
1

Chapter 1 & 2

Introduction to C Language

© Copyright 2007 by Deitel & Associates, Inc. and
Pearson Education Inc. All Rights Reserved.

2

Chapter 1 & 2 - Introduction to
C Language

Outline

1.1 The History of C
1.2 The C Standard Library
1.3 C++
1.4 The Basics of a typical C Program Development Environment

2.1 A Simple C Program: Printing a Line of Text
2.2 Another Simple C Program: Adding Two Integers
2.3 Memory Concepts
2.4 Arithmetic in C
2.5 Decision Making: Equality and Relational Operators

3

Objectives

• In chapter 1&2, you will learn:
– The history of the C programming language.
– To become aware of the C standard library.
– The elements of a typical C program development environment.

– To be able to write simple programs in C.
– To be able to use simple input and output statements.
– To become familiar with fundamental data types.
– To understand computer memory concepts.
– To be able to use arithmetic operators.
– To understand the precedence of arithmetic operators.
– To be able to write simple decision making statements.

4

1.1 History of C

• C Language
– Evolved by Dennis Ritchie from two previous programming

languages, BCPL and B
– Used to develop UNIX
– Used to write modern operating systems
– Hardware independent (portable)

• Standardization
– Many slight variations of C existed, and were incompatible
– Committee formed to create a "unambiguous, machine-

independent" definition
– Standard created in 1989 (ANSI) , updated in 1999 (ISO)

5

1.2 The C Standard Library

• C programs consist of pieces/modules called
functions
– A programmer can create his own functions

• Advantage: the programmer knows exactly how it works
• Disadvantage: time consuming

– Programmers will often use the C library functions
• Use these as building blocks

– Avoid re-inventing the wheel
• If a premade function exists, generally best to use it rather than

write your own
• Library functions carefully written, efficient, and portable

6

1.3 C++

• C++ Language
– Superset of C developed by Bjarne Stroustrup at Bell Labs
– Extends the C, and provides object-oriented capabilities
– Object-oriented design is very powerful
– Dominant language in industry and academia

• Learning C++
– Because C++ includes C, it is best to master C, then learn

C++

7

1.4 Basics of a Typical C Program
Development Environment

• Phases of C Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Program is created in
the editor and stored
on disk.
Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries

Loader

Primary Memory

Compiler

Editor

Preprocessor

Linker

Primary Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

CPU

Disk

Disk

8

2.1 A Simple C Program:
Printing a Line of Text

Comments
– Text surrounded by /* and */ is ignored by computer
– Used to describe program

• #include <stdio.h>

– Preprocessor directive
• Tells computer to load contents of a certain file

– <stdio.h> allows standard input/output operations

1 1 1 1 /* Fig. 2.1: fig02_01.c/* Fig. 2.1: fig02_01.c/* Fig. 2.1: fig02_01.c/* Fig. 2.1: fig02_01.c
2 2 2 2 A first program in C */A first program in C */A first program in C */A first program in C */
3 3 3 3 #include#include#include#include <stdio.h><stdio.h><stdio.h><stdio.h>
4 4 4 4
5 5 5 5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */
6 6 6 6 intintintint main()main()main()main()
7 7 7 7 {{{{
8 8 8 8 printf(printf(printf(printf("Welcome to C!"Welcome to C!"Welcome to C!"Welcome to C!\\\\n"n"n"n"););););
9 9 9 9
10 10 10 10 returnreturnreturnreturn 0000; ; ; ; /* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully */
11 11 11 11
12 12 12 12 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

Welcome to C!

9

2.1 A Simple C Program:
Printing a Line of Text

• int main()

– C++ programs contain one or more functions, exactly one of
which must be main

– Parenthesis used to indicate a function
– int means that main "returns" an integer value
– Braces ({ and }) indicate a block

• The bodies of all functions must be contained in braces

10

2.1 A Simple C Program:
Printing a Line of Text

• printf("Welcome to C!\n");

– Instructs computer to perform an action
• Specifically, prints the string of characters within quotes (" ")

– Entire line called a statement
• All statements must end with a semicolon (;)

– Escape character (\)
• Indicates that printf should do something out of the ordinary
• \n is the newline character

11

2.1 A Simple C Program:
Printing a Line of Text

Escape Sequence Description
\\\\nnnn Newline. Position the cursor at the beginning of the next line.
\\\\tttt Horizontal tab. Move the cursor to the next tab stop.
\\\\aaaa Alert. Sound the system bell.
\\\\\\\\ Backslash. Insert a backslash character in a string.
\\\\"""" Double quote. Insert a double quote character in a string.
Fig. 2.2 Some common escape sequences.

12

2.1 A Simple C Program:
Printing a Line of Text

• return 0;

– A way to exit a function
– return 0, in this case, means that the program terminated

normally

• Right brace }
– Indicates end of main has been reached

• Linker
– When a function is called, linker locates it in the library
– Inserts it into object program
– If function name is misspelled, the linker will produce an

error because it will not be able to find function in the
library

Outline
131 /* Fig. 2.3: fig02_03.c/* Fig. 2.3: fig02_03.c/* Fig. 2.3: fig02_03.c/* Fig. 2.3: fig02_03.c

2 Printing on one line with two printf statements */Printing on one line with two printf statements */Printing on one line with two printf statements */Printing on one line with two printf statements */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4

5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{
8 printf(printf(printf(printf("Welcome ""Welcome ""Welcome ""Welcome "););););

9 printf(printf(printf(printf("to C!"to C!"to C!"to C!\\\\n"n"n"n"))));;;;

10

11 returnreturnreturnreturn 0000; ; ; ; /* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully */

12

13 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

fig02_03.c

Program OutputWelcome to C!

Outline
14

fig02_04.cfig02_04.cfig02_04.cfig02_04.c

Program OutputProgram OutputProgram OutputProgram Output

Welcome
to
C!

1 /* Fig. 2.4: fig02_04.c/* Fig. 2.4: fig02_04.c/* Fig. 2.4: fig02_04.c/* Fig. 2.4: fig02_04.c

2 Printing multiple lines with a single printf */Printing multiple lines with a single printf */Printing multiple lines with a single printf */Printing multiple lines with a single printf */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4

5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{
8 printf(printf(printf(printf("Welcome"Welcome"Welcome"Welcome\\\\nnnntotototo\\\\nnnnC!C!C!C!\\\\n"n"n"n"););););

9

10 returnreturnreturnreturn 0000; ; ; ; /* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully */

11

12 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

Outline
15

fig02_05.c fig02_05.c fig02_05.c fig02_05.c

1 /* Fig. 2.5: fig02_05.c/* Fig. 2.5: fig02_05.c/* Fig. 2.5: fig02_05.c/* Fig. 2.5: fig02_05.c

2 Addition program */Addition program */Addition program */Addition program */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4

5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{
8 intintintint integer1; integer1; integer1; integer1; /* first number to be input by user *//* first number to be input by user *//* first number to be input by user *//* first number to be input by user */

9 intintintint integer2; integer2; integer2; integer2; ////* second number to be input by user */* second number to be input by user */* second number to be input by user */* second number to be input by user */

10 intintintint sum; sum; sum; sum; /* variable in which sum will be stored *//* variable in which sum will be stored *//* variable in which sum will be stored *//* variable in which sum will be stored */

11

12 printf(printf(printf(printf("Enter first integer"Enter first integer"Enter first integer"Enter first integer\\\\n"n"n"n");););); /* prompt *//* prompt *//* prompt *//* prompt */

13 scanf(scanf(scanf(scanf("%d""%d""%d""%d", &integer1); , &integer1); , &integer1); , &integer1); /* read an integer *//* read an integer *//* read an integer *//* read an integer */

14

15 printf(printf(printf(printf("Enter second integer"Enter second integer"Enter second integer"Enter second integer\\\\n"n"n"n");););); /* prompt *//* prompt *//* prompt *//* prompt */

16 scanf(scanf(scanf(scanf("%d""%d""%d""%d", &integer2); , &integer2); , &integer2); , &integer2); /* read an integer *//* read an integer *//* read an integer *//* read an integer */

17

18 sum = integer1 + integer2; sum = integer1 + integer2; sum = integer1 + integer2; sum = integer1 + integer2; /* assign total to sum *//* assign total to sum *//* assign total to sum *//* assign total to sum */

19

20 printf(printf(printf(printf("Sum is %d"Sum is %d"Sum is %d"Sum is %d\\\\n"n"n"n", sum); , sum); , sum); , sum); /* print s/* print s/* print s/* print sum */um */um */um */

21

22 returnreturnreturnreturn 0000; ; ; ; /* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully */

23

24 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

Outline
16

Program OutputProgram OutputProgram OutputProgram Output

Enter first integer
45
Enter second integer
72
Sum is 117

17

2.2 Another Simple C Program:
Adding Two Integers

• As before
– Comments, #include <stdio.h> and main

• int integer1, integer2, sum;

– Definition of variables
• Variables: locations in memory where a value can be stored

– int means the variables can hold integers (-1, 3, 0, 47)
– Variable names (identifiers)

• integer1, integer2, sum
• Identifiers: consist of letters, digits (cannot begin with a digit)

and underscores(____)
– Case sensitive

– Definitions appear before executable statements
• If an executable statement references and undeclared variable

it will produce a syntax (compiler) error

18

Variable Naming Examples

• Invalid Variable Names:
ÖğrenciNum, Öğr Num, Ogr-Num, 4.Ogr
∑ , α , θ , a2, π

• Valid Variable Names:
OgrenciNum, OgrNum, Ogr_Num, Ogr4
Sum , alfa , teta , aSquare , Pi

19

2.2 Another Simple C Program:
Adding Two Integers

• scanf("%d", &integer1);

– Obtains a value from the user
• scanf uses standard input (usually keyboard)

– This scanf statement has two arguments
• %d - indicates data should be a decimal integer
• &integer1 - location in memory to store variable
• & is confusing in beginning – for now, just remember to

include it with the variable name in scanf statements
– When executing the program the user responds to the scanf

statement by typing in a number, then pressing the enter
(return) key

20

2.2 Another Simple C Program:
Adding Two Integers

• ==== (assignment operator)
– Assigns a value to a variable
– Is a binary operator (has two operands)

sum = variable1 + variable2;sum = variable1 + variable2;sum = variable1 + variable2;sum = variable1 + variable2;

sum gets variable1 + variable2

– Variable receiving value must be on left (target)

• Common mistake:Common mistake:Common mistake:Common mistake:

– The following gives a compiler error, becuase the left of the
assignment operator (=) must always be the target variable.

variable1 + variable2variable1 + variable2variable1 + variable2variable1 + variable2 = sum= sum= sum= sum;;;;

21

2.2 Another Simple C Program:
Adding Two Integers

• printf("Sum is %d\n", sum);

– Similar to scanf
• %d means decimal integer will be printed
• sum specifies what integer will be printed

– Calculations can be performed inside printf statements
printf("Sum is %d\n", integer1 + integer2);

22

2.3 Memory Concepts

• Variables
– Variable names correspond to locations in the computer's

memory
– Every variable has a name, a type, a size and a value
– Whenever a new value is placed into a variable (through

scanf, for example), it replaces (and destroys) the previous
value

– Reading variables from memory does not change them

• A visual representation

integer1 45

23

2.3 Memory Concepts

integer1 45

integer2 72

sum 117

• A visual representation (continued)

24

Storing Data in Variables

• You can think of a variable as if it were a box inside your computer holding
a data value.

• The value might be a number, character, or string of characters.

• Data is stored inside memory locations (RAM) which are defined as
variables.

• Instead of remembering a specific storage location (called an address), you
only have to remember the name of the variables you define.

• The variable is like a box that holds data, and the variable name is a label
for that box.

• Examples:

OgrNum 40020859 OgrAdSoyad Mehmet Demir

25

Swapping Variables (1)

Swapping values simply means replacing one
variable’s contents with another’s and vice versa.

26

Swapping Variables (2)

• Suppose we assigned two variables named
variable1 and variable2 with the following
statements:

int variable1 = 65 ;
int variable2 = 97 ;

• Now we want to swap (i.e. exchange) their
content values:

WRONG METHOD
variable1 = variable2;
variable2 = variable1;

CORRECT METHOD
int temp;
temp = variable1;
variable1 = variable2;
variable2 = temp;

27

Swapping Variables (3)

65 97

65 97 65

97 97 65

97 65 65

variable1 variable2 temp

Initial state

First step

Second step

Third step

28

Example: Swapping Correctly
#include <stdio.h>
#include <stdlib.h>

int main()
{
int variable1 = 65 ;
int variable2 = 97 ;

int temp;

printf("SWAP'TEN ONCE DEGISKENLER : %d %d \n\n", variable1, variable2);

temp = variable1;
variable1 = variable2;
variable2 = temp;

printf("SWAP'TEN SONRA DEGISKENLER : %d %d \n\n", variable1, variable2);

system("PAUSE");
return 0;
}

PROGRAM OUTPUT

SWAP'TEN ONCE DEGISKENLER : 65 97

SWAP'TEN SONRA DEGISKENLER : 97 65

29

2.4 Arithmetic

• Arithmetic calculations
– Use * for multiplication and / for division
– Integer division truncates remainder

• 7 / 5 evaluates to 1
– Modulus operator(%) returns the remainder

• 7 % 5 evaluates to 2

• Operator precedence
– Some arithmetic operators act before others (i.e.,

multiplication before addition)
• Use parenthesis when needed

– Example: Find the average of three variables a, b and c
• Do not use: a + b + c / 3
• Use: (a + b + c) / 3.0

30

2.4 Arithmetic
• Arithmetic operators:

• Rules of operator precedence:

C operation

Arithmetic operator Algebraic expression C expression

Addition ++++ f + 7 f + 7f + 7f + 7f + 7

Subtraction ---- p – c p p p p ---- c c c c

Multiplication **** b.r b * b * b * b * rrrr

Division //// x / y x / yx / yx / yx / y

Modulus %%%% r mod p r % r % r % r % pppp

Operator(s) Operation(s) Order of evaluation (precedence)
()()()() Parentheses Evaluated first. If the parentheses are nested, the expression in the innermost pair

is evaluated first. If there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.

****, ////, or %%%% Multiplication,Division,
Modulus

Evaluated second. If there are several, they are
evaluated left to right.

++++ or ---- Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

31

2.4 Arithmetic
Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

Step 2. y = 10 * 5 + 3 * 5 + 7;

Step 3. y = 50 + 3 * 5 + 7;

Step 4. y = 50 + 15 + 7;

Step 5. y = 65 + 7;

Step 6. y = 72;

2 * 5 is 10

10 * 5 is 50

3 * 5 is 15

50 + 15 is 65

65 + 7 is 72

(Leftm ost mult ip licat ion)

(Leftm ost mult ip licat ion)

(Mult ip licat ion before ad dition)

(Leftm ost ad dit ion)

(Last a dd it ion)

(Last op era t io n—p la ce 72 in y)

32

Example: Integer Division

#include <stdio.h>
#include <stdlib.h>

int main()
{

// This will display 12, not 15!!

printf("%d\n\n", (15 / 4) * 4);

system("pause");
return 0;

}
3

33

Example: Divisions
#include <stdio.h>
#include <stdlib.h>

int main()
{

int X = 15;

printf("%d \n\n", X/2); // 7

printf("%f \n\n", X/2); // 0.000000

printf("%f \n\n", X/2.0); // 7.500000

printf("%f \n\n", (float) X / 2); // 7.500000 (float) means typecasting

printf("%.3f \n\n", (float) X / 2); // 7.500

printf("%.1f \n\n", (float) X / 2); // 7.5

//printf("%d \n\n", 60 / 0); // Compiler error

printf("%d \n\n", 60 / (X-15)); // Run-time error: Program will crash

system("pause");
return 0;

}

34

2.5 Decision Making: Equality and
Relational Operators

• Executable statements
– Perform actions (calculations, input/output of data)
– Perform decisions

• May want to print "pass" or "fail" given the value of a test
grade

• if control statement
– Simple version in this section, more detail later
– If a condition is true, then the body of the if statement

executed
• 0 is false, non-zero is true

– Control always resumes after the if structure
• Keywords

– Special words reserved for C
– Cannot be used as identifiers or variable names

35

2.5 Decision Making: Equality and
Relational Operators

Standard algebraic equality
operator or relational
operator

C equality or
relational
operator

Example of C
condition

Meaning of C condition

Equality Operators
==== ======== x == yx == yx == yx == y xxxx is equal to yyyy

≠≠≠≠ !=!=!=!= x != yx != yx != yx != y xxxx is not equal to yyyy

Relational Operators
>>>> >>>> x > yx > yx > yx > y xxxx is greater than yyyy

<<<< <<<< x < yx < yx < yx < y xxxx is less than yyyy

>=>=>=>= >=>=>=>= x >= yx >= yx >= yx >= y xxxx is greater than or equal to
yyyy

<=<=<=<= <=<=<=<= x <= yx <= yx <= yx <= y xxxx is less than or equal to yyyy

Outline
36

fig02_13.c fig02_13.c fig02_13.c fig02_13.c
(Part 1 of 2)(Part 1 of 2)(Part 1 of 2)(Part 1 of 2)

1 /* Fig. 2.13: fig02_13.c/* Fig. 2.13: fig02_13.c/* Fig. 2.13: fig02_13.c/* Fig. 2.13: fig02_13.c

2 Using if statements, relationalUsing if statements, relationalUsing if statements, relationalUsing if statements, relational

3 operators, and equality operators */operators, and equality operators */operators, and equality operators */operators, and equality operators */

4 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

5

6 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

7 intintintint main() main() main() main()

8 {{{{
9 intintintint num1, num1, num1, num1, /* first nu/* first nu/* first nu/* first number to be read from user */mber to be read from user */mber to be read from user */mber to be read from user */

10 intintintint num2; num2; num2; num2; /* second number to be read from user *//* second number to be read from user *//* second number to be read from user *//* second number to be read from user */

11

12 printf(printf(printf(printf("Enter two integers, and I will tell you"Enter two integers, and I will tell you"Enter two integers, and I will tell you"Enter two integers, and I will tell you\\\\n"n"n"n"););););

13 printf(printf(printf(printf("the relationships they satisfy: ""the relationships they satisfy: ""the relationships they satisfy: ""the relationships they satisfy: "););););

14

15 scanf(scanf(scanf(scanf("%d%d""%d%d""%d%d""%d%d", &num1,, &num1,, &num1,, &num1, &num2); &num2); &num2); &num2); /* read two integers *//* read two integers *//* read two integers *//* read two integers */

16

17 ifififif (num1 == num2) { (num1 == num2) { (num1 == num2) { (num1 == num2) {

18 printf(printf(printf(printf("%d is equal to %d"%d is equal to %d"%d is equal to %d"%d is equal to %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

19 } } } } /* end if *//* end if *//* end if *//* end if */

20

21 ifififif ((((num1 != num2num1 != num2num1 != num2num1 != num2) {) {) {) {

22 printf(printf(printf(printf("%d is not equal"%d is not equal"%d is not equal"%d is not equal to %d to %d to %d to %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

23 } } } } /* end if *//* end if *//* end if *//* end if */

24

Outline
3725 ifififif ((((num1 < num2num1 < num2num1 < num2num1 < num2) {) {) {) {

26 printf(printf(printf(printf("%d is less than %d"%d is less than %d"%d is less than %d"%d is less than %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

27 } } } } /* end if *//* end if *//* end if *//* end if */

28

29 ifififif ((((num1 > num2num1 > num2num1 > num2num1 > num2) {) {) {) {

30 printf(printf(printf(printf("%d is greater than %d"%d is greater than %d"%d is greater than %d"%d is greater than %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

31 } } } } /* end if *//* end if *//* end if *//* end if */

32

33 ifififif ((((nunununum1 <= num2m1 <= num2m1 <= num2m1 <= num2) {) {) {) {

34 printf(printf(printf(printf("%d is less than or equal to %d"%d is less than or equal to %d"%d is less than or equal to %d"%d is less than or equal to %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

35 } } } } /* end if *//* end if *//* end if *//* end if */

36

37 ifififif ((((num1 >= num2num1 >= num2num1 >= num2num1 >= num2) {) {) {) {

38 printf(printf(printf(printf("%d is greater than or equal to %d"%d is greater than or equal to %d"%d is greater than or equal to %d"%d is greater than or equal to %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

39 } } } } /* end if *//* end if *//* end if *//* end if */

40

41 returnreturnreturnreturn 0000; ; ; ; /* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully */

42

43 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

fig02_13.c fig02_13.c fig02_13.c fig02_13.c
(Part 2 of 2)(Part 2 of 2)(Part 2 of 2)(Part 2 of 2)

Program OutputProgram OutputProgram OutputProgram Output

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Outline
38

Program Output Program Output Program Output Program Output
(continued)(continued)(continued)(continued)

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy: 7 7
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

39

2.5 Decision Making: Equality and
Relational Operators

Operators Associativity
**** //// %%%% left to right
+ + + + ---- left to right
<<<< <=<=<=<= >>>> >=>=>=>= left to right
== == == == !=!=!=!= left to right
==== right to left
Fig. 2.14 Precedence and associativity of the operators discussed so far.

40

2.5 Decision Making: Equality and
Relational Operators

Keywords

autoautoautoauto doubledoubledoubledouble intintintint structstructstructstruct

breakbreakbreakbreak elseelseelseelse longlonglonglong switchswitchswitchswitch

casecasecasecase enumenumenumenum registerregisterregisterregister typedeftypedeftypedeftypedef

charcharcharchar externexternexternextern returnreturnreturnreturn unionunionunionunion

constconstconstconst floatfloatfloatfloat shortshortshortshort unsignedunsignedunsignedunsigned

continuecontinuecontinuecontinue forforforfor signedsignedsignedsigned voidvoidvoidvoid

defaultdefaultdefaultdefault gotogotogotogoto sizeofsizeofsizeofsizeof volatilevolatilevolatilevolatile

dodododo ifififif staticstaticstaticstatic whilewhilewhilewhile

Fig. 2.15 C’s reserved keywords.

41

Basic Data Types of Variables

• char
• int
• float
• double

Modifiers for Sign and Size
• unsigned
• signed (by default)
• short
• long (by default)

42

Data Type Ranges (1)

-2,147,483,648 to
2,147,483,647

Long integer4long int

–32,768 to 32,767Short integer2short

–32,768 to 32,767Short integer2short int

4

4

1

Size in
Bytes

-2,147,483,648 to
2,147,483,647

Long integerlong

-2,147,483,648 to
2,147,483,647

Integerint

-128 to 127Character
(or string)

char

RangeVariable TypeKeyword

43

Data Type Ranges (2)

0 to 255Unsigned
character

1unsigned
char

0 to 4,294,967,295Unsigned
long integer

4unsigned
long

0 to 65,535Unsigned
short integer

2unsigned
short

4

Size in
Bytes

0 to 4,294,967,295Unsigned
integer

unsigned int

RangeVariable TypeKeyword

44

Data Type Ranges (3)

-3.4 * 10–38 to
3.4 * 1038

Single-precision
floating-point
(7 digits)

4float

8

Size in
Bytes

-1.7 * 10–308 to
1.7 * 10308

Double-precision
floating-point
(15 digits)

double

RangeVariable TypeKeyword

double x = 4.3E6; 4.3 * 106

long long y = 4.3E6;

unsigned short int z = 70000;
compiler warning
due to overflow

45

Example: Range Overflow

#include <stdio.h>

#include <stdlib.h>

void main()

{

unsigned short int X, Y; // Length of these are 2 bytes (16-bit) each

X = 65535; // Maximum possible value for unsigned short integer numbers

Y = X + 4; // Overflow is expected here (Y will be 3, instead of 65539)

printf("SONUC = %d \n\n", Y); // It will display 3 !!

system("pause");

}

