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ACO

• developed by Dorigo

• ant algorithms 

–study models derived from observations 
of real ants

–use models for developing algorithms to 
solve optimization problems

• ACO targets discrete optimization 
problems

• a population-based SLS method

ACO

• ants: simple agents with basic 
properties

• each one of k ants handles a 
candidate solution

• ants coordinate their activities 
through indirect communication 
mediated by the modification of the 
environment in which they move 
(stigmergy) 

ACO

• ants find shortest path from food to 
nest using pheromone trails

– isolated ant moves randomly

–ant follows pheromone trails ⇒ reinforces 
trail  

• probability of using a trail increases as 
more ants choose it (due to the 
pheromone deposited by the ants)

• pheromones evaporate with time

ACO

• autocatalytic behavior emerges

–as more ants follow trail, it becomes 
more attractive

–a positive feedback

–a process that reinforces itself causing 
rapid convergence

• double-bridge experiments

ACO

• artificial ants :

–have memory

–not completely blind

– time is discrete

• Simple ACO: S-ACO

• ACO is a construction heuristic
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S-ACO

• each ant builds a solution from 
source to destination

• at each step a decision policy is 
used

• decisions based on local 
information at each node

• decisions made stochastically

• ants communicate through 
stigmergy

Representation

a minimization problem (S,f,Ω)
S: set of candidate solutions

f: objective function (cost)

Ω: set of constraints
s*: globally optimal, feasible solution 
with minimum cost

Representation

(S,f,Ω) is mapped onto a problem with 
following characteristics:

• C={c1, c2, ..., cNc} : finite set of 
components

• Χ: set of all possible states
• χ={ci cj ... ch} : state of the problem 
given as sequences of elements of C  

• feasible / infeasible states

• g(s) : cost of a candidate solution s⊆S

Representation

Gc=(C,L) : construction graph

• nodes are components (C)

• connections are (L)

–L fully connects the graph

ACO

• ants construct solutions through 
randomized walks on Gc=(C,L)

• Ω (constraints) implemented through 
decision policies of ants

–sometimes ants are only allowed to 
construct feasible solutions

ACO

• components and connections may 
have an associated
–pheromone trail : τi / τij
–heuristic value : ηi / ηij

• pheromone trails provide long-term 
memory about whole of the ant search

• pheromone trails updated by ants

• heuristic value is an apriori info
–usually cost of adding a component / 
connection
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ACO

• each ant k of the colony has these 
properties:

–exploits construction graph to search for 
optimal solutions

–has memory Mk where it stores info on 
path followed so far which is used for:

• building feasible solutions

• computing η
• evaluating found solution

• retracing the path backwards

ACO

–has a starting state (usually an empty set 
or a single component sequence) and one 
or more termination criteria

–when in a state xr, moves to a node in its 
neighborhood

–stops when a termination criterion is 
satisfied

–usually infeasible solutions are not 
permitted

ACO

–ants select next move using a probabilistic 
decision rule based on
• locally available pheromone trails and heuristic 
values

• ant’s private memory storing its current state

• problem constraints

–when it adds a solution component / 
connection, it can update the associated 
pheromone trail

–when solution construction is completed, 
it retraces its steps and updates all 
pheromone trails along its path

ACO

! Ants act concurrently and 

independently. Each ant finds usually a 
poor quality solution to the problem. 
Through indirect communication 
between ants, good quality solutions 

emerge. !

ACO

• has 3 procedures

– ConstructAntSolutions: manages colony of ants 
moving on Gc=(C,L) 

– UpdatePheromones: modifies pheromone trails 
(add pheromone / forget through evaporation of 
pheromones)

– DaemonActions: implements centralized actions 
which cannot be done by single ants, such as 
activation of LocalSearch (optional procedure) 
procedure or decide if some trails need extra 
deposit of pheromones, or determine which ants 
should deposit extra pheromones, ...

ACO Outline
procedure ACO(p’)

input: problem instance p’ ∈P
output: solution s’ ∈S’(p’) or ∅

sp:={ ∅}; //population of k ants

s’:= ∅;
f(s’):= ∞;
τ:=initTrails(p’);
while not terminate(p’,sp) do

sp:=construct(p’, τ, η);
sp’:=localSearch(p’,sp); / /optional

if (f(best(p’,sp’))<f(s’) then
s’:=best(p’,sp’);

end
τ:=updateTrails(p’,sp’, τ);

end
if (s’ ∈S’)then

return s’;
else

return ∅; 
end

end ACO.

Note: Good parameter 
settings found in literature!
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Applications of ACO
• TSP
• vehicle routing
• sequential ordering
• quadratic assignment
• graph coloring
• generalized assignment
• university course time-
tabling

• job/open/flow shop
• project scheduling
• bin-packing
• fuzzy systems
• classification rules

• total tardiness
• total weighted tardiness
• multi-dimensional 
knapsack

• maximum independent 
set

• redundancy allocation
• set covering
• maximum clique
• shortest common 
super-sequence

• constraint satisfaction
• protein folding
• network routing
• ...

How to Apply ACO

• Traveling Salesman Problem: TSP 
(√)

• Generalized Assignment Problem: 
GAP (√)

• Multi-dimensional Knapsack 
Problem: MKP (√)

ACO for the TSP

• TSP: finding minimum length 
Hamiltonian circuit of graph

• TSP is the application chosen when 
the first ACO algorithm Ant System 
(AS) was proposed

• G=(N,A) : problem graph

–N: n cities

–A: arcs fully connecting nodes; 

dij: weight of arcs (distances)

• solution: permutation of cities

• pheromone trails and heuristic 
info:

– τij: desirability of visiting city j after i
–ηij: 1/ dij (usually)

• solution construction:

– initially each ant is put on a randomly 
selected city

–each ant adds an unvisited node at 
each step

– construction terminates when all 
cities have been visited
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• n cities

• bi(t): no of ants in town i at time t

• m: total no of ants

• ant:

–chooses next town based on distance 
and pheromone trail

– has a tabu list (list of visited towns)

– lays pheromone trail when tour is 
completed

• τij(t): intensity of trail on edge (i,j) 
at time t

• iteration: m moves during interval 
(t, t+1) by m ants

• each ant completes tour after n 
iterations

• when tour is completed, trail 
intensities updated
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where
- ρ: coefficient such that (1- ρ) represents evaporation of 
trail between time t and t+n (must be <1 to avoid unlimited 
accumulation of pheromones)
- ∆τijk: quantity per unit of pheromone laid on edge (i,j) by 
ant k between time t and t+n
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- Q is a constant
- Lk is tour length of ant k

transition probability for ant k from town i to town j:
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where
- ηij: visibility=1/dij
- allowedk={N-tabuk}
- α and β control relative importance of trail versus visibility

transition probability is a trade off between choosing 
shortest path and most travelled path

1) Initialize
set t=0  (time counter)
set NC=0 (cycles counter)
for all edges (i,j)

set τij (0)=c and ∆τij =0
place m ants on n nodes

2) set s=1 (tabu list index)
for k=1 to m do

place starting town of ant k in tabu k(s)

3) repeat until tabu list full   (repeated n-1 times )
set s=s+1
for k=1 to m do

choose town j with probability p ij
k(t)

move ant k to town j
insert town j in tabu k(s)

Pseudocode of ACO for TSP 4) for k=1 to m do
move ant k from tabu k(n) to tabu k(1)
compute length of tour for ant k (L k)
update shortest tour found
for every edge (i,j) 

for k-1 to m do
calculate ∆τij

k

∆τij = ∆τij + ∆τij
k

5) for every edge (i,j)
compute τij (t+n)= ρ* τij (t)+ ∆τij

set t=t+n
set NC=NC+1
for every edge (i,j)

set ∆τij =0

6) if (NC < NC max)and (not stagnation behavior) then
empty all tabu lists
go to step 2

else
print shortest tour

stop
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ACO for the GAP

Problem Definition: a set of tasks i∈I 
have to be assigned to a set of 
agents j∈J. Each agent has a 
limited capacity aj and each task i 
assigned to agent j consumes rij
amount of agent’s capacity. Cost 
of assigning task i to agent j is dij. 

The objective is to find a feasible 
assignment of tasks with minimum 
cost.

• in the construction graph 

–set of components = set of tasks and 
agents, C=I∪J

– each assignment, consisting of n 
couplings of (i,j) tasks and agents 
corresponds to an ant’s walk

• constraints 

–ant walks alternatingly from a task 
node to agent nodes without 
repeating a task node (agent nodes 
can be repeated)

– resource capacity constraints 
enforced through appropriately 
defined neighborhoods (allow only 
feasible movements)

• pheromone trails and heuristic information

– during solution construction ants make two 
decisions:

• choose task to assign next

• choose agent to assign task to

– pheromone trail can be associated with both:

• learn the order of task assignments

• learn the desirability of assigning a task to an agent

– pheromone trail can be associated with both:

• e.g. bias task assignment towards those that use 
more resources

• e.g. bias choice of agents with smaller costs and 
smaller resource use

• solution construction

–choose component based on τij and ηij 
and the capacity constraints
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ACO for the MKP

• construction graph
–C: set of items

–L: fully connects the set of items

–profit of adding an item may be 
assumed with components or 
connections

• constraints
– resource constraints may be handled 
during solution construction (i.e. not 
allow inclusion of items violating any 
resource constraints)

• pheromone trail update 

– τi associated with the components: gives 
desirability of adding item i to current 
partial solution

• heuristic information

–heuristic information should prefer items 
with high profits and low resource 
requirements

when determining heuristic information

–possible to calculate average resource 
requirements 

ravg= 1/m * Σrij for each item and then set  
ηi=bi/ ravg

–however this ignores tightness of 
individual resource constraints

–better to include aj too

ravg’= 1/m * Σ(aj/rij) for each item and then 
set ηi’=bi/ ravg’

• solution construction

–each ant adds items based on τi and ηi 
probabilistically to its path

• each item may be added only once

–construction ends when an ant cannot 
add more items without violating any 
constraints

–!!!! this means that each ant may have 
solutions of different lengths !!!!

Ant System and Direct Variants

• Ant System (AS)

• Elitist Ant System (EAS)

• Ran-Based Ant System (ASrank)

• Max-Min Ant System (µµAS)
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EAS

• aim is to provide reinforcement to 
arcs belonging to best tour found 
since the beginning

–more pheromone deposited for the 
best-so-far tour

–a daemon action 

ASrank

• each ant deposits pheromones in 
amounts decreasing based on its 
rank

• also as in EAS, best-so-far tour 
deposits most in each iteration

µµAS

4 modifications to AS

• stongly exploits best tours found: 
only the iteration-best ant or the 
best-so-far ant is allowed to 
deposit
–has effect of limiting probability of 
selecting a city j after city i

–may lead to stagnation, i.e. all ants 
follow same sub-ooptimal tour

µµAS

• possible range of τ is limited to [τmin, 
τmax] to counteract effect of first 
modification

• τ is initialized to upper limit + low 
evaporation rate increases exploration 
at start of search 

• τ is re-initialized each time the system 
approaches stagnation or no improved 
tours for a consecutive number of 
iterations

µµAS

• when depositing pheromones

– only best of iteration

– only best-so-far

– or both (each with a given frequency)

• experimets show that

– for small sized TSP problems, iteration-best 
works best

– for larger instances alternating between 
iteration-best and best-so-far works best

Extensions of Ant System

• Ant Colony System (ACS)

• Approximate Non-Deterministic 
Tree Search (ANTS)
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ACS

differs from AS in 3 points
• exploits the search experience of ants 
more through the action choice rule

• pheromone evaporation and pheromone 
deposit only on arcs belonging to best-
so-far tour

• each time an ant uses an arc to move 
from i to j, it removes some 
pheromones from the arc to increase 
exploration of different paths

ANTS

• computes lower bounds on 
completion of a partial solution to 
define the heuristic info

–when adding an item, compute lower 
bound on time for completion of solution 
if item is added ⇒ heuristic info

–helps add items which otherwise will be 
ignored if they currently have high costs

ANTS

• has a novel action selection rule

• has a modified pheromone trail 
update method

Comparison

• if solution quality is more 
important ⇒ use µµAS

• if achieving acceptable solutions 
faster is more important ⇒ use 
ACS


