

Overview

- developed in Germany in the 1970's
- typically applied to numerical optimization problems
- features:
 - fast
 good optimizer for real-valued optimisation
 - relatively much theory behind it
 - self-adaptation of (mutation) parameters is standard

Overview		
Representation	Real-valued vectors	
Recombination	Discrete or intermediary	
Mutation	Gaussian mutation	
Parent selection	Uniform random	
Survivor selection	(μ,λ) or (μ+λ)	
Specialty	Self-adaptation of mutation step sizes	

Introductory Example

- Task: minimimise $f : R^n \rightarrow R$
- Algorithm: "two-membered ES" using
 - vectors from Rⁿ as chromosomes
 - population size 1
 - only mutation creating one child
 - greedy selection

Introductory Example: Pseudocode

```
set t = 0
create initial point x<sup>t</sup> = ( x<sub>1</sub><sup>t</sup>,...,x<sub>n</sub><sup>t</sup> )
repeat until (termin criteria)
do
     draw z<sub>1</sub> from a normal distr. for all i = 1,...,n
     y<sub>1</sub><sup>t</sup> = x<sub>1</sub><sup>t</sup> + z<sub>1</sub>
     if f(x<sup>t</sup>) < f(y<sup>t</sup>) then
        x<sup>t+1</sup> = x<sup>t</sup>
     else
        x<sup>t+1</sup> = y<sup>t</sup>
     fi
        set t = t+1
od
```

Introductory Example: Mutation Mechanism

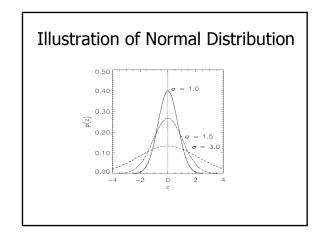
- z values drawn from normal distribution $N(\xi,\sigma)$
 - mean $\boldsymbol{\xi}$ is set to 0
 - variation $\boldsymbol{\sigma}$ is called mutation step size
- + σ is varied on the fly by the ``1/5 success rule"

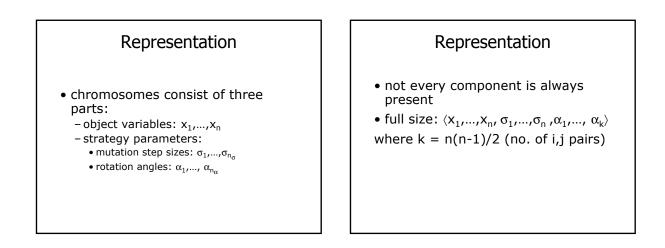
Introductory Example: Mutation Mechanism

• this rule resets σ after every k iterations by $\begin{array}{l} -\sigma = \sigma \,/\, c & \text{if } p_s > 1/5 \\ -\sigma = \sigma \cdot c & \text{if } p_s < 1/5 \end{array}$

 $-\sigma = \sigma$ if $p_s = 1/5$

where p_s is the % of successful mutations, $0.8 \leq c \leq 1$





Mutation

 main mechanism: changing value by adding random noise drawn from normal distribution

$$x'_i = x_i + N(0,\sigma)$$

Mutation

• key idea:

- σ is part of the chromosome \langle x1,...,xn, σ \rangle
- σ is also mutated into σ' (see later how)
- \bullet thus: mutation step size σ is co-evolving with the solution x

Mutation

• net mutation effect:

 $\langle \; x,\,\sigma \;\rangle \mathrel{\xrightarrow{}} \langle \; x',\,\sigma' \;\rangle$

• order is important: - first $\sigma \rightarrow \sigma'$ (see later how) - then $x \rightarrow x' = x + N(0,\sigma')$

- rationale: new $\langle \ x' \ , \sigma' \ \rangle$ is evaluated twice
 - primary: x' is good if f(x') is good
 - secondary: σ^\prime is good if the x' created from it is good
- not holds if mutation order is reversed

Mutation Case 1: Uncorrelated Mutation with One σ

• chromosomes: $\langle x_1,...,x_n, \sigma \rangle$ $\sigma' = \sigma \cdot exp(\tau \cdot N(0,1))$ $x'_i = x_i + \sigma' \cdot N(0,1)$ • typically the "learning rate" $\tau \propto 1/n^{1/2}$

Mutation Case 2: Uncorrelated Mutation with n $\sigma^{\prime}s$

- chromosomes: $\langle x_1, ..., x_n, \sigma_1, ..., \sigma_n \rangle$ $\sigma'_i = \sigma_i \cdot exp(\tau' \cdot N(0,1) + \tau \cdot N_i(0,1))$ $x'_i = x_i + \sigma'_i \cdot N_i(0,1)$
- two learning rate parameters: $-\tau'$ overall learning rate $-\tau$ coordinate-wise learning rate $\tau \propto 1/(2 n)^{\frac{1}{2}}$ and $\tau \propto 1/(2 n^{\frac{1}{2}})^{\frac{1}{2}}$

Recombination • creates one child • acts per variable / position by either – averaging parental values, or – selecting one of the parental values

- from two or more parents by either: – using two parents to make a child
 - selecting two parents for each position anew

Names of Recombinations

	Two fixed parents	Two parents selected for each i
$z_i = (x_i + y_i)/2$	Local intermediary	Global intermediary
z _i is x _i or y _i chosen randomly	Local discrete	Global discrete

Parent Selection

- selected by uniform random distribution whenever an operator needs one/some
- ES parent selection is unbiased every individual has the same probability to be selected

Parent Selection

- in ES "parent" means a population member
- in GA's: a population member selected to undergo variation

Survivor Selection

- applied after creating λ children from the μ parents by mutation and recombination
- deterministically chops off the "bad stuff"
- basis of selection is either:
 set of children only: (μ,λ)-selection
 - set of parents and children: (μ + λ)-selection

Survivor Selection cont'd

- $(\mu + \lambda)$ -selection is an elitist strategy
- (μ, λ) -selection can "forget"
- selective pressure in ES is very high ($\lambda \approx 7 \cdot \mu$ is the common setting)