
ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

NEUROCOMPUTATIONAL MODELS FOR ACTION SELECTION
AND THEIR IMPLEMENTATION ON ROBOTS

M.Sc. THESIS

Emeç ERÇELİK
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NEUROCOMPUTATIONAL MODELS FOR ACTION SELECTION
AND THEIR IMPLEMENTATION ON ROBOTS

SUMMARY

Computational models of neural circuits enhances our comprehension of brain
functions. In addition to the simulation of the models which helps to anticipate the
cognitive processes, embodiment of these models is essential. Such embodiment
would provide necessary setting to explain neural functioning ongoing in real
environments under oncoming sensory information. Also, these studies boost the
work on intelligent systems by providing new approaches and techniques for the
implementation of intelligent methods. Even though studies pursued in neuroscience
can be considered as being in inception period, the embodiment of models done since
now, reached the pre-results faster than the animal experiments. So, computational
neuroscience is promising to lead further understanding of cognitive processes and
design of related experiments.

In this thesis, the main aim is to show the embodiment of computational models is
possible for different scales of computational models that are biologically meaningful.
Still another aim is also show that the implemented models are meaningful to get
inference about the behavioural processes of brain circuits. For the embodiment part
of the thesis, the Darwin-OP humanoid robot platform is utilized mainly, while the
Bioloid robot environment is also considered to get some of the results.

To realize the aims mentioned above, a temporal sequence task related to action
selection is utilized. In this task, we investigated the associations between the sensory
stimuli and desired actions, and also the mechanism by which reassociations result in
development of new associations over the built up ones. Since the action selection is
basically linked to the basal ganglia, thalamus and cortex (BTC) circuit in the brain, the
BTC structures of brain are modeled in different scales to realize the considered task.
The proposed models are the mass model approach of nonlinear dynamical system
modeling and point neuron based models. In order to ensure the second aim, the mass
model approach is deeply investigated to obtain some of the biological results with this
model. Afterwards, the cortex part of the model is redesigned using point neurons to
realize a more realistically plausible model.

In addition to realization of BTC circuit, learning process is considered to make
associations in order to select the right action in long term encountering. So, the
temporal difference learning (TDL) is utilized to ensure the biological plausibility.
Thus, reinforcement learning method is utilized for the learning part of the mass model.
Although, TDL ensures the biological plausibility, it is a rule based model anyway.
So, though it is possible to merge TDL with point neuron based models, spike timing
dependent plasticity (STDP), which is more convenient from the biological aspect, is
utilized for the learning part of the point neuron based action selection model.

xxi



The investigation of the mass model shows that it is possible to obtain meaningful
results from the biological aspect using the computational models. Another result of
this thesis is that it is possible to implement different scales of computational models
for cognitive processes into robots and run in real time applications. So, the results
show that, using these computational models to realize complex tasks in future will
infer further results. As a result, this thesis is a step to reach evaluating such cognitive
models for the complex tasks in real environment and also, that it is possible in near
future.
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HAREKET SEÇİMİNE İLİŞKİN BEYİN ESİNLENMELİ
HESAPLAMALI MODELLER VE ROBOTLAR

ÜSTÜNDE GERÇEKLEME

ÖZET

Bu tezin bir amacı, merkezi sinir sistemindeki süreçlerden yararlanılarak oluşturulmuş
hesaplamalı modeller ile fonksiyonel açıdan beyni incelemek ve bilişsel süreçler
ile davranışsal süreçleri açıklamada bu hesaplamalı modellerin faydalı olabileceğini
göstermektir. Diğer bir amacı ise bu hesaplamalı modellerin robotlar üzerinde
gerçeklenerek somutlaştırılabileceğini ve karmaşık ve bilişsel süreçlere ilişkin
görevleri gerçeklemede kullanılabilineceğini göstermektir.

Ele aldığımız hesaplamalı modellerin bir donanım üzerinde de işlevsel olabileceğini
ve donanım aracılığı ile çevresel uyaranların algılanıp, hesaplamalı model aracılığı ile
değerlendirilebileceğini göstermek amacıyla ilk olarak Bioloid robotu kullanılmıştır.
Bioloid, kullanılan hesaplamalı modellerin, hareket özelliği olan bir donanım ile
birlikte kullanılmasını sağlayan bir ortam olsa bile, karmaşık modelleri çalıştırmak
için işlemci gücü açısından yetersiz kalmıştır. Ayrıca bu robot üzerinde kullanılan
sensörler, daha karmaşık görevlerin gerçekleştirilebilmesi için gerekli veriyi bilişsel
modellere iletmekte yetersiz kalacağından, daha sonraki çalışmalar için Darwin-OP
insansı robotu tercih edilmiştir. Darwin-OP insansı robot, üzerinde taşıdığı
mini-bilgisayar ile hareketli bir bilgisayar özelliği taşımaktadır. Ubuntu işletim sistemi
aracılığı ile de daha farklı modellerin çalıştırılmasına imkan sağlamakta, ayrıca gömülü
bulunan kamerasıyla çevreyi algılamayı da başarabilmektedir.

Tez çalışmasında ele alınan bilişsel süreçlere ilişkin hesaplamalı modeller, sinirbilim
konusunda yapılan çalışmalar ile belirlenen beyindeki ilgili yapıların özellikleri
ve bağlantıları gözönüne alınarak geliştirilmiştir. Bu hesaplamalı modellerin
etkinliğini, özellikle ortam ile etkileşimini test etmek için robotlar üzerinde "ödül
öngörülü uyaran" görevi kullanılmıştır. Bu görevde robotlar, öncelikle ortamdaki
uyaranları, onaylanan bir hareket ile eşleştirmeyi, yine ortamdan alacakları ödül ile
öğrenebilmiştir. Sonrasında, hesaplamalı modeldeki kimi bağlantıları ödül öngörüsü
ile pekiştirip, bastırılarak eşleştirmeyi öğrendikleri, bu uyaran-hareket çiftine ait
gösterimi, değiştirebildikleri de gösterilmiştir. Böylece, aynı uyaranı farklı bir
hareket ile eşleştirmeyi, yine ödüle bağlı olarak tekrardan öğrenebileceği gösterilmiştir.
Bu uyaran- hareket eşleştirme görevi sırasında kullanılan uyaranlar renk kartlarıdır.
Kırmızı, sarı ve mavi renk kartları robotun hareket uzayında tanımlı olarak bulunan
üç hareketle eşleştirilmiştir. Kullanılan robotların özellikleri, ve gerekli yazılımsal
donanımlar ile ele alınan görev Bölüm 2’de tanıtılmıştır.

Tanımlanan ödül öngörülü uyaran görevinde robot, kamerasını kullanarak algıladığı
renk uyaranına karşılık bir hareket seçmektedir, bu harekete karşılık bir ödül alırsa,
sonrasında bu renk uyaranını gördüğünde istenilen hareketi seçmeyi pekiştirmektedir.
Görevde tanımlanan hareket seçme işlemi temelde beynin bazal ganglia, talamus
ve korteks (BTK) bölümlerinin etkinliği ile ilişkilendirilmektedir. Bütüncül olarak
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baktığımızda beyindeki birçok devre hareket seçimine etki ederken, temelde bu üç
bölümün ele alınması, bilişsel süreçlere ait modellerin kullanışlılığını ve gerçek
süreçlere ait verilerin elde edilmesinde yararlı olabileceğini göstermek açısından
yeterlidir.

Bundan dolayı, beynin BTK parçaları ele alınan görevi gerçeklemek için farklı
seviyelerde modellenmiştir. Öncelikle BTK devresi olarak doğrusal olmayan
dinamik sistemler bakış açısıyla, bir grup sinir hücresinin etkinliğini modellemede
yararlanılan yığın modeli yaklaşımı ile modellenmiştir. Bu model, beynin bölümlerinin
birbiriyle ilişkisini tanımlayan fark denklemlerinin çözülmesiyle hareket seçimini
gerçekleştirmektedir.

BTK yığın modelinin biyolojik gerçekçiliği olmasına rağmen, nöron seviyesinde
bir modelin sağlayacağı biyolojik öğrenme kurallarının etkisini inceleme şansını
sağlamaz. Yığın modeli, beyin yapılarının davranışlarını bir nöron popülasyonunun
davranışlarının ortalaması olacak şekilde fark denklemlerine indirger. Bu tez
çalışmasında nöron seviyesindeki modelleme de ele alınmış ve BTK yapısı
modellenirken korteks yapısı nokta nöronlar ile modellenmiştir. Tüm modeli daha
gerçekçi olan nokta nöron modelleri ile gerçeklemek istememize rağmen, sadece
korteksin nokta nöronlar ile gerçeklenmesi, bu tezin kapsamında nokta nöron
modelinin robotlar üzerinde somutlaştırılabileceğini göstermek açısından yeterlidir.
Hesaplamalı modeli, oluştururken ele alınan bu farklı yaklaşımların yanı sıra öğrenme
süreci için de yapılara bağlı olarak farklı yaklaşımlar ele alınmıştır.

Robotun öğrenmesini sağlamak için biyolojik gerçekçiliğe sahip hareket seçme
devresinin kullanılması yanında yine biyolojik olarak anlama sahip bir pekiştirmeli
öğrenme yöntemi olan zamansal farklarla öğrenme yöntemi kullanılmıştır. Bu
yöntem ile hareket seçimi ve hareket seçiminin ardından ortamdan gelen ödül
kullanılarak hareket seçimine ait modelin parametreleri makine öğrenmesi yaklaşımı
ile güncellenmektedir. Böylelikle uyarana karşı seçilen hareket de değiştirilmiş
olur. Biyolojik olarak anlama sahip olmasına karşın kullanılan yöntemin makine
öğrenmesi metodu olmasından dolayı bu yöntemi nokta nöron modeli ile elde edilen
devrelere uygulamak zordur. O yüzden vuru zamanına bağlı plastisite (STDP) yöntemi
nokta nöron modelleri ile kullanılmak üzere gözönüne alınmıştır. Bu yöntem de
zamansal farklarla öğrenme yöntemi gibi ödülü kullanmakta, ancak nokta nöronlarla
modellenmiş yapılar arasındaki bağlantıları ödüle ve nöronların vuru zamanlarına
bağlı olarak değiştirmektedir. Yığın modelleri üzerindeki öğrenmeden farklı olarak bu
modelde hücre seviyesinde öğrenme de ele alınmaktadır. Dolayısya, yığın modeli ile
sadece zamansal fark metoduna dayalı pekiştirmeli öğrenme kullanılırken, korteksin
nokta hücre modeli ile gerçekleştirldiği durumda, STDP ile zamansal fark metodları
öğrenme için kullanılmıştır.

Tezde, ilk olarak bazal ganglia, talamus ve korteksten oluşan yığın modelindeki
parametreler zamansal fark öğrenme yöntemi kullanılarak güncellenmiş ve ödül
öngörülü uyaran görevi gerçekleştirilmiştir. Yığın modeli içinde yer alan parametreler,
çevreden gelen uyarana karşılık modelin seçeceği hareketin belirlenmesinde etkindir.
Ele alınan modelde öğrenme için güncellenen parametreler, Wc ve Wr, sırasıyla
çevreye ilişkin oluşan algıyı ve modeldeki dopamin seviyesini ifade eder. Ele alınan
beyin yapıları arasındaki bağlantıları etkiliyen parametrelerin (Wc ve Wr) ve gelen
uyaranın ne kadar kuvvetli aktarıldığının, öğrenme üzerindeki etkisi incelenmiştir.
Böylelikle tezdeki amaçlardan biri olan hesaplamalı modeller aracılığı ile ele alınan
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bilişsel süreçte rol alan nöral yapıların etkinliğinin incelenmesine ilişkin sonuçlar elde
edilmiştir. Yığın modeli ile elde edilen sonuçlar Bölüm 3’de verilmiştir.

Yukarıda da değinildiği gibi, özellikle ödül öngörülü öğrenme için makine
öğrenmesine ilişkin bir yapı olan zamansal fark yöntemi yerine biyolojik olarak
daha gerçekçi bir öğrenme kuralı ile ele alınan bilişsel süreci modellemek amacıyla,
gerçeğe uygunluğu daha fazla olan nokta nöron modelleri ele alınmıştır. Nokta
nöron modelleri her ne kadar kablo denklemleri ile ifade edilen ve sinir hücrelerinin
morfolojik özelliklerini de içeren modellere göre basit olsa da temel yapı olarak
sinir hücresinin özelliklerini barındırması ve hesaplama yükünün daha karmaşık
modellere göre oldukça az olmasından dolayı gerçekçilik-performans ölçütünde
önemli bir avantaja sahiptir. Bundan dolayı ele alınan hareket kararına ilişkin
hesaplamalı modeli daha gerçekçi bir yapıya taşımak için nokta nöron modeli
kullanılmış ve BTK yığın modelinde bulunan korteks nokta nöron modeli ile
değiştirilmiştir. Böylelikle iki modlu bir hesaplamalı model ile hareket seçimi görevi
gerçekleştirilmiştir. Bunu sağlamak için iki farklı boyuttaki modelin çalışma aralıkları
birbirine uygun hale getirilmiştir. Korteksteki belirli zaman aralığında eşik değerini
geçerek, vuru üreten nöronların sayısının ortalaması alınıp 0− 1 arasında bir değere
ölçeklenerek yığın modeli denklemlerine bir terim olarak eklenmiştir. Aynı şekilde
yığın modelindeki değişkenlerin değerleri ölçeklenerek nöron girişlerine akım olarak
eklenmiştir. Böylelikle iki modelin eş zamanlı çalışması sağlanmıştır. Yığın modeli
ile nokta nöron modellerinin birlikte Darwin-OP insansı robot üzerinde gerçeklenmesi
sırasında NEST nöral simülasyon kütüphanesi kullanılmıştır. Darwin-OP’un motor
komutlarının bulunduğu ve C++ ile kodlanmış kısım ile Python ortamı üzerinde
çalışan NEST kütüphanesinin birlikte çalışması sağlanmıştır. Böylelikle gerçekçi bir
hesaplamalı modele ait gerçek zamanlı çalışma, Darwin-OP üzerinde test edilmiştir.
Bu sonuçlar Bölüm 4’de verilmiştir.

Biyolojik gerçekçilik için ilk adım olarak BTK modelinde kortekse ilişkin model,
yığın modeli yerine nokta hücre modeli ile değiştirilse de öğrenme için zamansal fark
yöntemi yerine, vuru üreten sinir ağları için kullanılan STDP öğrenme yöntemi Bölüm
5’de ele alınmıştır. STDP, birbirine sinapslarla bağlı iki nöronun vuru üretme sürelerine
bakarak aralarındaki sinapsları ödülü de kullanarak kuvvetlendiren ya da zayıflatan bir
öğrenme yöntemidir. Bu yöntem de NEST kütüphanesi kullanılarak vuru üreten sinir
ağları modeli ile oluşturulmuş korteks ile birleştirilmiştir. Böylelikle ödül öngörülü
uyaran görevi basit ama gerçekçi modellere sahip olarak gerçeklenmiştir. Basit
bir modelin hareket seçimi için kullanılmasının sebebi, zamansal faktörlerin önemli
olduğu STDP’nin hareket seçim devresi ile birlikte kullanılabileceğinin gösterilmesi
ve özelliklerinin araştırılmasının işlem yükü ve zaman açısından daha avantajlı
olmasındandır.

Bu çalışmalar sonucunda, hesaplamalı modeller farklı seviyelerde gerçeklenerek hem
bu modellerin gerçek sonuçlar ile ilişkisi gözlenmiş, hem de bu modellerin gerçek
zamanlı görevler için robot üzerinde gerçeklenmesi sağlanmış oldu. Yığın modeli
ile yapılan çalışma sonucunda, modele verilen uyaranların sırasının modelin öğrenme
başarısında ve süresinde etkili olduğu belirlendi. Bununla birlikte, uyaranın alt
birimlere aktarılma kuvveti de öğrenmenin gerçekleşmesi için önemli bir yere sahip
olduğu gözlemlendi. Alt birimlere uyaran bilgisinin çok fazla aktarılması, istenilen
hareketlerin seçilmesini engellerken, bu aktarımın az olması da öğrenmenin hiç
sağlanamamasına sebep olmaktadır. Ayrıca, dopamin seviyesini belirten parametre
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değerinin çok yüksek olması modelin aynı anda birden fazla seçim yapmasına sebep
olmaktadır. Yine talamus aktivitesinin fazla olması aynı anda birden fazla seçimin
yapılmasına sebep olduğundan öğrenme gerçekleşmemektedir. Bu gibi sonuçların
yığın modeli üzerinden elde edilmesi, hesaplamalı modellerden anlamlı bilgiler
çıkarılabileceğini göstermektedir. Yığın modeli ile davranışsal açıklamalar yapmak
daha mümkün olmasına karşın, vuru üreten sinir ağları ile elde edilmiş modellerin de
detaylı bir şekilde incelenmesinin, beynin çalışmasına ait bu gibi sonuçların hızlı bir
şekilde elde edilebilmesine olanak sağlayabileceği gösterilmiştir.

Böylelikle özellikle hayvan modelleri ile yapılan deneysel çalışmalarla çok deneme
yapmak yerine, bu çalışmalara hızlı bir şekilde yön verecek sonuçların hesaplamalı
modeller ile elde edilebileceğine ilişkin bir sonuç bu çalışma ile verilmiştir. Bu
sonuçların yanında vuru üreten sinir ağları modeli ve STDP öğrenme yöntemleri
de insansı robot, Darwin-OP, üzerinde gerçeklenmiştir. Darwin-OP üzerinde
ödül öngörülü uyaran görevinin gerçeklenmesi de daha karmaşık görevlerin de
gerçeklenerek beynin çalışmasına ait sonuçlar elde edilebileceğini göstermektedir.

İlerleyen çalışmalarda, tezde kullanılan hareket seçimine ait hesaplamalı modellere,
serebellum ve hipokampüs gibi motor kontrol, navigasyon ve algı ile ilgili beyin
bölümleri eklenerek daha karmaşık görevler tasarlanabilir. Beynin bu bölümleri
için gerekli olan yeni bilgiler için ise, kullanılan robota farklı sensörler eklenerek
ortamdan gerekli farklı bilgi sağlanabilir. Böylelikle robotun çakıllı, kumlu, kaygan
vb. ortamlarda da hareketi ve bilişsel görevleri gerçeklemesi sağlanabilir.
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1. INTRODUCTION

Embodiment is a concept that found its place not only in psychology and philosophy

but also in robotics and artificial intelligence. As a word it means a tangible or visible

form of an idea, quality or feeling, but in this study we will focus on its meaning in

cognitive science. From perspective of embodied, embedded cognition (EEC), brain

body and world, all are important factors in explaining how an intelligent behavior

emerges. Neurorobotics is a mean to create a testing environment for EEC [1, 2].

In this thesis, the leading idea is to establish an example of implementing a model

for a cognitive process based on neuroscience studies. Thus, with embedding a

computational neuroscience model in a humonoid robot, and rendering learning of

a cognitive task with the interaction of robot and environment, a step will be taken

toward embodiment.

Embodiment involves the interaction with body and environment. From this

perspective the most significant ability for animals and humans is movement which

is provided by one of the most studied circuit in the brain, motor circuit. In [3, 4], it

is stated that basal ganglia, which is a neural structure in the midbrain, has recurrent

connections to cortex and thalamus and the loop generated by basal ganglia, thalamus

and cortex (BTC) are highly associated to motor circuit in the brain. The process of

generating movement is handled by a channel-like separated circuits in BTC loop in

relation to brainstem and cerebellum in general [3–5]. Although the brainstem and

cerebellum networks are linked to providing the required patterns for movement and

feedback modulation, BTC itself is associated to the embodiment process which is

explained as both selection and initiation of an action [5]. In [6], BTC loop is also

referred to action selection circuit in the brain because of its movement initiation and

termination abilities.

In [7], a sequence learning task is dealt from a working memory aspect and basal

ganglia is considered as responsible for action selection with related cortex and
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thalamus parts. In that study, basal ganglia makes decisions by using its "Go" and " No

go" pathways emerging from striatum. These two main pathways arising from striatal

D1 and D2 type dopamine receptors take care of direct or indirect pathways which

corresponds to the "Go" and "No go" pathways. These direct and indirect pathways

implement the initiation and the termination of a movement or selecting one movement

instead of other movements in brain and this process is provided by dopamine network

in the striatum [3]. Besides considering reward based learning for action selection

as a cognitive process of BTC and trying to have a model for motor actions, it is

expected here that such modelling would be versatile for developing new diagnosing

and treatment procedures.

It is reported in [3, 8] that some of the disorders in the dopamine network of

basal ganglia show up as Parkinson’s disease (PD), Tourette syndrome (TS) and

Huntington’s disease (HD) which are related to the abnormal voluntary movements.

The symptoms of PD show itself as inability of initiating a voluntary movement,

involuntary slowness and shaking while the TS and HD are associated to the

uncontrollable movements apart from their mental disfunctions as reported in [3, 8].

Since these cognitive disorders are associated to the disfunctioning in the BTC loop

and dopamine network, it is important to understand the process of initiation and

termination of movement in motor circuit.

Since BTC circuit is highly related to movement, in this thesis a substructure is

prepared for a test environment for complex task which could include mobility. To

realize such a basic test environment BTC loop is modeled in different scales for the

implementation on a robot and some results are obtained for the process of BTC loop.

However, beyond the embodiment, the relation between learning and BTC circuit is

also discussed. In [9], Schultz et al. states that reward based learning process in the

brain explained as having better predictions of future rewards and this is associated

to the dopaminergic activity in the basal ganglia. And this dopamine activity is used

to shape the future predicions in other words experiences. So, they claim that basal

ganglia and its dopaminergic network plays an important role in reinforcement learning

(RL) in which the connections between structures are modulated by reward in response

to sensory cues and the defects in the network result in behavioral disorders such as
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addiction and obesity [9]. Therefore, the temporal difference learning (TDL) is utilized

as a RL method to provide learning of BTC circuit considering biological plausibility.

In the recent studies of basal ganglia, there are many spiking neural networks

(SNN) simulated for action selection tasks. In [10], the authors constructed the

cortico-thalamic pathway including striatum, subthalamic nucleus (Stn), globus

pallidus internal, globus pallidus external which are substructures of basal ganglia.

In this work, the stimulus arises directly from cortex and all the neuron groups

consist of Adaptive Exponential Integrate and Fire neurons which are defined with

four differential equations. Only one stimulus takes place in this work to be associated

to two different actions. In addition, they consider probabilistic rewarding and the

agent may get reward as long as desired results are obtained even if the selection

was not correct. Learning is applied to the connectinos between cortex and striatum,

subthalamic nucleus and thalamus, respectively. The modulation is realized with

spike timing dependent plasticity (STDP) which utilizes reward signal. Chersi et

al. [11] investigate the relation between goal-directed and habit driven systems with a

stimulus-action association task in which a monkey tries to learn to turn on the desired

lamb in a simulated environment according to flashing lights. The considered network

is constructed by SNN structure which contains basal ganglia in relation with sensory

and motor cortices and thalamus. Their approach benefits separated groups of neurons

and each of them represents a channel in a neural structure. All neuron populations

are modeled by leaky integrate and firing neurons and the learning occurs between

sensory structures, striatum, Stn in addition to the prefrontal cortex and motor circuit.

The modulation method is STDP with reward modulation. So, they try to mimic the

behaviour of action selection in some of the related brain parts in simulation.

Besides SNN models, the dynamical system models are also utilized to investigate

effects of neural parameters on the action selection. In [12], the authors discuss the

dopamine effect on an action selection mechanism that takes part in basal ganglia

in a simulated robot environment. They utilize the same BTC circuit that contains

channels for each action and model the network with using dynamical system models.

The neuromodulation of dopamine is modeled with differential equations as well and

the learning is realized with the basis of Hebbian learning. Another dynamical system

model of BTC circuit is utilized in the study of Prescott et al. [6] to realize an action
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selection task inspired by navigation of a rat in an unfamiliar environment. The BTC

circuit is modeled with difference equations of neural structures and implemented to

a mobile robot in a hard-coded way without a plasticity or learning. By using the

model on a mobile robot they investigated the relevance of model to the findings from

experimental results. In [13], Sengor et al. modeled the BTC loop to simulate a

goal-directed behaviour with difference equations. The main difference of this work

is to implement learning into the dynamical system from the reinforcement learning

approach and this work also is a basis for the model used throughout this thesis. The

reward modulated BTC circuit is extended for a simulated robot task in [14, 15] with

the investigation of parameter space effect on action selection by bifurcation analysis.

Based on the previous works summarized above, there are numerous studies on

basal ganglia loops not only in neuroscience but also in computational neuroscience.

Our aim and approach could be considered as trying to build a connection between

neuroscience and mathematical modeling and engineering and gathering results where

both parties could benefit. So, different aspects of BG circuit is considered. Since BG

circuit plays an important role in embodiment besides providing decision making and

learning, a cognitive task has to be defined to test the feasibility of the computational

models. In addition, it is important to implement computational models on robots from

the embodiment aspect which may provide more information about the underlying

cognitive processes of complex tasks. So, to take a step towards using the BTC loop

for the complex tasks in real environment, a simple temporal sequence task is defined

to implement the BTC loop in different levels on a humanoid robot. In the considered

task, robots learn to associate and reassociate a sensory stimuli to desired actions with

respect to the given reward.The properties of the utilized robot and the softwares with

the handled task are given in Chapter 2.

At first, the BTC loop is modeled as a mass model with difference equations and

the model parameters are updated by using temporal difference learning (TDL)

that utilizes reward coming from environment. The mass model selects an action

according to the sensory stimulus. Updated parameters of the mass model represent

the perception of environment and dopamine level. To investigate how the model is

meaningful to derive information, the effects of values of parameters that lie between

neural structures and strength of stimuli on learning is examined. In addition, the
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effectiveness of neural structures are examined by tampering the connections within

the BTC loop. The mass model is implemented on a robot and results are given in

Chapter 3.

Even the learning method, TDL, is biologically meaningful, it is still a machine

learning method. To model the learning process in a more realistic way, point neurons

are considered. Point neurons are not as realistic as morphologically modeled neurons,

but they are efficient for computation and still contain the basic properties of neurons.

That’s why the cortex part of mass model is changed with point neuron based model

in Chapter 4. The considered mass model and the point neuron based cortex work

together to decide on an action during the temporal sequence task. The implementation

of the considered mix model to humanoid robot, Darwin-OP, and the results are

explained in Chapter 4.

Changing cortex part of the mass model with point neurons, which are SNN model, is

the first step for the biologically plausible model. Another step is changing the TDL

method for learning. So, STDP model is utilized instead of TDL. STDP modulates

the strength of synapses considering spike timing of pre and post neurons and the

reward coming from environment. The SNN model of cortex and STDP are utilized

to realize temporal sequence task and implemented on Darwin-OP. The results of

implementation are given in Chapter 5 with the explanation of the structure.

In this thesis, the computational models are realized in different levels and not only the

relation of model results with real experiments but also the implementation of these

models on robots in real time are provided. Therefore, different from other SNN based

implementations of action selection, this model is implemented on a real robot and the

model run online in real time. So, this work opens a door for the investigation of fully

point neuron based realistic models from the embodiment aspect in order to obtain

information about the process of brain functioning and disfunctioning.
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2. TASK AND ENVIRONMENT

As pointed out in the introduction, basal ganglia circuits have role not only in motor

actions and learning but also role in embodiment [16]. So, here we will first define

a task, where a cognitive process, uniting association of sensory information with

motor actions, which is important for proprioception and thus for embodiment and

learning together: temporal sequence task. Then, the properties of the robot used

and the simulation environment will be described. Thus, a computational model of

a cognitive task is implemented on a humanoid robot with learning methods to show

the applicability of building associations between sensory stimuli and desired actions

in real time. So, a step toward realizing a neurorobot which is capable of realizing

intelligent behavior with a dynamic model of neural structures is taken. Though the

task is simple and all the features of the humanoid robot are not utilized, still the results

are intriguing for embodiment, too.

Through this study, a temporal sequence task is considered that is performed by

macaque monkeys, where it is expected to match a stimulus with an appropriate

movement [17]. The same task is realized with different computational models in

the following sections to investigate the cognitive behaviour on the humanoid robot.

In the considered task, the robot is expected to associate the presented colors to the

desired predefined actions. As shown in Figure 2.1 on the right side, there are three

colors that are yellow, blue and red to be associated to the predefined actions which are

head movement, leaning and hand movement, respectively. The green color is used to

indicate reward given to the robot if its decision is the desired one corresponding to the

color shown.

During the task, the robot learns matching three different stimuli, which are different

colours, with three different predefined movements. The robot differentiates colours

using its camera, and the colour recognized is the input of the computational model,

where action selection is done. The action selection process is depicted on Figure 2.2.
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Figure 2.1: The robot used in the study is a humanoid robot platform called
Darwin-Op. The humanoid robot is expected to associate the presented
colors to the desired predefined actions. The three colors to be associated
to the actions are red, yellow and blue. The green color is used to indicate
reward given when the action choice is the desired one.

When, a colour is presented to the robot, it is expected to select an action in the first

place. With the computational model implemented, the robot tries to decide on an

action. If it cannot decide, the action is realized based on random selection. Green

colour is shown to represent reward, to indicate that the action realized is a proper one.

Once the robot is rewarded due to a right choice, an expectation error arises, which

updates the parameters of computational model in charge of action selection. Once the

update is completed by learning rules, the colour is shown again and the correct action

is rewarded each time until robot learns to match the appropriate movement with the

colour.

In addition to this, robot is also expected to rearrange the previously associated sensory

input-action pairs when the rewarded pairs are changed. In this way, robot can manage

to associate the sensory stimulus to a new desired action by reward and change its

previous behaviour. It will be shown that, the implementation of the computational

model on humonoid robot also shows this adaptation capacity of model to the changing

environment.

Even though different robot platforms has been used in similar works [6], [15], in

this study humanoid robot platform called Darwin-Op which is shown in Figure 2.1 is

preferred. This humanoid robot is chosen because of its high capacity for interaction

with the environment. In the previous studies a computational model that is built as

dynamical system model for action selection is utilized ( [18], [19]). In these studies,
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Figure 2.2: The process of task in real environment. At first, the robot is presented
a stimulus and the computational model that is responsible of action
selection, makes an action decision. According to desirability of this
decision, a reward is given to the robot. This reward is evaluated by
learning rules and changes the behaviour of computational model with
updating its parameters. And the repeated process makes the robot learn
how to associate a stimulus to an action.

Bioloid robot platform is utilized for the implementation. Since the computational

load of model was lower than the ones in this thesis, Bioloid realized the task well in

real time. However, Bioloid has little storage capacity and its computational power

is not enough to implement an operation system on it. Because of these reasons, it

is not possible to simulate the computational models based on point neurons in real

time. In addition, variety of implementable sensors on Bioloid is limited to recognize

environment. Considering all these limitations, the Darwin-OP humanoid robot is

selected for the investigations of the computational models that take part in through this

thesis. So, instead of making effort on the manipulation of robot or the construction

of vision, focus on the biologically realistic models are preferred since Darwin-OP

handles those with its pre-defined scripts. Darwin-OP has a built-in camera among its

eyes and the color information is obtained by using it. It has 1.6 GHz Atom CPU and

1GB RAM inside and all the calculations are realized on the robot and in real-time.

The robot consists of 20 servo motors. Darwin-Op uses Ubuntu as an operation system

and the codes to control its motors and the dynamical system model of BTC loop are

programmed in C++. It is also possible to use different software tools and libraries for

the computation of cognitive models since Darwin-OP has Ubuntu operation system.

Therefore, a structure is prepared for further experiments that may use more realistic

vision data or locomotion in the environment by utilizing Darwin-OP.
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In the oncoming parts of the thesis SNNs are utilized with the dynamical system

model. Apart from the dynamical system model of BTC loop, SNN model is simulated

on NEST simulator. That’s why Python is also utilized on Darwin-OP. NEST is a

point neuron based simulator and it is designed to investigate the dynamics of neuron

populations instead of considering the exact morphologies [28].

Even the implementation of the model and learning method changes with SNN

structure, the cognitive process remains same for the task.
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3. COLOR ASSOCIATION TASK USING BTC MASS MODEL AND TDL

The neural structures taking part in the temporal sequence task introduced in Chapter

2, compose of subcortical structures as striatum, globus pallidus externa/interna and

subthalamic nucleus together with frontal cortex and thalamus, and all these structures

are considered in the computational model of BTC loop proposed for action selection.

The model of BTC that will be implemented on the processor of Darwin-OP to realize

the temporal sequence task, is a mass model, where the activity of a population

of neurons are represented by nonlinear difference equations. Since to realize the

temporal sequence task, not only action selection but building association between

sensory inputs and their representations and reward based learning is needed all

these processes will be modeled as updating the parameters of the dynamical system

corresponding to BTC loop, through reinforcement learning using TDL method [15].

The process of task in real time is realized on Darwin-OP as explained in Chapter 2.

In the following sections, first the equations governing the BTC model and the learning

rule will be introduced, then the results of the experiments carried for the temporal

sequence task will be given.

3.1 BTC Mass Model and TDL

The BTC mass model consists of the difference equations (3.1,3.2, 3.3) that construct

the dynamical system. Each equation represents the averaged behaviour of related

neuron population in discrete time. The equations given here are the modified versions

of the equations in [13, 15].

BTC model consists of relations between substructures of Basal ganglia, thalamus and

cortex all of which are parts of a rat brain [4]. The scheme of these relations is given

in Figure 3.1 which shows the excitatory (arrowed lines) and inhibitory (pointed lines)

connections between substructures of Basal ganglia (BG), cortex and thalamus. The

connections between these substructures indicate positive or negative contribution to
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Figure 3.1: Block diagram of Basal ganglia (BG) circuit: This diagram shows
the excitatory (arrowed lines) and inhibitory (pointed lines) connections
between substructures of BG , cortex and thalamus.

the values of the parameters that are given in Equations 3.1, 3.2. The substructures

of BG considered in the model are striatum (Str), globus pallidus external (GPe),

subthalamic nucleus (Stn) and globus pallidus internal (Gpi).

S (k) =WcI (k) (3.1)

Ctx(k+1) = f (λCtx(k)+T hl (k)+S (k)) (3.2)

Str(k+1) =Wr f (Ctx(k))

GPe(k+1) = f (−Str (k))

Stn(k+1) = f (Ctx(k)−GPe(k))

GPi(k+1) = f (Stn(k)−Str (k))

T hl (k+1) = f (Ctx(k)−GPi(k))

Action selection part of the study is realized by an iterative calculation of the Equations

3.1, 3.2. Equation 3.1 indicates the linear relation between information coming from

the environment (I) and inputs of the cognitive model (S). So, Equation 3.1 models the
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association between stimuli and its representation in the cortex. Equations 3.2 models

the interrelation between BG substructures, cortex and thalamus ( [14]).

There are three different actions to be selected through the task and three sensory inputs

all of which are explained in Chapter 2. So, all the variables related to the brain areas

are in vector form and their dimensions are 3x1. Each element of the vectors stands

for a channel on the related brain structure. If the task considered had more sensory

inputs, then the dimension of the vector would be more than three.

k is the discrete time variable for all of the equations. S indicates the representation

evoked due to the sensory inputs (I). This relation between the sensory inputs and the

representation in the cortex is built up as a linear transformation by Wc matrix that is a

3x3 matrix. Wc is the adaptive connections between the stimuli and cortex and indicates

their significance in the environmental context. Wr is the other adaptive connection

weight between Ctx and Str and represents the effect of dopamine on action selection.

Its dimension is 3x1 since there are not intrachannel connections in the model except

Wc. The modification of Wc matrix and Wr vector changes the behavior of dynamical

system and the selected action as a result.

S activates Ctx which is the input structure of BTC model. After the activation of

BTC model, the decision making process begins and the result of action selection

is determined by the values of Ctx at the end of the cycle. Once the variables of

BTC model converge to an equilibrium point [13], the Ctx values determine the action

selected. λ coefficient denotes the recurrent behavior within the cortex.

The function f (.) is a tangent hyperbolic function, and it is used to model the mean

activity of the neuron populations. The f (.) function is given by Equation 3.3.

f (x) = 0.5(tanh(3(x−0.45))+1) (3.3)

Modulation of the connections between inputs and model with the internal connections

are provided according to the TDL. TDL is a reinforcement learning method ( [20]) that

is claimed to be related to reward based learning in basal ganglia [9]. TDL modulates

the connections by evaluating the expectation error. When an agent decides on an

action, it has an expectation on the result of that action. The action changes the

environment and the difference between the reward obtained and the expectations due

to the new state of the environment of the agent arises an expectation error. In the
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considered task, the expectation of agent on reward and the given reward determine

this error.

The modulation of the connections is provided by the Equations 3.4 to 3.8. In these

equations, k indicates discrete time and all k dependent parameters are in vector or

matrix form except V and δc which are scalar variables. η and µ are constants and their

values are both 0.9. r stands for the reward information coming from environment. Its

value is 1 when there is reward and 0 otherwise. In Equation 3.4, V indicates the value

assigned to the given inputs. This value information is kept in Wv which has one weight

value for each input, so it is a 3x1 dimension vector.

V (k) =Wv (k) I (k) (3.4)

δc (k+1) = r+ rµV (k−1)−V (k) (3.5)

Wv (k+1) =Wv (k)+ηδc (k) I (k) (3.6)

Wc (k+1) =Wc (k)+ηδc (k)Ctx(k) I (k) (3.7)

Wr (k+1) =Wr (k)+ηδc (k)Ctx(k)Str (k) (3.8)

The expectation error (δc) is calculated according to the given reward and the difference

between previous and current values that is denoted in Equation 3.5. This expectation

error modulates the value weights of inputs Wv according to Equation 3.6. So, the

weights of values are modulated using the input information and the expectation error

when there exists sensory information. Also, Wc matrix and Wr vector, which indicate

the weights of connections on the action selection model, are modulated using the

expectation error due to the reward obtained as a result of action.

Thus, whenever there is a difference between the expectation and the actual result, the

connections between the neural structures, Wc and Wr, are updated proportional to the

relation between cortex and inputs for Wc and between cortex and striatum for Wr. Wr

determines the projection of information to the basal ganglia. After cortex begins to

select the desired actions in sequence, the Wr connections increase with respect to the

expectation error and this increases the projection of information to the basal ganglia

which effects the learning in long term. In this study, Wr connections have a base value

that loosely corresponds to the base level of dopamine in the model.
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3.2 Investigation of Parameters: Experiments and Results

The BTC model consists of difference equations that constructs a dynamical system.

It is well-known that the change in the parameters of a nonlinear dynamical system

gives rise to change in the behavior of the system and bifurcation analysis is a tool to

investigate this phenomena. As, in [21] and [15] this analysis is already carried out,

here a number of computer aided experiments will be carried out to see the effect of

parameters on the system behavior more explicitly.

As change in the system’s behavior corresponds to learning in this context, the

experiments focus on learning. Thus, learning is dependent to the initial values

of the parameters from the dynamical systems aspect. As an experiment, the first

investigation that will be presented is the effect of initial values on learning. Then,

it is shown that after learning is accomplished, the BTC model can accurately select

actions for related inputs as a second experiment. In this case, the BTC model on

the robot can realize action selection with learnt parameters and there is no need

to update the parameters again. As a last experiment, the success of this model

on explaining some biological connections between the Basal ganglia, thalamus and

cortex is investigated. These experiments besides grasping the learning experience,

also intends to comprehend the role of dynamical environment on the behavior.

Each experiment is first realized as a computer simulation and then on the robot

environment.

3.2.1 Dynamically changing environment with different initials

Dynamically changing environment can be expressed in two ways. The first way is that

the initial perception of the decision making circuit (BTC model) on the environment

(Wc) can be different for different experiments. This means that the Wc parameter

determines the perception of the environment ( [22]) and if we initially select Wc

different for different trials, then we would be able to model the initial perception

of the environment by the BTC model. The second way is that the values of sensory

inputs can be different for the same stimulus or the sequence of the stimulus can vary

from experiment to experiment. The first way is investigated on simulation and on the

robot by randomly changing Wc for each trial. The second way is investigated on the

robot since the sequence of the inputs will vary during experiment. The experiments
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are realized on a different robot environment, which is Bioloid that is explained in

Chapter 2, instead of Darwin-Op, but since only the sequence of inputs are considered

during the experiments and the input values given to the model are the discretizated

ones, the results would be same for Darwin-OP.

The initial values of Wc parameter may cause BTC model not to be able to learn,

since the initial values have effect on the convergence of dynamical system model of

BTC [21]. That’s why the effect of choosing different initial values for Wc is firstly

investigated on simulation. The results are given in Table 3.1. In this experiment, there

are two success rate for two subexperiments. In both of the subexperiments, only one

channel input is given a higher value than the others at a time. At the first one, the

higher channel inputs are selected as 0.9 while the lower ones are selected as 0.1. At

the second subexperiment, the higher channel inputs are selected as 1 while the lowers

are selected as 0. As it is expected, the success rates of both are below 100%. When

only Wc parameter’s initial values are selected randomly and the other parameters are

same for each trial, the success rate of the first subexperiment is 83% and of the second

subexperiment is 76% considering 10000 number of experiments for each case. So,

massive number of experiments are carried out to have statistically robust results. This

means that the BTC model can accomplish 83 of a hundred learning trials with random

Wc initials and the same value of the other parameters when the inputs are given to the

model in regular order. The regular order means that the inputs are given in a repetitive

sequence and not in a random order.

The percentage differences between the systems that is stimulated with 0 − 1 and

0.1− 0.9 values are assumed to be caused by the zero value of the low level input,

which blocks the model to use the information coming from low level inputs during

the learning process due to the multiplication by zero during updating the parameters.

On the other hand, the percentages of successful trials are higher when the inputs are

given to the model in a random order (Table 3.1). The number of mean steps in the

table indicate the number of states, after which the model selects the desired action for

the given input and the expectation error decreases to below 0.01 for the successful

trials. Not only the number of steps for whole process to be terminated but also the

number of steps that are needed to accomplish the successful learning are higher in

the random order case. This means that the dynamical system model converges to its
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Table 3.1: Results of learning with different Wc initials.

High Low Success # of StepMean Order of Inputs

0.9 0.1 % 83 248.5 In Regular Order

1 0 % 76 215.9 In Regular Order

0.9 0.1 % 95 344.1 In Random Order

1 0 % 82 285.2 In Random Order

desired fixed points (actions) for the given inputs in longer time but more strongly with

random order inputs than regular order inputs.

Some of the initial values of Wc for successful trials are given in Table 3.2. In this

table, it is seen that the number of steps before learning are different for different

initials. The initial values of Wc are updated with TDL rules by using reward given from

experimenter. So, Wc evolves to a value that BTC model makes decisions accurately.

The evolved values of Wc for the fourth initials, which are given in Table 3.2, are

presented in Equation 3.9. Considering Wc f , the diagonals of the matrix is higher

than the other which indicates that the model may associate the inputs to the actions in

certain conditions. The certain conditions are related to Wr, which stands for dopamine

effect, range of inputs and connections of neural structures that will be investigated in

Subsection 3.2.3.

Table 3.2: Learning duration for random Wc initials.

Param. 1st 2nd 3rd 4th

w11
c 1.82 −1.2 1.11 −0.5

w12
c 0.54 0.22 0.36 −0.3

w13
c 1.38 0.86 0.39 −0.6

w21
c −0.9 −0.1 −0.5 0.27

w22
c 0.9 0.23 −0.5 1.28

w23
c −0.3 0.41 0.05 −1.0

w31
c 1.36 −0.2 −0.1 −0.4

w32
c −0.2 −0.5 0.13 −1.2

w33
c 0.95 −1.0 −1.7 −0.8

# of steps 683 236 246 198
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Wci =

1.82 0.54 1.38
−0.9 0.90 −0.3
1.36 −0.2 0.95

Wc f =

 13.5 −1.8 −2.8
−9.0 15.1 −9.5
−0.35 −10.2 16.1

 (3.9)

In this study, the selected action is expected to follow the high valued inputs which

means that when the input of first channel is high then the first action is the desired one

and so on. In Figure 3.2, the outcomes of learning process are presented. The initials

and evolved values for the Figure 3.2 are the ones that are given in 3.9. The upper figure

of Figure 3.2 shows the selected action for the given input and the lower one shows the

expectation error through learning. Red line seen in upper figure shows the channel

number of higher input and blue line indicates the selected action for given input. At

the beginning, input doesn’t match with the selected action and expectation error is

high. At the end of experiment, model manages to select the right action for the given

input and expectation error is close to zero. In the middle of learning process (Figure

3.2), the BTC model selects right action for a given input. While the expectation error

is decreasing to zero, a wrong choice of the action causes higher expectation error than

before (370th step in Figure 3.2). These wrong decisions make the model learn to select

desired actions more precisely at the end of the experiment while the expectation error

decreases to zero. So, the selected actions (blue lines) and inputs (red lines) matches

on the figure. This is the desired process of BTC model on the learning task.

The same learning experiment is repeated with inputs in random order. The initial Wc

values are chosen randomly and the other parameters are left same with the previous

experiments, results of which are given in Table 3.1. One of the successful learning

experiment with random ordered inputs can be seen in Figure 3.3. Considering this

experiment, the order of inputs affect the expectation error, which determines whether

learning is achieved or not. It is clearly seen from Table 3.1 that learning trials are

more successful when the inputs given to the model are in random order.

3.2.2 Results after learning is accomplished

After learning is accomplished and the BTC model successfully associates given input

to the desired action, the expectation is that the BTC model can successfully associate

inputs to the desired actions by using the same parameters without updating them.

The results after learning is accomplished is given in Figure 3.4 and 3.5. The Wc

parameter values are initially taken as Wc f and are given in (3.9). The learning process

18



Figure 3.2: The upper figure shows the selected action for the given input and the
lower one shows expectation error through learning. Red line seen in
upper figure shows the channel number of higher input and blue line
indicates the selected action for given input. At the beginning input doesn’t
match with the selected action and expectation error is high. At the end
of experiment, the model manages to select the right action for the given
input and expectation error is close to zero.

realized to obtain these parameters can be seen in Figure 3.2. The order of inputs

through learning is regular. In Figure 3.4, these parameters are taken and the model

is tested with inputs in regular order. In Figure 3.5, the inputs are in random order,

and the BTC model successfully selects desired actions for given inputs. There is no

difference between random and regular order inputs after learning is accomplished.

However, if the maximum value of input for a channel, input value of which is the

highest, decreases the model may not select the desired action even it has learnt to

select before. The effect of maximum value of inputs is explained in Subsection 3.2.3.

3.2.3 Tampering the connections between neural structures

One of the aims of this model is to explain the effect of some connections between

cortex, basal ganglia and thalamus on action selection task. To explain these relations,

we have tampered the connections between neural structures given in Figure 3.1.

Besides the connections between neural structures given with the Equations (3.2), the

values of model parameters have an important role on the learning accomplished by

19



Figure 3.3: The upper figure shows the selected action to a given input with random
order. The lower one shows expectation error through learning. Red line
seen in upper figure shows the channel number of higher input and blue
line indicates the selected action for given input. At the beginning input
doesn’t match with the selected action and expectation error is high. At
the end of experiment, model manages to select the right action for the
given input and expectation error is close to zero. With random ordered
inputs, model learns better than learning with regular ordered inputs.

the model. Two of these parameters are Wrbase and the maximum value of inputs (Smax)

presented to the BTC model. Wr is a parameter between cortex and striatum, and it

represents the role of dopamine level on action selection in the model. By changing

its value, how the dopamine level effects the action selection process can be observed.

The value of Wr is between 0 and 1. Wrbase is the base level of Wr and the value of

Wr is kept bigger than this base level through learning process. Smax is the maximum

value of the inputs, and it is taken to be between 0 and 1. The value of Smax limits the

information coming from environment to cortex for action selection. As seen in Table

3.3, these two parameters have effect on success percentages. The learning process

is repeated 10000 times for each value pair and the number of successful trials are

obtained. The number of successful learning trials are obtained with regular order of

inputs through learning and random initial Wc values for each of 10000 experiments.

The BTC model is the most successful when Wrbase is 0 and Smax is 0.5. Smax is the level

of information sent to cortex and learning rates decrease when Smax is increased for the

same Wrbase considering the BTC model. The lowest learning rates are obtained when

Smax is 1 (excluding Smax = 0.4 situation) and this means that the zombie situation
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Figure 3.4: After learning, the BTC model can successfully associate inputs to the
desired actions by using the same parameters without updating them. The
Wc parameter values are initially taken as Wc f given in (3.9). In this
experiment, the order of inputs through learning is regular. Figure shows
the selected actions for the given inputs.

Figure 3.5: After learning, the BTC model can successfully associate inputs to the
desired actions by using the same parameters without updating them. The
Wc parameter values are initially taken as Wc f given in (3.9). In this
experiment, the order of inputs through learning is random. Figure shows
the selected actions to given inputs.

(Smax = 1) [23] is not much successful as the others to change its selection for different

types of input. As it can be followed from Figure 3.6, the model stucks between

two actions at the end of this experiment and cannot select the third one. Besides,

the expectation error is low through the experiment and close to zero at the end even

though it doesn’t get reward. The number of successful learning trials also decrease

while increasing Wrbase . Increasing base level of Wr makes the BTC model to select

more than one action at a time. Thus, the increase affects values of Wc ,which evaluates

sensory inputs, and the inputs are perceived wrongly because of high Wr level. In

addition to this, high Wr level increases the activity of thalamus on cortex, and as a

result cortex is urged to select more than one channel at a time.

In Table 3.3, it is given that when Smax is 0.4, the model is not successful on learning

to select right action. This is because the input is not big enough to make cortex select
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Table 3.3: Success percentage (%) for different Smax and Wrbase values.

Wrbase

Success

Rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S m
ax

0.4 0 0 0 0 79.6 27.5 7 0

0.5 95.7 94.3 90.6 84.7 71.9 22 9 0

0.6 84.6 83.4 82.6 78.2 72 23.9 5 0

0.8 76.3 77.4 74.5 74.1 68 18.1 5.1 0

1.0 68.4 71.7 70 71 64.8 18.7 4.2 0

Figure 3.6: Zombie situation (Smax = 1). The learning experiment is realized with
random initial Wc and Wrbase is 0. The model stucks between two actions
at the end of learning experiment and cannot select the third one. The
expectation error is low through experiment and close to zero at the end
despite it doesn’t get reward.

an action. However, when Wrbase is 0.4, the number successful learning trials are higher

than before since Wr increases the activity of thalamus and this situation compensates

the low values of inputs.

Giving inputs, that is only one of the three inputs has the high value, in different order

changes the learning process. Inputs in random order prevents the model to stuck on

an undesired input-action pairs by changing the expectation error. Because of this,

the number of successful learning trials for experiments with random order inputs are

higher than with regular order inputs as stated in Table 3.1. This can be seen in Figure

3.7. In the Figure 3.7, colors indicate the number of successful learning trials for each
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Smax-Wrbase pair. 10000 learning trials are simulated with random initial Wc for each of

Smax-Wrbase pairs. The colors show the number of successful learning trials in 10000

trials. The figure on the left hand side of Figure 3.7 shows the number of successful

learning trials with using inputs in regular order and the right-hand figure shows the

number of successful learning trials with using inputs in random order. Comparing

two, the number of successful learning trials of random order inputs are higher than

regular order inputs. However, the order of inputs doesn’t effect the dark blue areas,

which indicates unsuccessful learning.

Figure 3.7: The number of successful learning trials with respect to Smax and Wrbase .
The left-hand figure shows the number of successful learning trials with
using inputs in regular order and the right-hand figure shows the learning
rates with using inputs in random order. Giving inputs to the model in
random order increases the number of successful learning trials, but it
doesn’t affect the zero areas.

While the order of inputs has an effect on the number of successful learning trials,

it does not make learning possible for the parameter values, for which the model

cannot learn to select the desired action. On the other hand, changing connections

between neural structures in the BTC model can change the behaviour for different

parameter values. The values of connections are between 0 and 1. In Figure 3.8,

three of excitatory connections seen in Figure 3.1 (Thl to Ctx, Stn to GPi and Ctx

to Stn connections) are reduced by half and the number of successful learning trials

are investigated. By reducing Thl-Ctx connection it is seen that there is not much

difference when Wrbase is lower than 0.5. However, the number of successful learning

trials are reasonably higher when Wrbase is increased to 0.5 or higher. When Wr is

high, the model tries to select more than one actions at a time and thalamus activity

highly affects cortex. So, reducing the connection from thalamus to cortex also reduces
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this thalamus activity and makes cortex available to select one action at a time. This

situation increases learning rates for higher values of Wrbase . As it is stated before,

when Smax and Wrbase are 0.4, low inputs are compensated with the high level of Wr

and because of this, thalamus activity is depressed. However, decreased thalamus

activity cannot compensate this situation and makes the learning rate zero for these

parameter values. Another set of experiments is realized by reducing the excitatory

connection between Stn and GPi. As given in lower left hand side figure of Figure

3.8 learning rates become zero when Wrbase is greater than 0.1. In the other situations

learning rates are significantly low with respect to the reference situation (upper left

figure). When the connection between Ctx and Stn is decreased by half, the figure in

the lower right hand side of Figure 3.8 is obtained. The number of successful learning

trials are even lower than the other situations. In the last two situations, the excitatory

connections in the BTC model through Stn are disrupted separately which means that

the information coming from input and Ctx cannot transferred to GPi. Thus, GPi

cannot inhibit Thl enough. When Wr is low (lower than 0.2 for this experiment) some

channels are selected instead of the desired channels because of the disinhibition of Thl

for most of the experiments. When Wr is higher than 0.2, all channels are selected at a

time because of the high activity of Thl. That’s why the number of successful learning

trials are low when the path through GPi is disrupted. According to the results of the

BTC model high Thl activity on cortex decreases possibility of selecting the desired

action as more than one is selected. This shows a kind of hiperactivity, which impairs

the action selection process.

3.3 Results on Simulation and on Humanoid Robot

Humanoid Robot, Darwin-OP, is expected to learn how to associate the given stimuli

to the predefined desired actions and how to rearrange the associations to accomplish

the task that is explained in Chapter 2. The model is tested on a MATLAB simulation

before realizing on Darwin-OP.

At first, the model is trained to associate the first stimulus (red color) to the first action,

the second stimulus (yellow color) to the second action and the third stimulus (blue

color) to the third action. The result can be seen in Figure 3.9. The inputs are given

to the model in order. The upper figure shows the relation between inputs and selected
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Figure 3.8: The number of successful learning trials with using inputs in regular order
for different connections between neural structures. Thalamus (Thl) to
cortex (Ctx), subthalamic nucleus (Stn) to globus pallidus internal (GPi)
and Ctx to Stn connections are reduced by half. When Thl activity is
decreased on Ctx, the number of successful learning trials increase (upper
right). When excitatory Stn connections are disrupted, this decreases the
number of successful learning trials since Thl activity on Ctx is increased
by disrupting (lower figures).

actions and the lower figure shows the expectation errors and reward. When the value

of reward line is high, that means the model gets reward. At the first encounter with

reward, the expectation error rises as expected and through the experiment decreases

exponentially to zero with using the reward and manage to find right Wc and Wr

parameter values. At the end of the experiment Wc and Wr reach values seen in 3.10

and 3.11.

Wc =

8.68 −8.11 −0.56
0.11 23.14 −2.55
0.11 −7.5 9.14

 (3.10)

Wr1 =

0.8275
0.9986

1

Wr2 =

 1
0.6466

1

Wr3 =

 0.9108
0.9098
−0.0556

 (3.11)
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Figure 3.9: Results of associating colors to the actions in MATLAB environment. In
this figure, first stimulus is associated to the first action, second stimulus
to second action and third stimulus to third action as seen in the upper
sketch. The lower one shows the expectation error and reward during the
task. 1 in the upper figure indicates the first stimulus or action, 2 indicates
the second stimulus or action and 3 indicates the third stimulus or action
with the related line colors.

After the first associations, they are changed by using reward and the first stimulus

is associated to the third action and the third stimulus is associated to the first

action as given in Figure 3.10. The expectation errors are higher at the time of first

encounter of unexpected reward. Even the association between the second stimulus

and second action is left same, an expectation error occurs since the values related to

this association are also updated through the task. The reason of this is that when the

first stimulus is given to the model it tries to select the second action, which is wrong,

and the values related to the second action are changed during the update. The new

parameters at the end of changing the associations are given in Equations 3.12 and

3.13.

Wc =

−3.06 −8.11 6.38
−1.19 1.88 −11.6

0.3 −7.51 −18.6

 (3.12)

Wr1 =

 1
1

0.5497

Wr2 =

 1
0.5167

1

Wr3 =

0.5498
1
1

 (3.13)

In the real-time experiments Darwin-OP is presented the stimuli as explained in the

Chapter 2. The results are seen in 3.11. The upper figure shows the input and action
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Figure 3.10: Results of rearranging the previously associated stimulus-action pairs in
MATLAB environment. The upper sketch shows the relation between
the inputs and actions and the lower one shows the expectation error and
reward. 1 in the upper figure indicates the first stimulus or action, 2
indicates the second stimulus or action and 3 indicates the third stimulus
or action with the related line colors.

relation as explained for the MATLAB results. The red line indicates the presented

color’s number and the blue line indicates the number of selected action. The lower

figure shows the change of expectation error during task. At the beginning of the

experiment the first color presented to the robot. It manages to learn associating the

first color to the first action after several trials and getting reward for the correctly

selected actions. Then the second and third colors are presented in sequence. At the

end of the building of first association (at the 35thstep), the value of Wc matrix is given

in 3.14 as Wc f irst . After the first part, the first color is presented again, but the reward

is given selecting the second action instead of the first one. After robot manages to

rearrange the first association, third and second colors are presented in sequence as

seen in Figure 3.11 (after 35thstep). The third color is newly associated to the first

action and the second color is newly associated to the third action. However, since the

expectation error is stuck at zero, it takes more trials to rearrange the association of

second color. At the end of experiment the new Wc matrix get the value (Wcsecond ) in

3.14.

Wc f irst =

 2.2 0.05 0.18
0.09 1.97 0.03
−0.77 0.18 1.96

Wcsecond =

0.15 0.05 1.91
1.87 0.17 0.03
0.14 1.9 0.17

 (3.14)
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Figure 3.11: Results of associating the color inputs to the actions. The red line in
upper figure indicates the number of color presented to the model. The
blue line indicates the selected action’s number at the time of presentation
of the color. The change of expectation error through the task is shown
in the lower figure. The first association finishes at the 35th step and
rearranging the associated pairs begins after that time.

Humanoid robot is trained to associate a stimulus to an action successfully in real-time.

It can rearrange the association it has set up to rebuild a connection between the

stimulus and a new action. Even these experiments show the compatibility of the

model and robot in real-time and the ability to show the relations between some of the

structures of brain on action selection, the neuron based models have to be investigated

to reach a deeper understanding of the action selection process and to close the gap

between the morphology based models and the behavioral models. That’s why a step

to neuron based models has taken in the following chapter.
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4. THE COLOR ASSOCIATION TASK USING SNN AND MASS MODELS

In the previous section,it is shown that the model imposed is able to show

different behavior and even behavioral deficiencies due to the change in parameters.

Nevertheless, the model is still far from being able to give a better understanding of

action selection, especially due to update rules based on reinforcement learning. So, in

order to have a biologically realistic model of reward based learning, but still to have

a realization that can be implemented on robot, as a first step, a small population of

point neurons considered instead of mass model for cortex.

Though, the cortex is composed of point neurons instead of mass model, the reward

based learning, still is accomplished by temporal difference learning as in Chapter 3.

So, building up the association between sensory inputs and the desired actions are built

up, in a similar way. In this chapter, first the differences made on the model will be

explained, then how point neuron model is implemented on humanoid robot will be

given. The experiments carried out in this case will be explained and the chapter will

be concluded with discussion on the results.

4.1 Neurocomputational Model

In this part of study, the BTC model considered in [13, 15] is expanded using spiking

neural network model of cortex which is given in Figure 4.1. Like the model in

Chapter 3, sensory information which reaches to cortex is transferred to basal ganglia

and thalamus through cortex and processed there to decide on an action. The main

difference in the neurocomputational model is, the neural structures are modeled in

two different scales: point neurons and mass model So the model is in a way mixed

mode model. The sensory information transfer is realized by three different pathways:

Direct pathway through striatum (Str) and globus pallidus internal (GPi), indirect

pathway through Str, globus pallidus external (GPe) and subthalamic nucleus (Stn)

and hyperdirect pathway through Stn and GPi [24, 25].
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Figure 4.1: Basal ganglia-Thalamus-Cortex (BTC) action selection model. Model
is structured with the connections between cortex, basal ganglia
substructures and thalamus. Cortex part of the model consists of point
neurons while the other structures are modeled as mass models. Basal
ganglia part consists of striatum (Str), globus pallidus external (GPe),
globus pallidus internal (GPi) and subthalamic nucleus (Stn).

Since in the task considered, there are three sensory information, cortex has three

separated neuron populations, which are named as channels. In Figure 4.2, these three

neuron populations/channels are indicated by three different colors. In addition, each

channel has two neuron groups: excitatory and inhibitory neurons, which are denoted

by upper groups and lower groups in Figure 4.2, respectively. Excitatory neurons make

connections only within the channel. They have random connections to themselves and

to the inhibitory neurons of the channel. However, inhibitory neurons are connected to

the excitatory neurons of each channel. So, when a channel is promoted by a specific

sensory stimulus, it inhibits the other channels by its inhibitory neuron group. In this

way, the information that is transferred through Wc is strengthened by these inhibitory

connections and the winner-take-all structure that is established by Wc connections is

highlighted [26].
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Figure 4.2: Spiking neural network model of cortex. There are three channels in
the cortex model each for a sensory stimulus and each channel consists
of 80 regular spiking and 20 fast spiking Izhikevich point neurons [27]
connectivity of which are 10%. Regular spiking neurons are excitatory
(upper neuron groups of each channel) and they have only connections
inside its channel. Fast spiking neurons are inhibitory (lower neuron
groups of each channel) and they have interchannel connections. So, the
connections between channels are provided by inhibitory neurons of each
channel.

Excitatory neurons and inhibitory neurons are modeled as regular spiking and fast

spiking point neurons, respectively. The equations used to model the point neurons,

which are Izhikevich neurons, can be found in [27]. Each of the neurons consists of two

differential equations and these equations are solved in time. When the state variable

v of neuron equations exceeds a threshold, the neuron fires which is also called as

spike activity, and the state of the neuron is reset to the initial value. However, NEST

model of Izhikevich neurons are utilized instead of solving these differential equations

explicitly during the task.

There are 80 regular spiking and 20 fast spiking neurons in each channel of cortex.

All connections are realized with 10% random connectivity. So, each regular spiking

neuron makes eight random connections in the excitatory neuron group of the channel

and another eight random connections to fast spiking neurons of the same channel. And

each fast spiking neuron makes two random connections to each of three excitatory

neuron groups of all channels.

The basal ganglia and thalamus neurons are modeled as mass models and each of

them also has three channels. Cortex, thalamus and each element of basal ganglia are

connected as shown in Figure 4.1. Since cortex is modeled as SNN and other structures

are as mass model, the cortex output is transferred to the basal ganglia after a process.

Outputs of cortex are the number of spikes that the related channel has. Cortex part of

the model is simulated 200 ms for one cycle that is explained with Figure 2.2. So, the

cortex part is simulated 10 ms with NEST and this is repeated in 20 steps to complete
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one cycle. At the end of each step the spike counts of related channel is scaled into

0−1 interval and this value is sent to striatum. For the basal ganglia part the Equations

3.2 are solved iteratively except the cortex equation and the result of thalamus which

is between 0 and 1 is sent to the cortex for the next step. The detailed explanation of

the solving BTC equations takes part in [18]. The value sent from thalamus to cortex

is added as a synaptic current to the equations of cortex neurons that be found in [27]

as I. In this way, 20 steps are carried out to complete one cycle of action selection.

And then, according to the action result taken from cortex, the reward comes from

environment to modulate the connections that are given in Figure 4.1.

In Figures 4.1 and 4.2, the excitatory connections are shown as regular arrows and

inhibitory connections are shown as point-headed arrows. All the connections are

static except the ones between sensory stimuli and cortex and between cortex and

striatum, which are indicated as Wc and Wr respectively. These dynamic connections

are modified to build up the association between sensory stimuli and actions. In this

way, the connections and neural structures shown in Figure 4.1 compose a dynamical

system model of BTC circuit.

Now, dynamical connections between sensory stimuli and cortex, i.e.,Wc and between

cortex and striatum,i.e., Wr will be explained in more detail for the modified model.

Though the cortex part added as SNN to the model in Chapter 3, the meanings of Wc

and Wr are same with the previous model. Each sensory stimulus, which corresponds

to red, yellow and blue colors are denoted by R, Y and B letters in Figure 4.1,

has connections to excitatory neurons of all three channels. Each sensory stimulus

connects to all excitatory neurons of the three different channels similarly. The value

of promoted input, the input of presented color, is 0.9 while the values of other inputs

are 0.1. In this way, all inputs take part in the learning process but with different

importance. In addition to the sensory stimuli, the excitatory neurons in cortex have

noisy inputs with Poisson of 45 Hz. So, there are nine dynamic connections from

sensory stimuli to the three different channels of cortex, which builds up 3x3 matrix

Wc. Due to this connection structure, before association is built, the sensory stimuli

are homogeneously connected to each channel though there are different channels

denoting three different colors.
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The other dynamic connection is between cortex and striatum. Each channel of cortex

projects onto the same channel of striatum. The projection to striatum is proportional

to firing rates of the excitatory neurons of channels in cortex. Therefore, there are

three connections through the channels of cortex and striatum and these connections

are indicated as Wr which is denoted by a 3x1 matrix. These dynamic connections

between sensory stimuli and cortex and between cortex and striatum are modulated

with expectation error of TDL as explained in Chapter 3.

4.2 Implementation on Humanoid Robot

The humanoid robot platform, Darwin-OP, is utilized to realize the task which consists

of associating colors to the desired actions and rearranging associations as explained

in Chapter 2. Ever so the process to realize the task is same with the explained in

the previous chapters, the communication scheme and calculation of selected action is

realized in a different way.

Model is coded in two parts on the humanoid robot which are the module responsible

for action selection and the module responsible for parameter adaptation to accomplish

learning. The action selection model is coded in Python environment using NEST

simulator for the spiking neural network part [28]. In addition to this, getting sensory

input and actuation part is coded in C++ with learning included. The communication

scheme of the communication between two environment can be seen in Figure 4.3. At

first, the humanoid robot gets sensory inputs with its camera and sends this information

with the weights of connections, Wc and Wr, to the simulator part. In the simulator

part, Python coded part, the decision is calculated using sensory inputs and connection

information. Then the calculated cortex and striatum information is carried to the C++

coded part for getting reward and updating the connection. The two environments

wait for the results of the other on real-time process of task. In this way, structurally

different two models are merged to run in the same environment.

4.3 Experiments and Results

In this study, the humanoid robot is expected to select the desired actions when specific

colors are presented. Thus, it is expected to learn to associate the sensory stimulus to

an action by evaluating reward and also to rearrange the previously learnt pair for
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Figure 4.3: Model is coded in two parts on the humanoid robot which are the module
responsible for action selection and the module responsible for parameter
adaptation to accomplish learning. The action selection model is coded in
Python environment using NEST simulator for the spiking neural network
part [28]. Getting sensory input and actuation part is coded in C++
including learning. This diagram shows the communication scheme of
the communication between two environments.

association to a new action. This task is achieved by updating the connections between

sensory stimuli, cortex and striatum as explained in Section 3.1.

To show success of the model in real time learning task, two experiments are realized

on humanoid robot. In the first experiment, the sensory inputs are associated to the

desired actions in sequence and then the previously associated pair is rearranged. In

the second experiment, the sensory inputs are presented to the robot in random order

and association time and the strength of the connections are investigated.

Results of the first experiment can be seen in Figure 4.4. In addition, raster plot of this

experiment is given in Figure 4.5. Raster plot shows the spike activity of channels with

respect to time. In Figure 4.5, the spike activities of the first channel and third channel

are given at the time intervals of 550− 750th ms and 3550− 3750th ms. The upper

raster plots of Figure 4.5, show the activity between 550 and 750th ms and the lower

two raster plots show the activity between 3550 and 3750th ms. The y axis of the raster

plots show the IDs of neurons that fire. The x axis shows the time. The points indicate

the spike at the related time. The bars of raster plots show the average firing rate of that

channel at the related time. It can be followed from the upper raster plots of Figure 4.5

that the activity of two channels are almost same at the beginning of the experiment.
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Figure 4.4: a (upper figure): The selected actions (blue line) and the sensory inputs
(red line). The first stimulus is red color, the second is yellow color and
the third is blue color. b (middle figure): Reward (red line) and expectation
error (green line). c (lower figure): Average firing rates of cortex channels.
The simulated time of the spiking neural network last 15150ms for this
experiment, but it takes 45 minutes in real time, real time factor (the
proportion of simulation time to the real time) of which is approximately
%0.6.

However, the lower raster plots indicate that the first channel fires more than the third

channel and the third channel fires even less than beginning. The reason of this is the

connections between the sensory input and the first channel are strengthened during the

3000 ms with reward and the connections between the stimulus and the third channel

are weakened. The Figure 4.4-a shows the presented input, which are red, yellow and

blue colors respectively, and the channel of the selected action. The sensory input and

the selected actions are indicated with red and blue lines, respectively. The Figure 4.4-b

shows the expectation error, green line, and reward, red line. The Figure 4.4-c shows
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the average firing rates of the each channel in the cortex and red, yellow and blue lines

indicate the channels respectively. Through the experiment, the spiking neural network

is simulated 200ms for each sensory input. The average firing rates of cortex channels

are calculated over the spikes in this 200ms time interval. The simulated time of the

spiking neural network last 15150ms for this experiment, but it takes 45 minutes in real

time, real time factor is approximately %0.6. However, showing the color stimulus and

reward to the robot is included in the elapsed time of real time experiment while it is

not included for the simulation. That’s why the real time factor is lower than the

expected value. In addition, this is due to the processor inside the robot that is not

suitable for a spiking neural network simulation in real time. During the experiment,

Figure 4.5: Raster plot of the first and third channels during the experiment. The upper
raster plots show the activity between 550 and 750th ms and the lower two
raster plots show the activity between 3550 and 3750th ms. The y axis of
the raster plots show the IDs of neurons that fire. The x axis shows the
time. The points indicate the spike at the related time. The bars of raster
plots show the average firing rate of that channel at the related time. The
connections between the first channel and the stimulus are potentiated and
the connections between the third channel and the stimulus are depressed.
So, the firing activity of the first channel is more than the firing activity of
the third channel.

the sensory stimuli are first associated with the desired actions which are the first input

(red color) to the first action (channel 1), the second input (yellow color) to the second

action (channel 2) and third input (blue color) to the third action (channel 3) as given

in Figure 4.4-a. At the beginning, the humanoid robot selects actions randomly, since
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there is no winner between cortex channels until one of the average firing rates reaches

to a certain value. After the colors are presented, the expectation error remains zero as

far as the first reward to that input is given. This situation is given in Figure 4.4-b,c

between the time intervals, 0−1000ms and 5000−6500ms.

When the red color (first stimulus) is presented, the humanoid robot selects a random

action until the average firing rate of the first channel reaches to a certain value. Until

the first reward, the expectation error remains zero; this is why the connections and

firing rates of channels remains same. This situation can be followed from Figure

4.4-c between the time intervals, 0− 1000 ms and 5000− 6500 ms. In Figure 4.6,

the evolution of connections between sensory inputs (I) and cortex channels (Ch)

through the experiment can be followed. At the beginning, the connections have a

random value close to zero and evolve to values which build the associations between

sensory inputs and desired actions in the way that the expectation error decrease to

zero. After all sensory stimuli are associated with the actions, the first sensory stimulus

Figure 4.6: The evolution of connections between sensory inputs (I) and cortex
channels (Ch) through the first experiment.

is reassociated to the third action at the end of the experiment to show the realization of

rearrangement of associations. After 13000th ms the first sensory stimulus is associated

to the third action by rewarding selection of the third action instead of the first.

Therefore, the connections between the first stimulus and the first action decrease while

the connections between the first stimulus and the third action increase (Figure 4.6).

In Figure 4.4-c, it is seen that the average firing rate of the third channel increases due

to the change in the connections. However, the connections between the first input

37



and the first channel is still higher than the value at the beginning. So, they can be

reassociated more easily considering the association at the beginning, which is also

compatible to the reinforcement learning aspect.

As a second experiment, the sensory inputs are presented in a random order seen in

Figure 4.7. In the second experiment, the first input associated to the first action

and so on. After all associations are accomplished, the associated action of the first

input is changed to be third action. All processes are the same as the first experiment,

but the orders of presented sensory stimulus are random. The average firing rates

during the second experiment can be seen in Figure 4.8. On the 11000th ms all

inputs are associated to the desired actions and the rearrangement of association of

the first sensory stimulus begins after then. The second experiment is terminated

after 15150 ms, since the rearrangement is accomplished. In total, the task is

completed in approximately same time interval in both of the experiments even the

learning in the second experiment is realized in random order. The evolution of

connections is presented in Figure 4.9 for the second experiment. Since the actions

are selected randomly, when there is no winner, some of the connections are depressed

in proportion to the expectation error because of not having expected reward. This

situation happens for the connections between I3-Ch1 (green line), I2-Ch3 (cyan line)

at the beginning of the experiment. The I1-Ch1 connection (red line) also decreases

after 10500th ms, but to a value close to one which makes a further association easier.

Figure 4.7: The selected actions (blue line) and the sensory inputs (red line) of the
second experiment. The first input is red color, the second is yellow color
and the third is blue color. The sensory stimuli are presented in random
order.

4.4 Conclusion

In this part of the study, learning to build associations between the sensory inputs and

actions are realized using point neuron approach in relation with mass model. Through
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Figure 4.8: Average firing rates of cortex channels through the second experiment.

Figure 4.9: The evolution of connections between sensory inputs (I) and cortex
channels (Ch) through the second experiment.

the task, an association of the visual sensory inputs to predefined actions are built up.

The computational model in [13] is extended for this task with point neurons inside

cortex and reward modulated connections. Since embodiment of the computational

models of neuronal circuits is an emerging way of investigating brain organisation,

an environment for the realization of action selection circuit and learning is built to

simulate the computational model in real time. Neural structures of the basal ganglia

and the cortex are modeled in a simple way to decrease the computation need through

the task, since the aim is to investigate the applicability of such model on the humanoid

robot platform in real time. Despite these kind of humanoid robot platforms have

high mobility abilities, they have low computation abilities for embodied simulation

of neural circuits. As a result of this, the simulation of 300 point neurons and the

dynamical system model has a 0.6−1% real time factor. One of the important aspect
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for the embodiment is that since the point neurons in cortex are in relation with the

basal ganglia and thalamus structures which are modeled as mass model, the neuron

parameters doesn’t need to be optimized for a specific task. Therefore, despite the

lack of model reality and detail in the computational models of BTC loop for action

selection, this simple approach is sufficient from modeling aspect to show the action

selection behaviour on cortex in real time applications.
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5. ASSOCIATION TASK USING CTX SNN AND STDP

In Chapter 4, a step is taken toward obtaining a biologically realistic model for reward

based learning by modeling the cortex with point neurons. Even though, the neural

structure is realized by point neurons, still TDL method is used for learning. Here,

as learning rule, a synaptic plasticity rule will be implemented. Since, in Chapter

4, the realization of point neuron model on humanoid robot is done, and the time

limit for online learning has been discussed, here the results will be obtained only as

simulations.

In the sequel, first definition of spike time dependent plasticity will be given, then its

implementation for the cortex model in Chapter 4 will be realized.

5.1 Spike Timing Dependent Plasticity (STDP)

Learning and memory in the brain are usually associated with synaptic behaviour

and synaptic adaptation [30]. One of the essential idea on learning is explained by

Donald Hebb which is called Hebbian learning in 1949. Hebbian learning postulates

that insistent spike behaviour of postsynaptic neuron just after the spike behaviour of

presynaptic neuron increases the synaptic strength due to biological processes forming

the synapse between the two neurons. Despite the potentiation of synapse is explained

by Hebb, a rule for depression of the synapse is not defined explicitly so giving

rise to permanently increasing synaptic strength. Spike timing dependent plasticity

(STDP) is a version of Hebbian learning that considers the temporal differences of

spike activity in the presynaptic and postsynaptic neurons [31]. Unlike the Hebbian

learning, STDP considers the depression besides the potentiation. Not first but leading

experiments in [32] and [33] showed that the repeated activation of presynaptic neuron

before the activation of postsynaptic neuron in a certain time interval potentiates the

synapse between two neurons and the reverse situation in a certain time interval causes

depression in synapse. The former is called as long term potentiation (LTP) and the
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latter is called as long term depression (LTD) [31]. The importance of this model

comes from the biological plausibility and usability to explain the learning and memory

process of brain that is supported by experiments [31].

The modulation of synapse strength is related to the activation of the presynaptic

and postsynaptic neurons. However, Izhikevich (in [29]) links STDP with a reward

signal to explain conditioning with a point neuron and reinforcement learning point of

view. This approach combines the two explanation about learning process in the brain.

Izhikevich models the reward modulated STDP with Equations 5.1, 5.2 and 5.3.

ċ =−c/τc +ST DP(τ)δ
(
t − tpre/post

)
(5.1)

ṡ = cd (5.2)

ḋ =−d/τd +DA(t) (5.3)

In these equations, d stands for extracellular dopamine level, δ is the Dirac function

with respect to the time difference of neuron activities, ST DP(τ) is the STDP function

that is shown in Figure 5.1. This STDP function determines the scale of potentiation

or depression with respect to the time interval between the firing activity of two

neurons. c is defined as "eligibility trace" which indicates that the synapses are

eligible to be modulated. All τs are time constants of related variable. s is the

synaptic strength between two neurons. DA(t) indicates the baseline level of dopamine

concentration. The time interval for both potentiation or depression between two

neurons is considered as 50 ms. Closer timing gap between two neurons means more

potentiation or depression.

Figure 5.1: STDP function that is retrieved from [29].

The modulation of the synaptic strength is explained as shown in the Figure 5.2. Here

reward is modeled as the dopamine concentration. After successive firing of pre and
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Figure 5.2: The modulation of synaptic strength that is retrieved from [29].

post neurons given in the box in Figure 5.2, an exponentially decreasing eligibility

trace occurs. After specified delay time that changes from 1 to 3 seconds, reward is

given to the system, and the concentration of dopamine increases and the modulation

on the synaptic strength is realized as seen from the lower line of the Figure 5.2. The

synaptic strength increases in this situation since activation of the pre neuron occured

just before the activation of the post neuron. In this case the result of STDP function

is positive since τ is greater than zero as seen in Figure 5.1. So, LTP and LTD are

realized by applying the same approach.

5.2 Implementation of STDP into SNN Based Cortex Model

In this chapter we utilized the color association task in the same way as explained

in Chapter 2. However, the action selection model in the task is designed different

from the models that are utilized in the previous chapters. The model considered

here is presented in Figure 5.3. As it can be followed from the figure, a model of

cortex with STDP learning rule is given. With this new cortex model with intrinsic

synaptic plasticity, the association between, sensory inputs and their representations in

the cortex is built up without defining matrix Wc and using learning rules adapted from

a machine learning method. So, a biologically-plausible model of association building

has been set up. In this model R, Y and B circles represent the sensory inputs which

are modeled as "poisson generators" that spikes with poisson distribution. They project

the sensory information to the input neurons which are modeled as "izhikevich regular
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spiking neurons". There are 20 neurons in each channel of input neurons. The rate of

spiking activity for sensory inputs is 12 Hz when there is a high sensory information

and 3 Hz when there is a low sensory information. Cortex is modeled same as the

model that is explained in section 4. The information coming from sensory inputs to

input neurons are projected into cortex neurons through STDP modulated synapses.

Figure 5.3: The computational model considered to utilize STDP modulated synapses.

Instead of implementing the Equations 5.1, 5.3 and 5.2, the NEST library is utilized for

the neuron and synapse simulations as utilized for the cortex model that is explained

in section 4. In this part of study, "stdp_dopamine_synapse" model of NEST ( [34])

is used as the STDP modulated synapse model instead of the Wc matrix of previous

models since STDP is a more biologically plausible implementation of reinforcement

learning. The parameters of the model are given in Table 5.1. The wmax and wmin

parameters indicate the maximum and minimum connection weights that a synapse

can have. The τc and τd represent the time constants that are explained in section 5.1.

τpre and τpost stand for the time constants of STDP function that is given with Figure

5.1. The baseline value is the minimum level of dopamine concentration that takes part

in Equation 5.3 as DA(t). initialweights is the initial values of synaptic connection of

the STDP modulated synapses.

Table 5.1: STDP connection parameters.

wmax wmin τc τd τpre τpost baseline initialweights
20.0 3.0 500 * ms 800 * ms 50 * ms 50 * ms 0.01 9.0
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The action selection is realized with this model as it is explained in the

"Stimulus-Response Instrumental Conditioning" part in [29]. In a certain time interval,

the number of spikes that are counted are due to the stimulus applied to. If the channel,

which has the greatest number of spikes, is the desired one, then reward is given to

the system. The reward is given as a step current to a group of neurons which excites

neurotransmitter amount of STDP modulated synapses. This neurotransmitter amount

excites the level of extracellular dopamine that is explained in [29] and [34].

5.3 Results

The considered task is similar to the task that are handled in Chapters 3 and 4. At first,

the red color will be associated to the first channel, the yellow color will be associated

to the second channel and the blue color will be associated to the third channel. After

all associations, the red color will be reassociated to the second channel, the yellow

color to the third channel and the blue color to the first channel. In this way, the

association and rearranging the associations will be handled.

The coincidence of spiking activity of presynaptic and postsynaptic neurons effects

the modulation of synaptic strength as explained in section 5.2. This process can

be followed from Figures 5.4 and 5.5. These two figures show the beginning of an

experiment. In Figure 5.4, the spike activity of input and cortex neurons are shown.

Only the red color stimulate the network in this time interval. The spike counts of

input neurons of first channel vary since the input neurons are stimulated by poisson

generators. After stimulation of input neurons, cortex neurons are stimulated by the

input neurons. The synaptic weights between the channels of input neurons and cortex

neurons are determined randomly in neighborhood of a mean value. Therefore, the

first channel of input neurons can stimulate all channels of cortex at the beginning of

the experiment as seen in the lower graph of Figure 5.4. The coincident firings of

neurons in a certain time interval generate eligibility traces and in that time interval

the synapse weights can be updated. In Figure 5.5, the middle graph shows the mean

eligibility values of the synapses. The red, yellow and blue lines show the eligibility

values of the synapses between the first channel of input neurons and the first, second

and third channels of cortical neurons, respectively. In Figure 5.4, after the 10000th ms

Ch1 and Ch3 of cortex generate almost the same amount of spikes, however eligibility
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of synapses to Ch1 is greater than Ch3 in Figure 5.5. The reason of this may be the

distance between the spike times of input Ch1 and cortex Ch3. So, timing is also

important even the spike amount is high. The first channel of cortex wins after the

7000th ms and since this is the desired situation, reward is given to the system which

can be seen from upper graph of Figure 5.5 that shows the change of dopamine level.

Since dopamine level is under the baseline level which is 0.01, the weights decrease.

The lower graph of Figure 5.5 shows the depression of mean weights that mean the

mean value of strength of all synaptic connections. The mean weights decrease until

the given reward which keeps the dopamine level at the baseline.

Figure 5.4: Spike activities of input and cortex neurons at the beginning of an
experiment.

A complete simulation can be followed from Figures 5.6 and 5.7. In Figure 5.6, upper

graph shows the spike activity of input neurons, the middle graph shows the spike

activity of cortical neurons and the lower one shows dopamine level. In the upper

figure of Figure 5.6, the red, yellow and blue colors indicates the first, second and third

channel of inputs, respectively. The colors are same for the middle figure of Figure

5.6, in which red, yellow and blue colors represent the first, second and third channels

of cortex. The given stimuli are changed after 1 000 000 ms. It can be seen from the

Figure 5.6 that at the beginning of each new stimulus, the spike activity of desired

channel in the cortex is low. After a while the connections strengthen and the spike

activity of related cortex channel increases as a result. At the first 3 000 000 ms, the

first associations of stimuli are realized. The rearrangement of associations are made
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Figure 5.5: Change of dopamine (DA) level, eligibility traces and mean synaptic
weights in time at the beginning of an experiment.

at the last 3 000 000 ms. The change of the mean synaptic weights are given in Figure

5.7. Eligibilities are not included to make explanation simpler. The upper, middle and

lower graphs of Figure 5.7 show the synaptic weights of connections between the first,

second and third channels of inputs and the channels of cortex, respectively.

Figure 5.6: Spike activities of input and cortex neurons with dopamine level at the
first experiment. Red, yellow and blue colors indicate activities of the
first, second and third channels of related graph, respectively.

All weights decrease to a level at the beginning of a given stimulus before LTP. The

reason of this is a channel has to suppress the other channels in order to win. So, the

weights decrease to a level until the desired channel at the cortex wins and gets reward

successively. The associations built between the first input channel and first cortex
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Figure 5.7: Changes of synaptic weights between input channels and cortex channels
at the first experiment.

channel and between the second input channel and second cortex channel display a

big difference, since strength of the other synapses decrease more at the beginning

of the given stimuli. However, as it can be followed from the lower graph of Figure

5.7, the connections between the third input channel and cortex don’t decrease lower

than 6. So, even the desired synapses are stronger than the others, there is not a big

difference for the synaptic weights of the third channel. After the 3 000 000th ms, the

reassociations begin with 1 000 000 ms intervals. The synaptic weights outgoing from

the first and third manages to be reassociated as followed from the change of cortex

spike activity (seen from the Figure 5.6, middle graph). Looking to the middle graph

of Figure 5.7, the depression is managed on the reassociation process because of the

lack of reward, but potentiation is not big for the synapses between the second input

channel and third cortex channel. At the 5 000 000th ms, since the slope of the blue line

is strongly positive, it can be explained that the synaptic connections are potentiated

(Figure 5.7, middle graph), and the strength of other synapses remain lower.

At the second experiment, the same task is repeated as it can be followed from the

Figures 5.8 and 5.9. The first associations are successful (until 3 000 000th ms) and

this can be followed from the given reward and spike activity of cortex neurons. The

reassociations are also successful, but the reassociation between the first input channel

and the second cortex channel is potentiated a little at the end of the process of red

color reassociation. The continuation of stimulating with red color would provide
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Figure 5.8: Spike activities of input and cortex neurons with dopamine level at the
first experiment. Red, yellow and blue colors indicate activities of the
first, second and third channels of related graph, respectively.

Figure 5.9: Changes of synaptic weights between input channels and cortex channels
at the first experiment.

more potentiation after a while. It is clearly seen that, to potentiate specific synaptic

weights, the mean synaptic weights should decrease below 6. Otherwise, the synaptic

weights will trace the same pattern as it happened in the middle graph of Figure 5.9.

Decreasing below 6 helps the inhibitory neurons of cortex channels to suppress the

other channels. So, this suggests that the inhibitory network doesn’t work well enough

for all situations and should be investigated more. However, this is a different study

topic on itself like the investigation of the BTC model in section 3.2.

49



The aim of this section was to investigate the STDP process and to present an STDP

network for learning instead of the TDL rules which is also realistic in theory but not in

computational way. That’s why the network is reduced to only input and cortex parts

comparing to the BTC models in Chapters 4 and 3. The structure that is minimized is

compensated with the dopamine process.
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6. CONCLUSIONS AND RECOMMENDATIONS

In the thesis, computational models of action selection are implemented on humanoid

robot platform, Darwin-OP. The computational models are handled from the dynamical

system approach to the point neuron approach to reach the realistic plausibility. In

Chapter 3, the dynamical system model of BTC is analyzed. The model is investigated

to check whether the results obtained at the end of learning process are generic,

since the parameters of the dynamical system are changed and the overall behavior

of the system has been completely differentiated within the learning process. So,

the parameter values and their meanings in the sense of behavior are investigated by

tampering the connections. In addition, the model is implemented to Bioloid robot

platform to show its usability. In Chapter 4, the same model is handled and its cortex

part is changed to SNN model instead of mass model. In that way, biologically

realistic neuron model is utilized at least for a part of the computational model and

the model used had different scales together. In this chapter, the convenience of the

robot environment, Darwin-OP, for the neuron model approach is shown. The aim of

this study is to show the possibility of modeling the entire network with point neuron

models. However, adapting a more realistic learning method is necessary to make use

of SNN model for BTC circuit. Due to this, the STDP approach is considered and

implemented in cortex where SNN is used to realize the action selection in Chapter 5.

Though, the scale of SNN is small, still satisfactory results are obtained.

In Section 3.2.1, the mass model is investigated from the initial conditions aspect. The

effect of initial conditions is hard to investigate on brain because of its distributed and

complex structure. However, this investigation is meaningful from the perspective of

the first encountering of an agent with a new environment. As a result, computational

model can be useful for anticipating the behavior of an agent in different environmental

conditions and also it is successful to regulate the computational stability on learning.

Another result is when different input values are presented to the model, the success

rate on learning and the elapsed time changes. This shows that the strength of sensory
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inputs also have effect on learning. The sequence of sensory inputs also affects the

learning from the perspective of both the time and the success. When the inputs are

presented in random order, the learning time increases, but the learning is stronger.

Though, this is another research topic, this may be related to the phenomenon where

learning language for babies is harder when they live in a multi-lingual environment,

but they can speak more fluently all the languages in the environment after the learning

phase is accomplished. In addition, the model manages to select the right action after

learning is accomplished as explained in Section 3.2.2.

As it can be followed from results of the Section 3.2.3, the strength of transferred

information has an influence on learning. When Smax has the maximum value, which

means all the sensory information is transferred to the substructures, this causes

zombie situation and the model cannot change its behaviour for the new sensory

inputs. In addition, the base level of dopamine in the model has a huge impact on

learning process. The base level of dopamine affects ability of selecting only one

action at a time. Another result is that high thalamus activity on cortex decreases

possibility of being successful on selecting right action. This also indicates a kind of

hiperactivity situation, which impairs the action selection process. Tampering the other

connections in the model decreases the learning success for all parameter values since

the information transfer to the substructures is damaged.

From the results of Chapter 4, it can be deduced that when an association is built

between a sensory input and an action, it is easier to make a reassociation between

them even if the first association is destroyed for another association. Another result

coming from the Chapter 5 is that the activity of an undesired cortex channel has to

be lower than a certain activity to be able to learn the task in a more stable way. All

these behavioural results of computational models show that it is possible to make

inference from these models to related real processes. In addition, it is possible to

realize massive numbers of experiments. Although, these models are far from showing

the exact process of brain, the results indicate that these models can help to steer the

examinations for real experiments. Also, since the robots provide mobility, this models

can handle more complex tasks in an easier way instead of using animals for all of the

experiments.
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From the embodiment aspect, considering only the BTC circuit is not sufficient to

model the mobility tasks. Especially cerebellum has to be included for such a model

with hippocampus for the perception of environment, spatial navigation, memory,

attention and motor control. Since the environment in real world will not be an

ideal one, the role of other brain structures becomes significant to deal with different

ground properties such as grainy, gravelled, slippery, etc. which are important for

practical reasons. In addition, the sensory inputs have to be more in number to provide

additional information to the other structures in the brain. Though, entire network has

to be set up to provide a realistic experiment, this thesis is one of the steps to complete

the pieces of the entire puzzle.

The implementation of association task in Chapter 3 is partly presented as poster

presentations ( [35], [36]) at 12th National Neuroscience Congress in Turkey and at

International Workshop on Autonomous Cognitive Robotics in Scotland. Early results

on changing the cortex part of BTC model with SNN structure and implementation

of this model on Darwin-OP that takes part in Chapter 4 are presented as a poster

presentation [37] at Bernstein Conference 2014 in Germany. The expanded study

of Chapter 4 is accepted to be presented [38] at The International Joint Conference

on Neural Networks (IJCNN) 2015 in Ireland. Lastly, the cortex model and the

STDP learning approach in Chapter 5 is used to model the sensory and motor cortex

and generate the learning part in the study [39] that is presented at the 23th Signal

Processing and Communications Applications Conference in Turkey.
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[36] Erçelik, E. and Şengör, N.S. (2014). Implementation of Matching
Stimulus-Movement Experiment on a Humanoid Robot, International
Workshop on Autonomous Cognitive Robotics., Stirling, Scotland.
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