
1

Nature-Inspired Computing

Ant Colony Optimization

Dr. Şima Uyar

September 2006

ACO

• developed by Dorigo

• ant algorithms

–study models derived from observations
of real ants

–use models for developing algorithms to
solve optimization problems

• ACO targets discrete optimization
problems

• a population-based SLS method

ACO

• ants: simple agents with basic
properties

• each one of k ants handles a
candidate solution

• ants coordinate their activities
through indirect communication
mediated by the modification of the
environment in which they move
(stigmergy)

ACO

• ants find shortest path from food to
nest using pheromone trails

– isolated ant moves randomly

–ant follows pheromone trails ⇒ reinforces
trail

• probability of using a trail increases as
more ants choose it (due to the
pheromone deposited by the ants)

• pheromones evaporate with time

ACO

• autocatalytic behavior emerges

–as more ants follow trail, it becomes
more attractive

–a positive feedback

–a process that reinforces itself causing
rapid convergence

• double-bridge experiments

ACO

• artificial ants :

–have memory

–not completely blind

– time is discrete

• Simple ACO: S-ACO

• ACO is a construction heuristic

2

S-ACO

• each ant builds a solution from
source to destination

• at each step a decision policy is
used

• decisions based on local
information at each node

• decisions made stochastically

• ants communicate through
stigmergy

Representation

a minimization problem (S,f,Ω)
S: set of candidate solutions

f: objective function (cost)

Ω: set of constraints
s*: globally optimal, feasible solution
with minimum cost

Representation

(S,f,Ω) is mapped onto a problem with
following characteristics:

• C={c1, c2, ..., cNc} : finite set of
components

• Χ: set of all possible states
• χ={ci cj ... ch} : state of the problem
given as sequences of elements of C

• feasible / infeasible states

• g(s) : cost of a candidate solution s⊆S

Representation

Gc=(C,L) : construction graph

• nodes are components (C)

• connections are (L)

–L fully connects the graph

ACO

• ants construct solutions through
randomized walks on Gc=(C,L)

• Ω (constraints) implemented through
decision policies of ants

–sometimes ants are only allowed to
construct feasible solutions

ACO

• components and connections may
have an associated
–pheromone trail : τi / τij
–heuristic value : ηi / ηij

• pheromone trails provide long-term
memory about whole of the ant search

• pheromone trails updated by ants

• heuristic value is an apriori info
–usually cost of adding a component /
connection

3

ACO

• each ant k of the colony has these
properties:

–exploits construction graph to search for
optimal solutions

–has memory Mk where it stores info on
path followed so far which is used for:

• building feasible solutions

• computing η
• evaluating found solution

• retracing the path backwards

ACO

–has a starting state (usually an empty set
or a single component sequence) and one
or more termination criteria

–when in a state xr, moves to a node in its
neighborhood

–stops when a termination criterion is
satisfied

–usually infeasible solutions are not
permitted

ACO

–ants select next move using a probabilistic
decision rule based on
• locally available pheromone trails and heuristic
values

• ant’s private memory storing its current state

• problem constraints

–when it adds a solution component /
connection, it can update the associated
pheromone trail

–when solution construction is completed,
it retraces its steps and updates all
pheromone trails along its path

ACO

! Ants act concurrently and

independently. Each ant finds usually a
poor quality solution to the problem.
Through indirect communication
between ants, good quality solutions

emerge. !

ACO

• has 3 procedures

– ConstructAntSolutions: manages colony of ants
moving on Gc=(C,L)

– UpdatePheromones: modifies pheromone trails
(add pheromone / forget through evaporation of
pheromones)

– DaemonActions: implements centralized actions
which cannot be done by single ants, such as
activation of LocalSearch (optional procedure)
procedure or decide if some trails need extra
deposit of pheromones, or determine which ants
should deposit extra pheromones, ...

ACO Outline
procedure ACO(p’)

input: problem instance p’ ∈P
output: solution s’ ∈S’(p’) or ∅

sp:={ ∅}; //population of k ants

s’:= ∅;
f(s’):= ∞;
τ:=initTrails(p’);
while not terminate(p’,sp) do

sp:=construct(p’, τ, η);
sp’:=localSearch(p’,sp); / /optional

if (f(best(p’,sp’))<f(s’) then
s’:=best(p’,sp’);

end
τ:=updateTrails(p’,sp’, τ);

end
if (s’ ∈S’)then

return s’;
else

return ∅;
end

end ACO.

Note: Good parameter
settings found in literature!

4

Applications of ACO
• TSP
• vehicle routing
• sequential ordering
• quadratic assignment
• graph coloring
• generalized assignment
• university course time-
tabling

• job/open/flow shop
• project scheduling
• bin-packing
• fuzzy systems
• classification rules

• total tardiness
• total weighted tardiness
• multi-dimensional
knapsack

• maximum independent
set

• redundancy allocation
• set covering
• maximum clique
• shortest common
super-sequence

• constraint satisfaction
• protein folding
• network routing
• ...

How to Apply ACO

• Traveling Salesman Problem: TSP
(√)

• Generalized Assignment Problem:
GAP (√)

• Multi-dimensional Knapsack
Problem: MKP (√)

ACO for the TSP

• TSP: finding minimum length
Hamiltonian circuit of graph

• TSP is the application chosen when
the first ACO algorithm Ant System
(AS) was proposed

• G=(N,A) : problem graph

–N: n cities

–A: arcs fully connecting nodes;

dij: weight of arcs (distances)

• solution: permutation of cities

• pheromone trails and heuristic
info:

– τij: desirability of visiting city j after i
–ηij: 1/ dij (usually)

• solution construction:

– initially each ant is put on a randomly
selected city

–each ant adds an unvisited node at
each step

– construction terminates when all
cities have been visited

5

• n cities

• bi(t): no of ants in town i at time t

• m: total no of ants

• ant:

–chooses next town based on distance
and pheromone trail

– has a tabu list (list of visited towns)

– lays pheromone trail when tour is
completed

• τij(t): intensity of trail on edge (i,j)
at time t

• iteration: m moves during interval
(t, t+1) by m ants

• each ant completes tour after n
iterations

• when tour is completed, trail
intensities updated

∑
=

∆=∆

∆+=+
m

k

k
ijij

ijijij tnt

1

)(*)(

ττ

ττρτ

where
- ρ: coefficient such that (1- ρ) represents evaporation of
trail between time t and t+n (must be <1 to avoid unlimited
accumulation of pheromones)
- ∆τijk: quantity per unit of pheromone laid on edge (i,j) by
ant k between time t and t+n

=∆
otherwise 0

edge usesant kth if
k

k
ij L

Q

τ
where

- Q is a constant
- Lk is tour length of ant k

transition probability for ant k from town i to town j:

∈

= ∑
∈

otherwise 0

allowedj if
][*)]([

][*)]([

)(
k

allowedk
ijij

ijij

k
ij

t

t

tp
βα

βα

ητ
ητ

where
- ηij: visibility=1/dij
- allowedk={N-tabuk}
- α and β control relative importance of trail versus visibility

transition probability is a trade off between choosing
shortest path and most travelled path

1) Initialize
set t=0 (time counter)
set NC=0 (cycles counter)
for all edges (i,j)

set τij (0)=c and ∆τij =0
place m ants on n nodes

2) set s=1 (tabu list index)
for k=1 to m do

place starting town of ant k in tabu k(s)

3) repeat until tabu list full (repeated n-1 times)
set s=s+1
for k=1 to m do

choose town j with probability p ij
k(t)

move ant k to town j
insert town j in tabu k(s)

Pseudocode of ACO for TSP 4) for k=1 to m do
move ant k from tabu k(n) to tabu k(1)
compute length of tour for ant k (L k)
update shortest tour found
for every edge (i,j)

for k-1 to m do
calculate ∆τij

k

∆τij = ∆τij + ∆τij
k

5) for every edge (i,j)
compute τij (t+n)= ρ* τij (t)+ ∆τij

set t=t+n
set NC=NC+1
for every edge (i,j)

set ∆τij =0

6) if (NC < NC max)and (not stagnation behavior) then
empty all tabu lists
go to step 2

else
print shortest tour

stop

6

ACO for the GAP

Problem Definition: a set of tasks i∈I
have to be assigned to a set of
agents j∈J. Each agent has a
limited capacity aj and each task i
assigned to agent j consumes rij
amount of agent’s capacity. Cost
of assigning task i to agent j is dij.

The objective is to find a feasible
assignment of tasks with minimum
cost.

• in the construction graph

–set of components = set of tasks and
agents, C=I∪J

– each assignment, consisting of n
couplings of (i,j) tasks and agents
corresponds to an ant’s walk

• constraints

–ant walks alternatingly from a task
node to agent nodes without
repeating a task node (agent nodes
can be repeated)

– resource capacity constraints
enforced through appropriately
defined neighborhoods (allow only
feasible movements)

• pheromone trails and heuristic information

– during solution construction ants make two
decisions:

• choose task to assign next

• choose agent to assign task to

– pheromone trail can be associated with both:

• learn the order of task assignments

• learn the desirability of assigning a task to an agent

– pheromone trail can be associated with both:

• e.g. bias task assignment towards those that use
more resources

• e.g. bias choice of agents with smaller costs and
smaller resource use

• solution construction

–choose component based on τij and ηij
and the capacity constraints

7

ACO for the MKP

• construction graph
–C: set of items

–L: fully connects the set of items

–profit of adding an item may be
assumed with components or
connections

• constraints
– resource constraints may be handled
during solution construction (i.e. not
allow inclusion of items violating any
resource constraints)

• pheromone trail update

– τi associated with the components: gives
desirability of adding item i to current
partial solution

• heuristic information

–heuristic information should prefer items
with high profits and low resource
requirements

when determining heuristic information

–possible to calculate average resource
requirements

ravg= 1/m * Σrij for each item and then set
ηi=bi/ ravg

–however this ignores tightness of
individual resource constraints

–better to include aj too

ravg’= 1/m * Σ(aj/rij) for each item and then
set ηi’=bi/ ravg’

• solution construction

–each ant adds items based on τi and ηi
probabilistically to its path

• each item may be added only once

–construction ends when an ant cannot
add more items without violating any
constraints

–!!!! this means that each ant may have
solutions of different lengths !!!!

Ant System and Direct Variants

• Ant System (AS)

• Elitist Ant System (EAS)

• Ran-Based Ant System (ASrank)

• Max-Min Ant System (µµAS)

8

EAS

• aim is to provide reinforcement to
arcs belonging to best tour found
since the beginning

–more pheromone deposited for the
best-so-far tour

–a daemon action

ASrank

• each ant deposits pheromones in
amounts decreasing based on its
rank

• also as in EAS, best-so-far tour
deposits most in each iteration

µµAS

4 modifications to AS

• stongly exploits best tours found:
only the iteration-best ant or the
best-so-far ant is allowed to
deposit
–has effect of limiting probability of
selecting a city j after city i

–may lead to stagnation, i.e. all ants
follow same sub-ooptimal tour

µµAS

• possible range of τ is limited to [τmin,
τmax] to counteract effect of first
modification

• τ is initialized to upper limit + low
evaporation rate increases exploration
at start of search

• τ is re-initialized each time the system
approaches stagnation or no improved
tours for a consecutive number of
iterations

µµAS

• when depositing pheromones

– only best of iteration

– only best-so-far

– or both (each with a given frequency)

• experimets show that

– for small sized TSP problems, iteration-best
works best

– for larger instances alternating between
iteration-best and best-so-far works best

Extensions of Ant System

• Ant Colony System (ACS)

• Approximate Non-Deterministic
Tree Search (ANTS)

9

ACS

differs from AS in 3 points
• exploits the search experience of ants
more through the action choice rule

• pheromone evaporation and pheromone
deposit only on arcs belonging to best-
so-far tour

• each time an ant uses an arc to move
from i to j, it removes some
pheromones from the arc to increase
exploration of different paths

ANTS

• computes lower bounds on
completion of a partial solution to
define the heuristic info

–when adding an item, compute lower
bound on time for completion of solution
if item is added ⇒ heuristic info

–helps add items which otherwise will be
ignored if they currently have high costs

ANTS

• has a novel action selection rule

• has a modified pheromone trail
update method

Comparison

• if solution quality is more
important ⇒ use µµAS

• if achieving acceptable solutions
faster is more important ⇒ use
ACS

