
1

Chapter 3

Structured Program Development

© Copyright 2007 by Deitel & Associates, Inc. and
Pearson Education Inc. All Rights Reserved.

2

Chapter 3 - Structured Program
Development

Outline
3.1 Introduction
3.2 Algorithms
3.3 Pseudocode
3.4 Control Structures
3.5 The If Selection Statement
3.6 The If…Else Selection Statement
3.7 The While Repetition Statement
3.8 Formulating Algorithms: Case Study 1 (Counter-Controlled

Repetition)
3.9 Formulating Algorithms with Top-down, Stepwise

Refinement: Case Study 2 (Sentinel-Controlled Repetition)
3.10 Formulating Algorithms with Top-down, Stepwise

Refinement: Case Study 3 (Nested Control Structures)
3.11 Assignment Operators
3.12 Increment and Decrement Operators

3

Objectives

• In this chapter, you will learn:
– To understand basic problem solving techniques.
– To be able to develop algorithms through the process of top-down,

stepwise refinement.
– To be able to use the if selection statement and if…else

selection statement to select actions.
– To be able to use the while repetition statement to execute

statements in a program repeatedly.
– To understand counter-controlled repetition and sentinel-controlled

repetition.
– To understand structured programming.
– To be able to use the increment, decrement and assignment

operators.

4

3.1 Introduction

• Before writing a program:
– Have a thorough understanding of the problem
– Carefully plan an approach for solving it

• While writing a program:
– Know what “building blocks” are available
– Use good programming principles

5

3.2 Algorithms

• Computing problems
– All can be solved by executing a series of actions in a

specific order

• Algorithm: procedure in terms of
– Actions to be executed
– The order in which these actions are to be executed

• Program control
– Specify order in which statements are to be executed

6

3.3 Pseudocode

• Pseudocode
– Artificial, informal language that helps us develop algorithms
– Similar to English
– Not actually executed on computers
– Helps us “think out” a program before writing it

• Easy to convert into a corresponding C++ program
• Consists only of executable statements

7

3.4 Control Structures

• Sequential execution
– Statements executed one after the other in the order written

• Transfer of control
– When the next statement executed is not the next one in

sequence
– Overuse of goto statements led to many problems

• All programs written in terms of 3 control
structures
� Sequence structures: Built into C. Programs executed

sequentially by default
� Selection structures: C has three types: if, if…else, and
switch

� Repetition structures: C has three types: while,
do…while and for

8

3.4 Control Structures
Figure 3.1 Flowcharting C’s sequence structure.

9

3.4 Control Structures

• Flowchart
– Graphical representation of an algorithm
– Drawn using certain special-purpose symbols connected by

arrows called flowlines
– Rectangle symbol (action symbol):

• Indicates any type of action
– Oval symbol:

• Indicates the beginning or end of a program or a section of code

• Single-entry/single-exit control structures
– Connect exit point of one control structure to entry point of

the next (control-structure stacking)
– Makes programs easy to build

10

3.5 The ifififif Selection Statement

• Selection structure:
– Used to choose among alternative courses of action
– Pseudocode:

If student’s grade is greater than or equal to 60
Print “Passed”

• If condition true
– Print statement executed and program goes on to next

statement
– If false, print statement is ignored and the program goes

onto the next statement
– Indenting makes programs easier to read

• C ignores whitespace characters

11

3.5 The ifififif Selection Statement

• Pseudocode statement in C:
if (grade >= 60)

printf("Passed\n");

– C code corresponds closely to the pseudocode

• Diamond symbol (decision symbol)
– Indicates decision is to be made
– Contains an expression that can be true or false
– Test the condition, follow appropriate path

12

3.5 The ifififif Selection Statement

• if statement is a single-entry/single-exit structure

true

false

grade >= 60 print “Passed”

A decision can be made on
any expression.

zero means falsefalsefalsefalse

nonzero means truetruetruetrue

Examples:
3 - 4 is true

4 - 3 is true

3 - 3 is false

13

Example: if

#include <stdio.h>
#include <stdlib.h>

int main()
{

if (3 - 4)
printf("SONUC TRUE\n");

else
printf("SONUC FALSE\n");

system("PAUSE");
return 0;

}

OUTPUT:

SONUC TRUE

14

3.6 The ifififif…elseelseelseelse Selection Statement

• if

– Only performs an action if the condition is true

• if…else

– Specifies an action to be performed both when the condition
is true and when it is false

• Psuedocode:
If student’s grade is greater than or equal to 60

Print “Passed”
else

Print “Failed”
– Note spacing/indentation conventions

15

3.6 The ifififif…elseelseelseelse Selection Statement

• C code:
if (grade >= 60)

printf("Passed\n");

else

printf("Failed\n");

• Ternary conditional operator (?:)
– Takes three arguments (condition, value if true, value if false)
– Our pseudocode could be written:

printf("%s\n", grade >= 60 ? "Passed" : "Failed");

– Or it could have been written:
grade >= 60 ? printf(“Passed\n”) : printf(“Failed\n”);

16

3.6 The ifififif…elseelseelseelse Selection Statement

• Flow chart of the if…else selection statement

• Nested if…else statements
– Test for multiple cases by placing if…else selection

statements inside if…else selection statement
– Once condition is met, rest of statements skipped
– Deep indentation usually not used in practice

truefalse

print “Failed” print “Passed”

grade >= 60

17

3.6 The ifififif…elseelseelseelse Selection Statement
– Pseudocode for a nested if…else statement

If student’s grade is greater than or equal to 90
Print “A”

else
If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

18

3.6 The ifififif…elseelseelseelse Selection Statement

• Compound statement:
– Set of statements within a pair of braces
– Example:

if (grade >= 60)

printf("Passed.\n");

else {

printf("Failed.\n");

printf("You must take this course
again.\n");

}

– Without the braces, the statement
printf("You must take this course

again.\n");

would be executed automatically

19

3.6 The ifififif…elseelseelseelse Selection Statement

• Block:
– Compound statements with declarations

• Syntax errors
– Caught by compiler

• Logic errors:
– Have their effect at execution time
– Non-fatal: program runs, but has incorrect output
– Fatal: program exits prematurely

20

3.7 The whilewhilewhilewhile Repetition Statement

• Repetition structure
– Programmer specifies an action to be repeated while some

condition remains true
– Psuedocode:

While there are more items on my shopping list
Purchase next item and cross it off my list

– while loop repeated until condition becomes false

21

3.7 The whilewhilewhilewhile Repetition Statement

• Example:
int product = 2;

while (product <= 1000)
product = 2 * product;

product <= 1000 product = 2 * product
true

false

22

3.8 Formulating Algorithms
(Counter-Controlled Repetition)

• Counter-controlled repetition
– Loop repeated until counter reaches a certain value
– Definite repetition: number of repetitions is known
– Example: A class of ten students took a quiz. The grades

(integers in the range 0 to 100) for this quiz are available to
you. Determine the class average on the quiz

– Pseudocode:
Set total to zero

Set grade counter to one
While grade counter is less than or equal to ten

Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Outline
23

Outline

fig03_06.c (Part 1 of 2)

1 /* Fig. 3.6: fig03_06.c/* Fig. 3.6: fig03_06.c/* Fig. 3.6: fig03_06.c/* Fig. 3.6: fig03_06.c

2 Class average program with counterClass average program with counterClass average program with counterClass average program with counter----controlled repetition */controlled repetition */controlled repetition */controlled repetition */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4
5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{
8 intintintint counter; counter; counter; counter; /* number of grade to be ent/* number of grade to be ent/* number of grade to be ent/* number of grade to be entered next */ered next */ered next */ered next */

9 intintintint grade; grade; grade; grade; /* grade value *//* grade value *//* grade value *//* grade value */

10 intintintint total; total; total; total; /* sum of grades input by user *//* sum of grades input by user *//* sum of grades input by user *//* sum of grades input by user */

11 intintintint average; average; average; average; /* average of grades *//* average of grades *//* average of grades *//* average of grades */

12

13 /* initialization phase *//* initialization phase *//* initialization phase *//* initialization phase */

14 total = total = total = total = 0000; ; ; ; /* initialize total *//* initialize total *//* initialize total *//* initialize total */

15 counter = counter = counter = counter = 1111; ; ; ; /* initialize loop counter *//* initialize loop counter *//* initialize loop counter *//* initialize loop counter */

16

17 /* processing phase *//* processing phase *//* processing phase *//* processing phase */

18 whilewhilewhilewhile (counter <= (counter <= (counter <= (counter <= 10101010) {) {) {) { /* loop 10 times *//* loop 10 times *//* loop 10 times *//* loop 10 times */

19 printf(printf(printf(printf("Enter grade: ""Enter grade: ""Enter grade: ""Enter grade: ");););); /* prompt for input *//* prompt for input *//* prompt for input *//* prompt for input */

20 scanf(scanf(scanf(scanf("%d""%d""%d""%d", &grade); , &grade); , &grade); , &grade); /* read gra/* read gra/* read gra/* read grade from user */de from user */de from user */de from user */

21 total = total + grade; total = total + grade; total = total + grade; total = total + grade; /* add grade to total *//* add grade to total *//* add grade to total *//* add grade to total */

22 counter = counter + counter = counter + counter = counter + counter = counter + 1111; ; ; ; /* increment counter *//* increment counter *//* increment counter *//* increment counter */

23 } /* end while */} /* end while */} /* end while */} /* end while */

24

Outline
24

Outline

fig03_06.c (Part 2 of 2)

Program Output
Enter grade: 98Enter grade: 98Enter grade: 98Enter grade: 98
Enter grade: 76Enter grade: 76Enter grade: 76Enter grade: 76
Enter grade: 71Enter grade: 71Enter grade: 71Enter grade: 71
Enter grade: 87Enter grade: 87Enter grade: 87Enter grade: 87
Enter grade: 83Enter grade: 83Enter grade: 83Enter grade: 83
Enter grade: 90Enter grade: 90Enter grade: 90Enter grade: 90
Enter grade: 57Enter grade: 57Enter grade: 57Enter grade: 57
Enter grade: 79Enter grade: 79Enter grade: 79Enter grade: 79
Enter grade: 82Enter grade: 82Enter grade: 82Enter grade: 82
Enter grade: 94Enter grade: 94Enter grade: 94Enter grade: 94
Class average is 81Class average is 81Class average is 81Class average is 81

25 /* termination phase *//* termination phase *//* termination phase *//* termination phase */

26 average = total / average = total / average = total / average = total / 10101010; ; ; ; /* integer division *//* integer division *//* integer division *//* integer division */

27

28 /* display result *//* display result *//* display result *//* display result */

29 printf(printf(printf(printf("Class average is %d"Class average is %d"Class average is %d"Class average is %d\\\\n"n"n"n", average);, average);, average);, average);

30

31 returnreturnreturnreturn 0000; ; ; ; /* indicate program ended successfully *//* indicate program ended successfully *//* indicate program ended successfully *//* indicate program ended successfully */

32

33 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

25

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement

• Problem becomes:
Develop a class-averaging program that will process an
arbitrary number of grades each time the program is run.

– Unknown number of students
– How will the program know to end?

• Use sentinel value
– Also called signal value, dummy value, or flag value
– Indicates “end of data entry.”
– Loop ends when user inputs the sentinel value
– Sentinel value chosen so it cannot be confused with a regular

input (such as ----1111 in this case)

26

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement

• Top-down, stepwise refinement
– Begin with a pseudocode representation of the top:

Determine the class average for the quiz
– Divide top into smaller tasks and list them in order:

Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

• Many programs have three phases:
– Initialization: initializes the program variables
– Processing: inputs data values and adjusts program variables

accordingly
– Termination: calculates and prints the final results

27

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement

• Refine the initialization phase from Initialize
variables to:

Initialize total to zero
Initialize counter to zero

• Refine Input, sum and count the quiz grades to
Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

28

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement

• Refine Calculate and print the class average to
If the counter is not equal to zero

Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

29

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement

Initialize total to zero
Initialize counter to zero

Input the first grade
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Outline
30

Outline

fig03_08.c (Part 1 of 2)

1 /* Fig. 3.8: fig03_08.c/* Fig. 3.8: fig03_08.c/* Fig. 3.8: fig03_08.c/* Fig. 3.8: fig03_08.c

2 Class average program with sentinelClass average program with sentinelClass average program with sentinelClass average program with sentinel----controlled repetition */controlled repetition */controlled repetition */controlled repetition */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4

5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{
8 intintintint counter; counter; counter; counter; /* number of grades enter/* number of grades enter/* number of grades enter/* number of grades entered */ed */ed */ed */

9 intintintint grade; grade; grade; grade; /* grade value *//* grade value *//* grade value *//* grade value */

10 intintintint total; total; total; total; /* sum of grades *//* sum of grades *//* sum of grades *//* sum of grades */

11

12 floatfloatfloatfloat average; average; average; average; /* number with decimal point for average *//* number with decimal point for average *//* number with decimal point for average *//* number with decimal point for average */

13

14 /* initialization phase *//* initialization phase *//* initialization phase *//* initialization phase */

15 total = total = total = total = 0000; ; ; ; /* initialize total/* initialize total/* initialize total/* initialize total */ */ */ */

16 counter = counter = counter = counter = 0000; ; ; ; /* initialize loop counter *//* initialize loop counter *//* initialize loop counter *//* initialize loop counter */

17

18 /* processing phase *//* processing phase *//* processing phase *//* processing phase */

19 /* get first grade from user *//* get first grade from user *//* get first grade from user *//* get first grade from user */

20 printf(printf(printf(printf("Enter grade, "Enter grade, "Enter grade, "Enter grade, ----1 to end: "1 to end: "1 to end: "1 to end: ");););); /* prompt for input *//* prompt for input *//* prompt for input *//* prompt for input */

21 scanf(scanf(scanf(scanf("%d""%d""%d""%d", &grade); , &grade); , &grade); , &grade); /* read grade from user *//* read grade from user *//* read grade from user *//* read grade from user */

22

23 /* loop while sentinel value not yet read from user *//* loop while sentinel value not yet read from user *//* loop while sentinel value not yet read from user *//* loop while sentinel value not yet read from user */

24 whilewhilewhilewhile ((((grade != grade != grade != grade != ----1111) {) {) {) {

25 total = total + grade; total = total + grade; total = total + grade; total = total + grade; /* add grade to total *//* add grade to total *//* add grade to total *//* add grade to total */

26 counter = counter + counter = counter + counter = counter + counter = counter + 1111; ; ; ; /* increment counter *//* increment counter *//* increment counter *//* increment counter */

27

Outline
31

Outline

fig03_08.c (Part 2 of 2)

28 printf(printf(printf(printf("Enter grade, "Enter grade, "Enter grade, "Enter grade, ----1 to end: "1 to end: "1 to end: "1 to end: ");););); /* prompt for input */ /* prompt for input */ /* prompt for input */ /* prompt for input */

29 scanf(scanf(scanf(scanf("%d""%d""%d""%d", &grade); , &grade); , &grade); , &grade); /* read next grade *//* read next grade *//* read next grade *//* read next grade */

30 } } } } /* end while *//* end while *//* end while *//* end while */

31

32 /* termination phase *//* termination phase *//* termination phase *//* termination phase */

33 /* if user entered at least one grad/* if user entered at least one grad/* if user entered at least one grad/* if user entered at least one grade */e */e */e */

34 ifififif ((((counter != counter != counter != counter != 0000) {) {) {) {

35

36 /* calculate average of all grades entered *//* calculate average of all grades entered *//* calculate average of all grades entered *//* calculate average of all grades entered */

37 average = average = average = average = ((((floatfloatfloatfloat) total) total) total) total / counter; / counter; / counter; / counter;

38

39 /* display average with two digits of precision *//* display average with two digits of precision *//* display average with two digits of precision *//* display average with two digits of precision */

40 printf(printf(printf(printf("Class average i"Class average i"Class average i"Class average is s s s %.2f%.2f%.2f%.2f\\\\n"n"n"n", average); , average); , average); , average);

41 } } } } /* end if */ /* end if */ /* end if */ /* end if */

42 elseelseelseelse { { { { /* if no grades were entered, output message *//* if no grades were entered, output message *//* if no grades were entered, output message *//* if no grades were entered, output message */

43 printf(printf(printf(printf("No grades were entered"No grades were entered"No grades were entered"No grades were entered\\\\n"n"n"n"););););

44 } } } } /* end else *//* end else *//* end else *//* end else */

45

46 returnreturnreturnreturn 0000; ; ; ; /* indicate program ended successfully/* indicate program ended successfully/* indicate program ended successfully/* indicate program ended successfully */ */ */ */

47

48 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

Outline
32

Outline

Program Output

Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 751 to end: 751 to end: 751 to end: 75
Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 941 to end: 941 to end: 941 to end: 94
Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 971 to end: 971 to end: 971 to end: 97
Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 881 to end: 881 to end: 881 to end: 88
Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 701 to end: 701 to end: 701 to end: 70
Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 641 to end: 641 to end: 641 to end: 64
Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 831 to end: 831 to end: 831 to end: 83
Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 891 to end: 891 to end: 891 to end: 89
Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 1 to end: 1 to end: 1 to end: ----1111
Class average is 82.50Class average is 82.50Class average is 82.50Class average is 82.50

Enter grade, Enter grade, Enter grade, Enter grade, ----1 to end: 1 to end: 1 to end: 1 to end: ----1111
No grades were entered No grades were entered No grades were entered No grades were entered

33

3.10 Nested control structures

• Problem
– A college has a list of test results (1 = pass, 2 = fail) for 10

students
– Write a program that analyzes the results

• If more than 8 students pass, print "Raise Tuition"

• Notice that
– The program must process 10 test results

• Counter-controlled loop will be used
– Two counters can be used

• One for number of passes, one for number of fails
– Each test result is a number—either a 1 or a 2

• If the number is not a 1, we assume that it is a 2

34

3.10 Nested control structures

• Top level outline
Analyze exam results and decide if tuition should be raised

• First Refinement
Initialize variables
Input the ten quiz grades and count passes and failures
Print a summary of the exam results and decide if tuition

should be raised

• Refine Initialize variables to
Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

35

3.10 Nested control structures

• Refine Input the ten quiz grades and count passes
and failures to

While student counter is less than or equal to ten
Input the next exam result
If the student passed

Add one to passes
else

Add one to failures
Add one to student counter

• Refine Print a summary of the exam results and
decide if tuition should be raised to

Print the number of passes
Print the number of failures
If more than eight students passed

Print “Raise tuition”

36

3.10 Nested control structures
Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures
If more than eight students passed

Print “Raise tuition”

Outline
37

Outline

fig03_10.c (Part 1 of 2)

1 /* Fig. 3.10: fig03_10.c/* Fig. 3.10: fig03_10.c/* Fig. 3.10: fig03_10.c/* Fig. 3.10: fig03_10.c

2 Analysis of examination results */Analysis of examination results */Analysis of examination results */Analysis of examination results */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4

5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{
8 /* initialize variables in definitions *//* initialize variables in definitions *//* initialize variables in definitions *//* initialize variables in definitions */

9 intintintint passes = passes = passes = passes = 0000;;;; /* number of passes *//* number of passes *//* number of passes *//* number of passes */

10 intintintint failures = failures = failures = failures = 0000;;;; /* number of failures *//* number of failures *//* number of failures *//* number of failures */

11 intintintint student = student = student = student = 1111;;;; /* student counter *//* student counter *//* student counter *//* student counter */

12 intintintint result; result; result; result; /* one exam result *//* one exam result *//* one exam result *//* one exam result */

13

14 /* process 10 students using counter/* process 10 students using counter/* process 10 students using counter/* process 10 students using counter----controlled loop */controlled loop */controlled loop */controlled loop */

15 while while while while (student <= (student <= (student <= (student <= 10101010) {) {) {) {

16

17 /* prompt user for input and obtain value from user *//* prompt user for input and obtain value from user *//* prompt user for input and obtain value from user *//* prompt user for input and obtain value from user */

18 printf(printf(printf(printf("Enter result (1=pass,2=fail): ""Enter result (1=pass,2=fail): ""Enter result (1=pass,2=fail): ""Enter result (1=pass,2=fail): "););););

19 scanf(scanf(scanf(scanf("%d""%d""%d""%d", &result);, &result);, &result);, &result);

20

21 /* if result 1, increment passes *//* if result 1, increment passes *//* if result 1, increment passes *//* if result 1, increment passes */

22 ifififif (result == (result == (result == (result == 1111) {) {) {) {

23 passes = passes + passes = passes + passes = passes + passes = passes + 1111;;;;

24 } } } } /* end if *//* end if *//* end if *//* end if */

Outline
38

Outline

fig03_10.c (Part 2 of 2)

25 elseelseelseelse { { { { /* otherwise, increment failures *//* otherwise, increment failures *//* otherwise, increment failures *//* otherwise, increment failures */

26 failures = failures + failures = failures + failures = failures + failures = failures + 1111;;;;

27 } } } } /* end else *//* end else *//* end else *//* end else */

28

29 student = student + student = student + student = student + student = student + 1111; ; ; ; /* increment student counter *//* increment student counter *//* increment student counter *//* increment student counter */

30 } } } } /* end while *//* end while *//* end while *//* end while */

31

32 /* termination /* termination /* termination /* termination phase; display number of passes and failures */phase; display number of passes and failures */phase; display number of passes and failures */phase; display number of passes and failures */

33 printf(printf(printf(printf("Passed %d"Passed %d"Passed %d"Passed %d\\\\n"n"n"n", passes);, passes);, passes);, passes);

34 printf(printf(printf(printf("Failed %d"Failed %d"Failed %d"Failed %d\\\\n"n"n"n", failures);, failures);, failures);, failures);

35

36 /* if more than eight students passed, print "raise tuition" *//* if more than eight students passed, print "raise tuition" *//* if more than eight students passed, print "raise tuition" *//* if more than eight students passed, print "raise tuition" */

37 ifififif (passes > (passes > (passes > (passes > 8888) {) {) {) {

38 p p p printf(rintf(rintf(rintf("Raise tuition"Raise tuition"Raise tuition"Raise tuition\\\\n"n"n"n"););););

39 } } } } /* end if *//* end if *//* end if *//* end if */

40

41 returnreturnreturnreturn 0000; ; ; ; /* indicate program ended successfully *//* indicate program ended successfully *//* indicate program ended successfully *//* indicate program ended successfully */

42

43 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

Outline
39

Outline

Program Output

Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2
Passed 6Passed 6Passed 6Passed 6
Failed 4Failed 4Failed 4Failed 4

Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Passed 9Passed 9Passed 9Passed 9
Failed 1Failed 1Failed 1Failed 1
Raise tuition Raise tuition Raise tuition Raise tuition

40

3.11 Assignment Operators

• Assignment operators abbreviate assignment
expressions

c = c + 3;

can be abbreviated as c += 3; using the addition assignment
operator

• Statements of the form
variable = variable operator expression;

can be rewritten as
variable operator= expression;

• Examples of other assignment operators:
d -= 4 (d = d - 4)

e *= 5 (e = e * 5)

f /= 3 (f = f / 3)

g %= 9 (g = g % 9)

41

3.11 Assignment Operators

Assume: intintintint c = c = c = c = 3333, d = , d = , d = , d = 5555, e = , e = , e = , e = 4444, f = , f = , f = , f = 6666, g = , g = , g = , g = 12121212;;;;

Assignment operator Sample expression Explanation Assigns
+=+=+=+= c += c += c += c += 7777 c = c + c = c + c = c + c = c + 7777 10101010 to cccc
----==== d d d d ----= = = = 4444 d = d d = d d = d d = d ---- 4444 1111 to dddd
==*=*= e *= e *= e *= e *= 5555 e = e * e = e * e = e * e = e * 5555 20202020 to eeee
/=/=/=/= f /= f /= f /= f /= 3333 f = f / f = f / f = f / f = f / 3333 2222 to ffff
%=%=%=%= g %= g %= g %= g %= 9999 g = g % g = g % g = g % g = g % 9999 3333 to gggg
Fig. 3.11 Arithmetic assignment operators.

42

3.12 Increment and Decrement Operators

• Increment operator (++)
– Can be used instead of c+=1

• Decrement operator (--)
– Can be used instead of c-=1

• Preincrement
– Operator is used before the variable (++c or --c)
– Variable is changed before the expression it is in is evaluated

• Postincrement
– Operator is used after the variable (c++ or c--)
– Expression executes before the variable is changed

43

3.12 Increment and Decrement Operators

• If c equals 5, then
printf("%d", ++c);

– Prints 6
printf("%d", c++);

– Prints 5
– In either case, c now has the value of 6

• When variable not in an expression
– Preincrementing and postincrementing have the same effect

++c;

printf(“%d”, c);

– Has the same effect as
c++;

printf(“%d”, c);

44

3.12 Increment and Decrement Operators

Operator Sample expression Explanation
++++++++ ++a ++a ++a ++a Increment a by 1 then use the new value of a in the expression in

which aaaa resides.
++++++++ a++a++a++a++ Use the current value of aaaa in the expression in which aaaa resides,

then increment aaaa by 1.
-------- --------b b b b Decrement bbbb by 1 then use the new value of bbbb in the expression in

which bbbb resides.
-------- bbbb-------- Use the current value of bbbb in the expression in which bbbb resides,

then decrement bbbb by 1.
Fig. 3.12 The increment and decrement operators

Outline
45

Outline

fig03_13.c

1 /* Fig. 3.13: fig03_13.c/* Fig. 3.13: fig03_13.c/* Fig. 3.13: fig03_13.c/* Fig. 3.13: fig03_13.c

2 Preincrementing and postincrementing */Preincrementing and postincrementing */Preincrementing and postincrementing */Preincrementing and postincrementing */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4

5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{
8 intintintint c; c; c; c; /* define variable *//* define variable *//* define variable *//* define variable */

9

10 /* demonstrate postincrement *//* demonstrate postincrement *//* demonstrate postincrement *//* demonstrate postincrement */

11 c = c = c = c = 5555; ; ; ; /* assign 5 to c *//* assign 5 to c *//* assign 5 to c *//* assign 5 to c */

12 printf(printf(printf(printf("%d"%d"%d"%d\\\\n"n"n"n", c); , c); , c); , c); /* print 5 *//* print 5 *//* print 5 *//* print 5 */

13 printf(printf(printf(printf("%d"%d"%d"%d\\\\n"n"n"n", c++); , c++); , c++); , c++); /* print 5 then postincrement *//* print 5 then postincrement *//* print 5 then postincrement *//* print 5 then postincrement */

14 printf(printf(printf(printf("%d"%d"%d"%d\\\\nnnn\\\\n"n"n"n", c); , c); , c); , c); /* print 6 *//* print 6 *//* print 6 *//* print 6 */

15

16 /* demonstrate preincrement *//* demonstrate preincrement *//* demonstrate preincrement *//* demonstrate preincrement */

17 c = c = c = c = 5555; ; ; ; /* assign 5 to c *//* assign 5 to c *//* assign 5 to c *//* assign 5 to c */

18 printf(printf(printf(printf("%d"%d"%d"%d\\\\n"n"n"n", c); , c); , c); , c); /* print 5 *//* print 5 *//* print 5 *//* print 5 */

19 printf(printf(printf(printf("%d"%d"%d"%d\\\\n"n"n"n", ++c); , ++c); , ++c); , ++c); /* preincrement then print 6 *//* preincrement then print 6 *//* preincrement then print 6 *//* preincrement then print 6 */

20 printf(printf(printf(printf("%d"%d"%d"%d\\\\n"n"n"n", c); , c); , c); , c); /* p/* p/* p/* print 6 */rint 6 */rint 6 */rint 6 */

21

22 returnreturnreturnreturn 0000; ; ; ; /* indicate program ended successfully *//* indicate program ended successfully *//* indicate program ended successfully *//* indicate program ended successfully */

23

24 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

Outline
46

Outline

Program Output

5555
5555
6666

5555
6666
6 6 6 6

47

3.12 Increment and Decrement Operators

Operators Associativity Type
++++++++ -------- ++++ ---- ((((type)))) right to left unary
**** //// %%%% left to right multiplicative
+ + + + ---- left to right additive
<<<< <=<=<=<= >>>> >=>=>=>= left to right relational
== == == == !=!=!=!= left to right equality
?:?:?:?: right to left conditional
= = = = +=+=+=+= ----==== *=*=*=*= ////==== right to left assignment
Fig. 3.14 Precedence of the operators encountered so far in the text.

