randomly chosen from
terminal set T

Initialization

• grow method (each branch has depth
≤ Dmax)
–nodes at depth d < Dmax randomly chosen
from F ∪ T

–nodes at depth d = Dmax randomly chosen
from T

Initialization

• typical GP initialisation: ramped half-
and-half
–grow method and full method each used
to generate half of the initial population

6

Bloat

• bloat = “survival of the fattest”,
i.e., tree sizes increase over time

• must be prevented
–do not allow very big children

–parsimony pressure: apply penalty for
being oversized

Introns

• extra code segments which, if
removed, will not alter the result

–e.g. a = a + 0

–e.g. b= b * 1

• bloat mainly caused by introns

Preparatory Steps

• determining the set of terminals
• determining the set of functions
• determining the fitness measure
• determining the parameters

– population size
– maximum tree depth
– pc, pm, pr
– number of generations

• determining the method for
– designating a result and
– the criteria for termination

Example application:
symbolic regression

• given some points in R2, (x1, y1), …, (xn, yn)

• find function f(x) s.t. ∀i = 1, …, n : f(xi) = yi
• possible GP solution:

– representation: F={+, -, /, sin, cos}, T=R ∪ {x}

– fitness is the error

– all standard operators used

– population size: 1000, ramped half-half
initialization

– termination: n “hits” or 50000 fitness evaluations
reached (where “hit” is if | f(xi) – yi | < 0.0001)

2

1

))(()(i

n

i
i yxfferr −=∑

=

Modularization – Automatically
Defined Functions (ADFs)

• individual tree consists of two sub-
trees:

– result-producing branch (main)

– function defining branch (function
definitions)

program

defun values

ADF0
argument

list values

body of ADF0
function

definition

body of result
producing

branch

GP with ADF

7

GP with ADF

• a defun node per ADF

• “Values” nodes determine the result (overall
or from ADF)

• argument list in ADF, determines the ADF’s
input variables
– becomes part of terminal set of ADF

• all evolution takes place in ADF bodies and
the result producing branchS

• possible to have hierarchies between ADFs,
determining which ADF is able to call which
ADF (depends on system set up)

GP with ADF

• first determine architecture

– number of ADFs

– the number of arguments for each ADF

• this is a weakness since architecture must
be determined by user

– adds a new parameter to GP

– architecture altering operations (type of
mutation)

• initialization done accordingly

• function-defining bodies and result-
producing bodies generated randomly

Example: ADF for x3 and result producing branch uses ADF
to get x6

program

defun

ADF0 (ARG0) Values

.

.
ARG0

ARG0 ARG0

Values

ADF0

ADF0

x

Steps when Applying GP with ADFs

• choose number of function defining
branches

• fix number of arguments for each ADF

• determine allowable referencing
between ADFs

• determine all function and terminal
sets (may be different for all)

• define fitness measure, fix
parameters and termination criteria

