Nature-Inspired Computing
Ant Colony Optimization
Dr. Sima Uyar September 2006

ACO

- developed by Dorigo

- ant algorithms
- study models derived from observations of real ants
- use models for developing algorithms to solve optimization problems
- ACO targets discrete optimization problems
- a population-based SLS method

ACO

- ants: simple agents with basic properties
- each one of k ants handles a candidate solution
- ants coordinate their activities through indirect communication mediated by the modification of the environment in which they move (stigmergy)

ACO

- ants find shortest path from food to nest using pheromone trails
- isolated ant moves randomly
- ant follows pheromone trails \Rightarrow reinforces trail
- probability of using a trail increases as more ants choose it (due to the pheromone deposited by the ants)
- pheromones evaporate with time

ACO
- autocatalytic behavior emerges
- as more ants follow trail, it becomes
more attractive
- a positive feedback
- a process that reinforces itself causing
rapid convergence
- double-bridge experiments

ACO

- artificial ants :
- have memory
- not completely blind
- time is discrete
- Simple ACO: S-ACO
- ACO is a construction heuristic

S-ACO

- each ant builds a solution from source to destination
- at each step a decision policy is used
- decisions based on local information at each node
- decisions made stochastically
- ants communicate through stigmergy

Representation

$(\mathrm{S}, \mathrm{f}, \Omega)$ is mapped onto a problem with following characteristics:

- $C=\left\{c_{1}, c_{2}, \ldots, c_{N_{c}}\right\}$: finite set of components
- X: set of all possible states
- $\chi=\left\{\mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}} \ldots \mathrm{c}_{\mathrm{h}}\right\}$: state of the problem given as sequences of elements of C
- feasible / infeasible states
- $g(s)$: cost of a candidate solution $s \subseteq S$

ACO

- ants construct solutions through randomized walks on $\mathrm{G}_{\mathrm{c}}=(\mathrm{C}, \mathrm{L})$
- Ω (constraints) implemented through decision policies of ants
- sometimes ants are only allowed to construct feasible solutions

Representation

a minimization problem ($\mathrm{S}, \mathrm{f}, \Omega$)
S : set of candidate solutions
f: objective function (cost)
Ω : set of constraints
s*: globally optimal, feasible solution with minimum cost

ACO

- has a starting state (usually an empty set or a single component sequence) and one or more termination criteria
- when in a state x_{r}, moves to a node in its neighborhood
- stops when a termination criterion is satisfied
- usually infeasible solutions are not permitted

ACO

- ants select next move using a probabilistic decision rule based on
- locally available pheromone trails and heuristic values
- ant's private memory storing its current state - problem constraints
- when it adds a solution component / connection, it can update the associated pheromone trail
- when solution construction is completed, it retraces its steps and updates all pheromone trails along its path

Applications of ACO

- TSP
- vehicle routing
- sequential ordering
- quadratic assignment
- graph coloring
- generalized assignment
- university course timetabling
- job/open/flow shop
- project scheduling
- bin-packing
- fuzzy systems
- classification rules
- total tardiness
total weighted tardiness
- multi-dimensional knapsack
- maximum independent set
- redundancy allocation
- set covering
- maximum clique
- shortest common super-sequence
- constraint satisfaction
- protein folding
- network routing
- ...

ACO for the TSP

pheromone trails and heuristic info:
$-\tau_{\mathrm{j}}$: desirability of visiting city j after i
$-\eta_{i j}$: $1 / d_{i j}$ (usually)

How to Apply ACO

- Traveling Salesman Problem: TSP ($\sqrt{ }$)
- Generalized Assignment Problem: GAP ($\sqrt{ }$)
- Multi-dimensional Knapsack Problem: MKP ($\sqrt{ }$)

ACO for the TSP

- TSP: finding minimum length Hamiltonian circuit of graph
- TSP is the application chosen when the first ACO algorithm Ant System (AS) was proposed
- $G=(N, A)$: problem graph
- N : n cities
- A: arcs fully connecting nodes;
d_{ij} : weight of arcs (distances)
- solution: permutation of cities

- pheromone trails and heuristic
info:
$-\tau_{\mathrm{ij}}:$ desirability of visiting city j after i
$-\eta_{\mathrm{ij}}: 1 / \mathrm{d}_{\mathrm{ij}}$ (usually)

- solution construction:
- initially each ant is put on a randomly selected city
- each ant adds an unvisited node at each step
- construction terminates when all cities have been visited
- n cities
- $b_{i}(t)$: no of ants in town i at time t
- m: total no of ants
- ant:
- chooses next town based on distance and pheromone trail
- has a tabu list (list of visited towns)
- lays pheromone trail when tour is completed
- $\tau_{\mathrm{ij}}(\mathrm{t})$: intensity of trail on edge (i, j) at time t
- iteration: m moves during interval ($\mathrm{t}, \mathrm{t}+1$) by m ants
- each ant completes tour after n iterations
- when tour is completed, trail intensities updated
transition probability for ant k from town i to town j :

$$
p_{i j}^{k}(t)= \begin{cases}\frac{\left[\tau_{i j}(t)\right]^{\alpha} *\left[\eta_{i j}\right]^{\beta}}{\sum_{k \in \text { allowed }}\left[\tau_{i j}(t)\right]^{\alpha} *\left[\eta_{i j}\right]^{\beta}} & \text { if } \mathrm{j} \in \text { allowed }_{k} \\ 0 & \text { otherwise }\end{cases}
$$

where

$-\eta_{i j}:$ visibility $=1 / d_{i j}$

- allowed ${ }_{k}=\left\{\mathrm{N}\right.$-tabu $\left.{ }_{\mathrm{k}}\right\}$
- α and β control relative importance of trail versus visibility
transition probability is a trade off between choosing shortest path and most travelled path

$$
\begin{aligned}
& \tau_{i j}(t+n)=\rho * \tau_{i j}(t)+\Delta \tau_{i j} \\
& \Delta \tau_{i j}=\sum_{k=1}^{m} \Delta \tau_{i j}^{k}
\end{aligned}
$$

where

- ρ : coefficient such that $(1-\rho)$ represents evaporation of trail between time t and $\mathrm{t}+\mathrm{n}$ (must be <1 to avoid unlimited accumulation of pheromones)
- $\Delta \tau_{i j}{ }^{\mathrm{k}}$: quantity per unit of pheromone laid on edge (i, j) by ant k between time t and $t+n$

$$
\Delta \tau_{i j}^{k}=\left(\begin{array}{lll}
\frac{Q}{L_{k}} & \text { if kth ant uses edge } & \text { where } \\
0 & \text { otherwise } & -\mathrm{Q} \text { is a constant } \\
\hline \mathrm{L}_{\mathrm{k}} \text { is tour length of ant } \mathrm{k}
\end{array}\right.
$$

Pseudocode of ACO for TSP

```
1) Initialize
```

1) Initialize
set t=0 (time counter)
set t=0 (time counter)
set NC=O (cycles counter)
set NC=O (cycles counter)
for all edges (i,j)
for all edges (i,j)
set }\mp@subsup{\tau}{i,j}{}(0)=c\mathrm{ and }\Delta\mp@subsup{\tau}{i,j}{=0
set }\mp@subsup{\tau}{i,j}{}(0)=c\mathrm{ and }\Delta\mp@subsup{\tau}{i,j}{=0
place m ants on n nodes
place m ants on n nodes
2) set s=1 (tabu list index)
3) set s=1 (tabu list index)
for k=1 to m do
for k=1 to m do
place starting town of ant k in tabuk(s)
place starting town of ant k in tabuk(s)
4) repeat until tabu list full (repeated n-1 times)
5) repeat until tabu list full (repeated n-1 times)
set s=s+1
set s=s+1
for k=1 to m do
for k=1 to m do
choose town j with probability p pij }\mp@subsup{}{}{k}(t
choose town j with probability p pij }\mp@subsup{}{}{k}(t
move ant k to town j
move ant k to town j
insert town j in tabu
```
        insert town j in tabu
```

```
for k=1 to m do
    move ant k from tabu}\mp@subsup{\mp@code{k}}{(n)}{(notabu}\mp@subsup{|}{k}{(1)
    compute length of tour for ant k ( }\mp@subsup{L}{k}{}\mathrm{ )
    update shortest tour found
    for every edge (i,j)
    for k-1 to m do
            calculate }\Delta
            calculate \Delta 
5) for every edge (i,j)
            compute }\mp@subsup{\tau}{ij}{}(t+n)=\rho* \mp@subsup{\tau}{ij}{}(t)+\Delta\mp@subsup{\tau}{ij}{
    set t=t+n
    set NC=NC+1
    for every edge (i,j)
        set }\Delta\mp@subsup{\tau}{ij}{j}=
6) if (NC < NC max ) and (not stagnation behavior) then
            empty all tabu lists
            go to step 2
else
    print shortest tour
        stop
```


ACO for the GAP

- in the construction graph
- set of components = set of tasks and agents, $\mathrm{C}=\mathrm{I} \cup \mathrm{J}$
- each assignment, consisting of n couplings of (i, j) tasks and agents corresponds to an ant's walk
- constraints
- ant walks alternatingly from a task node to agent nodes without repeating a task node (agent nodes can be repeated)
- resource capacity constraints enforced through appropriately defined neighborhoods (allow only feasible movements)
- pheromone trails and heuristic information
- during solution construction ants make two decisions:
- choose task to assign next
- choose agent to assign task to
- pheromone trail can be associated with both:
- learn the order of task assignments
- learn the desirability of assigning a task to an agent
- pheromone trail can be associated with both:
- e.g. bias task assignment towards those that use more resources
- e.g. bias choice of agents with smaller costs and smaller resource use
- solution construction
- choose component based on $\tau_{i j}$ and $\eta_{i j}$ and the capacity constraints

- pheromone trail update
$-\tau_{\mathrm{i}}$ associated with the components: gives desirability of adding item i to current partial solution
- heuristic information
- heuristic information should prefer items with high profits and low resource requirements
- construction graph
- C: set of items
- L: fully connects the set of items
- profit of adding an item may be assumed with components or connections
- constraints
- resource constraints may be handled during solution construction (i.e. not allow inclusion of items violating any resource constraints)
when determining heuristic information
- possible to calculate average resource requirements
$r_{\text {avg }}=1 / m * \Sigma r_{\text {ij }}$ for each item and then set $\eta_{\mathrm{i}}=b_{\mathrm{i}} / r_{\text {avg }}$
- however this ignores tightness of individual resource constraints
- better to include a_{j} too
$r_{\text {avg }}^{\prime}=1 / m * \Sigma\left(a_{j} / r_{i j}\right)$ for each item and then set $\eta_{i}^{\prime}=b_{i} / r_{a v g}{ }^{\prime}$
- solution construction
- each ant adds items based on τ_{i} and η_{i} probabilistically to its path
- each item may be added only once
- construction ends when an ant cannot add more items without violating any constraints
- ! this means that each ant may have solutions of different lengths !

Ant System and Direct Variants

- Ant System (AS)
- Elitist Ant System (EAS)
- Ran-Based Ant System (AS rank)
- Max-Min Ant System ($\mu \mu \mathrm{AS}$)

EAS

- aim is to provide reinforcement to arcs belonging to best tour found since the beginning
- more pheromone deposited for the best-so-far tour
- a daemon action

$\mu \mu \mathrm{AS}$

4 modifications to AS

- stongly exploits best tours found: only the iteration-best ant or the best-so-far ant is allowed to deposit
- has effect of limiting probability of selecting a city j after city i
- may lead to stagnation, i.e. all ants follow same sub-ooptimal tour

$\mu \mu \mathrm{AS}$

- when depositing pheromones
- only best of iteration
- only best-so-far
- or both (each with a given frequency)
- experimets show that
- for small sized TSP problems, iteration-best works best
- for larger instances alternating between iteration-best and best-so-far works best

Extensions of Ant System

- Ant Colony System (ACS)
- Approximate Non-Deterministic Tree Search (ANTS)

ANTS
- has a novel action selection rule
- has a modified pheromone trail
update method

Comparison

- if solution quality is more important \Rightarrow use $\mu \mu \mathrm{AS}$
- if achieving acceptable solutions faster is more important \Rightarrow use ACS

