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BİTİRME ÖDEVİ
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Alper Yükselen and Ali Şakır. This is an opportunity to thank to Onur Varol to make
me feel as if I am doing a great work.
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ix



x



TABLE OF CONTENTS

Page

FOREWORD........................................................................................................... ix
TABLE OF CONTENTS........................................................................................ xi
ABBREVIATIONS ................................................................................................. xiii
LIST OF TABLES .................................................................................................. xv
LIST OF FIGURES ................................................................................................xvii
SUMMARY ............................................................................................................. xix
ÖZET ....................................................................................................................... xxi
1. INTRODUCTION .............................................................................................. 1
2. EMBEDDED C ON BIOLOID.......................................................................... 3

2.1 RoboPlus......................................................................................................... 6
2.2 Programming With Embedded C ................................................................... 7

2.2.1 Functions ................................................................................................ 9
2.2.2 An Example Application on Motors....................................................... 9

3. IMPLEMENTATING BTC MODEL ON BIOLOID...................................... 11
3.1 Basal Ganglia-Thalamus-Cortex(BTC) Model .............................................. 11
3.2 Bioloid Robot Implementation ....................................................................... 13

3.2.1 Implementing the Foraging Task on Bioloid Robot ............................... 15
3.2.2 Programming Bioloid ............................................................................. 15
3.2.3 Scaling and Normalizing ........................................................................ 17
3.2.4 Basal Ganglia Circuit ............................................................................. 18
3.2.5 Reinforcement Learning......................................................................... 19

4. RESULTS ............................................................................................................ 21
5. CONCLUSIONS AND RECOMMENDATIONS............................................ 31
REFERENCES........................................................................................................ 33
CURRICULUM VITAE......................................................................................... 35

xi



xii



ABBREVIATIONS

AS : Action Selection
BG : Basal ganglia
BTC : Basal ganglia- Thalamus-Cortex
BTK : Basal ganglia-Talamus-Korteks
Ctx : Cortex
DMS : Distance Measurement Sensor
GPe : Globus Pallidus external
GPi : Globus Pallidus internal
IR : Infrared Sensor
RL : Reinforcement Learning
SDK : Software Developement Kit
Stn : Subthalamic Nucleus
Str : Striatum
TDL : Temporary Difference Learning
Thl : Thalamus

xiii



xiv



LIST OF TABLES

Page

Table 4.1 : Test results of learning durations for three actions. ........................... 21
Table 4.2 : Initial values of parameters on learning operations............................. 22

xv



xvi



LIST OF FIGURES

Page

Figure 2.1 : DMS distance-value graph. The first is distance according to
voltage while the other is according to the digitalized value [13]. .... 3

Figure 2.2 : USB2Dynamixel and its connection types. ...................................... 4
Figure 2.3 : CM-510 controller of Bioloid and its connection inputs for the

peripherals. ........................................................................................ 5
Figure 2.4 : RoboPlus and its subprogrammes to programme CM-510 and

communicate with motors................................................................... 6
Figure 2.5 : Atmel Studio 6 interface. 1: Menu, 2:Generates new project, 3:

Shows recent projects, 4: Shows results and outputs of operation .... 8
Figure 3.1 : Block diagram of Basal ganglia circuit: This diagram shows the

relations, which are defined as inhibitory or excitatory bounds
between substructures of Basal ganglia, cortex and thalamus. .......... 11

Figure 3.2 : Environmental setup for foraging task. An educational robot
assembled to model rat and moves on a platform that has a
different reflection coefficient from nest............................................. 14

Figure 3.3 : Block diagram of the operation in Bioloid. Operation begins with
reading sensory data. The data used to make decision in basal
ganglia circuit as an input and evaluate the learning rules.................. 16

Figure 3.4 : Scaling functions of the inputs: These functions take the useful
inside the data of environmental sensory inputs. ............................... 18

Figure 4.1 : Expectation error which becomes zero at the end of learning........... 22
Figure 4.2 : Test1:(a),(b),(c) shows expectation errors and (d),(e),(f) shows

variations on diagonal’s Wc on the learning of search, food and
nest respectively. ................................................................................. 23

Figure 4.3 : Test1:(a),(b),(c) shows cortex outputs of BTC which shows
whether the robot choose an action..................................................... 24

Figure 4.4 : Test2:(a),(b),(c) shows expectation errors and (d),(e),(f) shows
variations on diagonal’s Wc on the learning of search, food and
nest respectively. ................................................................................. 25

Figure 4.5 : Test2:(a),(b),(c) shows cortex outputs of BTC which shows
whether the robot choose an action..................................................... 26

Figure 4.6 : Test3:(a),(b),(c) shows expectation errors and (d),(e),(f) shows
variations on diagonal’s Wc on the learning of search, food and
nest respectively. ................................................................................. 27

Figure 4.7 : Test3:(a),(b),(c) shows cortex outputs of BTC which shows
whether the robot choose an action..................................................... 28

Figure 4.8 : Test4:(a),(b),(c) shows expectation errors and (d),(e),(f) shows
variations on diagonal’s Wc on the learning of search, food and
nest respectively. ................................................................................. 29

xvii



Figure 4.9 : Test4:(a),(b),(c) shows cortex outputs of BTC which shows
whether the robot choose an action..................................................... 30

xviii



LEARNING TO SELECT AN APPROPRIATE ACTION:
IMPLEMENTATION ON BIOLOID ROBOT

SUMMARY

Computational neuroscience is interdisciplinary, while it gives an explanation on
functions of central nervous system, it also inspires robotic applications.These
applications are recently becoming a tool to either functionalize or test the
brain-inspired models with reverse engineering technique. At the same time, the brain
inspired mathematical models has an important role on some robotic applications
including patient care robots or rescue robots. The main point of this work is to
realize a computational model on a real robot to give an example on the realization
of a decision-making task and learning process.

A previously proposed computational basal ganglia-thalamus-cortex (BTC) model
is used to realize foraging task on Bioloid robot. Also, temporal difference
learning(TDL), which is a reinforcement learning method, is utilized to realize learning
process. A distance sensor and an infrared sensor are used to establish the connection
of robot to the outer world. A 5x5x5 cm box is defined as a food, while a black band
on the ground represents the nest. Further, microcontroller of the robot is programmed
in C programming language to embed the model on the mobile robot whose output for
motors is defined due to the result of the decision making process.

Once the robot gets acquainted with the environment, robot is able to achieve the tasks
of searching for food, recognizing the food and lifting it, and placing the food to
the nest. Robot was tested eight times with the same initial values of parameters to
investigate the robot’s behaviour on a changing environment like changed food size,
shape and position quantity of light and the position of nest. Robot has learned in
all tests in varying environment. Robot is also tested with different initial values of
parameters to investigate how it is behaving with a different perception.

In this graduation project, the BTC model is tested with a real time application on a
real Bioloid robot instead of using a robot simulation environment. This work is an
example of realizing the control of a mobile robot using a mathematical model based
on the relation between brain regions responsible for a specific task. The expected
outcome is the robot’s learning to make right decisions and to repeat them in a different
environment. At the end, robot is able to realize this task, on a changing environment
with different parameters.
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UYGUN HAREKET SEÇİMİNİ ÖĞRENME:
BIOLOID ROBOT ÜZERİNDE BİR UYGULAMA

ÖZET

Disiplinler arası bir bilim olan hesaplamalı sinirbilim, merkezi sinir sistemine ilişkin
açıklamalar getirirken, tersine mühendislik yaklaşımıyla robotik uygulamalarında
özellikle son yıllarda yer edinmekte ve bu çalışmalar insan beynine ilişkin
modellere test ortamı sağlamaktadır. Beyindeki süreçlerin oluşmasında etkin yapılara
dayalı geliştirilen matematiksel modeller aynı zamanda hasta bakımı ya da tehlikeli
ortamlarda arama çalışması yapılması gibi, karar vermenin önemli olduğu robotik
uygulamaları için de öneme sahiptir. Böylelikle karar vermeye dayalı robotik uygu-
lamalar gerçekleştirilmeye çalışılırken aynı zamanda biyolojik yapıların çalışmasının
anlaşılması ve oluşan hastalıkların oluşma sürecinin anlaşılması için de önemli
bir araştırma ortamı sunar. Bu bitirme projesi ile karar verme sürecine ait bir
hesaplamalı modelin gerçek bir robot üzerinde uygulanması gerçekleştirilmiştir.

Bitirme projesi gerçeklenirken Bioloid robot üzerinde, hesaplamalı Basal
ganglia-talamus-korteks (BTK) modeli kullanılarak bir fareye ait yiyecek arama
ve saklama davranışlarını gerçeklenmesi ele alındı. Bu modelde robotun dış dünya
ile ilişkisi, bir uzaklık sensörü ve bir kızılötesi sensör ile sağlandı. Bu sensörlerden
alınan veriler sonucunda model, robotun mikrokontrolörüne C dili ile programlanarak
gömüldü. Bu model yardımıyla seçilen hareket ile sağlanan karar verme işlemi
robotun motorlarına bir çıkış olarak gönderildi.

Gerçekleme sırasında robot küçük boyutta bir kutuyu yem olarak, büyük boyutta
bir kutuyu ise engel olarak algılayabildi. Bulunulan ortamdan farklıbir yansımaya
sahip bir siyah bant ise yuva olarak algılandı ve yem buraya yerleştirildi.
Böylelikle robotun sırasıyla yiyecek arama, yiyeceği tanıyarak alma ve yuvaya
bırakma işlemlerini gerçekleştirilmiş oldu. Robot ile yapılan sekiz farklı öğrenme
deneyi sonucunda aynı başlangıç değerlerine sahip parametreler ile değişen ortam
şartlarındaki başarısı incelendi. Parametrelerin değerleri, robotun üzerinde yer alan
dinamik doğrusal olmayan modelin çalışma uzayında seçildiğinde robotun değişen
ortam şartlarında (yiyeceğin şekli, konumu, yuvanın konumu, ortamdaki ışık miktarı)
tüm denemelerde başarılı olduğu görüldü. Ayrıca robotun çalışması, üzerinde yer
alan parametrelerin başlangıç değerlerinin değiştirilmesi ile de incelendi. Bunun
sonucunda, başlangıç değerleri farklı olsa da öğrenme tamamlandıktan sonra BTK
devresi ile karar vermenin gerçeklenebildiği görüldü.

Daha önce yapılan çalışmalardan farklı olarak bu çalışmada model, bir benzetim
ortamında değil gerçek bir Bioloid robot üzerinde test edildi. Yapılan çalışma,
beyindeki süreçlerin oluşmasında yer alan yapılara dayalı matematiksel bir model
ile bir robotun kontrolünün mümkün olduğuna dair bir örnek teşkil etmektedir.
Aynı zamanda bu çalışmanın biyolojik gerçekliği daha yüksek olan bir model
ile devam ettirilmesi sonucunda biyolojik yapıların ve hastalık süreçlerinin çalışma
mekanizmasına açıklama getirebileceği de öngörülmektedir.
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1. INTRODUCTION

Cognitive robotics is a recent area in robotics where intelligent behavior is modelled

in order to realize the action-perception cycle. In cognitive robotics, identifiying

the behavior is the important part of the task and depends not only on the robot’s

abilities but also on environmental conditions. The ultimate goal is to find a plausible

method to provide robot to make the right high-level decisions in the right time while

environmental conditions are changing. To reach this goal, agents need behavioral

and cognitive skills such as environmental orientation, perceptional ability, action

selection and learning. One of the major challenge of the cognitive robotic is how

to bring these different sub-level processes together in order to reach the desired

goals. Mimicking the brain functions would be an ideal approach to solve the complex

environmental tasks. Though it is not explicitly known how brain manages with

high-level problems, still there are models focusing on the brain’s ability in high-level

problems. Those works on identifying the differences between the desired actions

provides inspiration for cognitive robotics. Recently there is an interest to show the

ability of the brain-inspired computational models on robotic applications [1–4].

To reach the desired goal in a varying environment, two major component of the

goal-directed behavior are required; action selection (AS) and learning. The model

that is proposed in [5] is mimicking a part of brain structures called basal ganglia

circuit [7, 8] and investigated further to understand its ability for action selection [6].

It is now well-known that basal ganglia circuit plays a key role in action selection

[7]. Nevertheless, basal ganglia circuit’s role in reward-modulated learning is also

considered, recently. The learning method that is used in this graduation project

is called temporal difference learning (TDL) and it is now claimed that TDL is the

best matched learning method to the basal ganglia circuit’s role in reward-modulated

learning [9].

In the pioneered study of Prescott et.al. [1], a system level model of basal ganglia

circuit is implemented on a mobile robot to demonstrate the model’s ability for
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action selection. Among different saliencies or actions, model could switch the

behavior when it is necessary. They used these saliencies to control the mobile robot

without any learning processes. They fixed the environmental conditions and assigned

the coefficients before the task is started. Even though, this model does not have

learning component, it has biologically plausible approach and leads to a new view

in computational neuroscience [2, 10–12].

In the previous work related to this graduation thesis, the model is implemented on

a mobile robot in simulation environment. The details about the proposed model can

be found in [12]. The contribution of this thesis is to implement the action selection

model and learning method on a real robot. The realization is done on Bioloid, so the

computational model’s ability to solve this high-level task even with limited sensor’s

ability of Bioloid is showed. Thus, to achieve this goal an explicit knowledge on

programming Bioloid is required which will be given in Chapter 2. Matching the

model with the C programming language is the next step, in Chapter 3, the BTC model

will be focused on as it is used in programming and the structures of programming

Bioloid will be mentioned. After the model is programmed on Bioloid, in Chapter 4,

the tests with different parameters and their results will be given. The main point of this

work is investigating the ability of the model on the real world to have a beginning for

the high-level problems and a test environment of brain researches. To make a stride

on the goal this thesis is presented in the 11th National Neuroscience Congress [17].
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2. EMBEDDED C ON BIOLOID

Bioloid is an educational humanoid robot that can be modified in various forms [13].

Though Bioloid is not much suitable to improve a robot hardware, it can be used easily

in designing test environments for robotic applications. Bioloid robot has motors and

sensors on itself and a microcontroller to process the environmental data to act. In this

part, how to programme these sensors and motors to communicate with environment

is given. All the information to programme the Bioloid is retrieved from Robotis

e-Manuel [13]. In Robotis e-Manuel, programming environment and examples to use

peripheral devices of the controller are included. A CM-510 controller which includes

an ATmega 2561 microcontroller inside, a distance measurement sensor(DMS) and an

infrared sensor (IR) are utilized with AX-12+ model motors to realize the task which

is mentioned in section 3. The programming environment consists of RoboPlus, which

includes RoboPlus Task, RoboPlus Terminal, RoboPlus Manager and Dynamixel

Wizard, and Atmel Studio 6. It is possible to reach the User’s Guide by installing

RoboPlus or by using web site [13]. The installation of RoboPlus can be downloaded

from the web site of Robotis that has a ’Support’ part which includes ’Download’

section.

Figure 2.1: DMS distance-value graph. The first is distance according to voltage while
the other is according to the digitalized value [13].

The DMS is used to detect the objects, which are in front of the robot, or the walls. The

sensor converts the analog value that is related to the distance to digital value which
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Figure 2.2: USB2Dynamixel and its connection types.

is between 0 and 1023. The distance-value graph is given in Figure 2.1. For the same

color the object at a distant position has a higher value than the closer one. In Figure

2.1 it is shown that the color does not effect the returned value effectively.

The IR reflects an infrared light and senses the reflected light from a surface. The

value that the sensor produces can vary according to light of environment, color and

brightness of surface. This sensor also returns a discrete value between 0 and 1023.

For the same color, IR gives a higher value for closer object or surface. For the same

distance, it gives a higher value for lighter color.

Bioloid uses the Dynamixel AX-12+ motors of Robotis. Velocity and position of

the motors can be controlled seperately. There are two operating modes: joint and

wheel modes. In joint mode position of motors can be controlled by sending motors

a value between 0 and 1023 with velocity information. The turning direction is

meaningless for this mode. In wheel mode, velocity and direction informations are

important to make motors turn continuously as a wheel. Every motor has an ID and to

communicate with a motor this ID is necessary. There are parameters to set the motors

behaviour. All parameters have an address. Thus, motor ID is sent first and then

parameter address. The address value is changed during the process and parameter

value are sent to motors. The communication between computer and motors is

provided by using USB2Dynamixel device or CM-510 controller. RoboPlus Manager

or Dynamixel Wizard tools of RoboPlus programme are suitable for communication
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with USB2Dynamixel to set the parameters. Motors can also be communicated

by using RoboPlus Terminal with embedded C or RoboPlus Task thorugh CM-510

controller. These motors have to be supplied with 12V if they are communicated by

USB2Dynamixel.

Figure 2.3: CM-510 controller of Bioloid and its connection inputs for the peripherals.

USB2Dynamixel is a device that provide serial communication between parts of

Bioloid and computer. This device converts USB input to inputs of motors or CM-510.

The driver for USB2Dynamixel is installed with RoboPlus installation automatically.

There is a switch on device that switches the communication type to TTL input, RS485

or RS232 input which are seen in Figure 2.2. The communication between CM-510

is provided with a serial communication cable. CM-510 controller of Bioloid also can

be seen in Figure 2.3 with its connection inputs for its peripherals. If the motors are

supplied by controller, to communicate with motors the controller must not send data

to motors.

There are two ways of programming CM-510 controller. One is programming with

RoboPlus Task and the other is using Embedded C. Both needs RoboPlus to be

installed on computer. In addition to RoboPlus Atmel Studio has to be installed to

programme with Embedded C. Even Roboplus Task is advantageous in the beginning

stage, since RoboPlus Task has limited abilities for computational tasks, Embedded C

is more suitable. To give a perspective RoboPlus Task is also explained briefly.
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Figure 2.4: RoboPlus and its subprogrammes to programme CM-510 and communi-
cate with motors.

2.1 RoboPlus

RoboPlus is a programme that is developed by Robotis to programme CM-510 and

communicate with motors. RoboPlus has subprogrammes which are shown in Figure

2.4 to provide programming and communication.

RoboPlus Task is a subprogramme to programme Bioloid quickly. This programme

provides the user a definite number of commands and parameters. The robot is

programmed by using these. Programming is realized choosing commands with mouse

in a C kind of programming environment. Assignment, definition, loops, conditions,

computations, functions can be realized to use sensor and motor parameters. The

code prepared with RoboPlus Task is transformed to a source code which has ’.tsk’

extension. The code is uploaded to CM-510 to control the robot. Robot needs a

firmware to run the Task code. The firmware can be installed by using RoboPlus

Manager whose instructions are in [13] in case of a damaged firmware manner. The

instructions of RoboPlus Task to programme CM-510 are in ’Software Help’ section

of [13]. However, the firmware needs some memory to read the source code. Thus,

this situation limits the available memory for programming. Even all the parameters
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are ready for programming in RoboPlus Task, all calculations are limited to be done in

integer domain.

RoboPlus Terminal provides communication with CM-510 if the firmware for

RoboPlus Task is not installed on CM-510. This subprogramme is a text based

interface of controller. After connection is provided between computer and

USB2Dynamixel by clicking "Connect", "Boot Loader" has to be run on CM-510 to

communicate with. To run "Boot Loader" while "Alt Gr+3" combination is pressed on

keyboard, CM-510 is switched on. By completing this communication with CM-510,

the source code can be transmitted by clicking "Transmitting File" command. The

"Recieve File" command can also be used to get the values coming from CM-510 to a

text file. The instructions to use RoboPlus Terminal take place in [13].

Dynamixel Wizard is also a subprogramme of RoboPlus that communicates with

motors to adjust parameters directly. To reach motors using Dynamixel Wizard, motors

are connected to USB2Dynamixel.

2.2 Programming With Embedded C

Programming with Embedded C provides user to develop its own firmware. Robot runs

with a programme coded in C. Loading this programme deletes the other firmware that

was uploaded before and because of that RoboPlus Task can not be used while using

a source code written in C. CM-510 communicates with computer using RoboPlus

Terminal instead of RoboPlus Task. There are libraries of Robotis to programme easily

in C. These libraries include the functions to communicate with motors and peripheral

devices. So, the robot is programmed with the libraries and using the properties

of ATmega2561. Since programming CM-510 means programming ATmega2561

microcontroller, Atmel Studio is used to programme ATmega2561. There are

instructions to programme ATmega2561 in User’s Guide [13]. Section "Software

Help" in [13] includes "Embedded C" section which contains programming help

inside. There are also examples that show how to use the parameters and functions.

The functions related to motors are in "Dynamixel SDK" topic instead of "Embedded

C".
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Figure 2.5: Atmel Studio 6 interface. 1: Menu, 2:Generates new project, 3: Shows
recent projects, 4: Shows results and outputs of operation

Atmel Studio has an interface as given in Figure 2.5. First a new project has to

be opened in order to write programme code. The project is generated as "GCC C

Executable Project" and while generating a new project ATmega2561 microcontroller

has to be chosen. After generating a new project, the programme is written

in while(1) loop. Before writing the code, libraries, which can be downloaded

as "embedded_c(cm510_v1.01).zip" folder from "CM-510/CM-700" topic in User’s

Guide, has to be identified to Atmel Studio. This is done by adding "include" and

"lib" folders of the zip file to the "Toolchain" part of "Properties" which takes place in

"Project" that is seen in menu.

The new project includes "io.h" library defaultly. "stdio.h" that is a standard C

input output library, "interrupt.h" that is interrupt register library of ATmega2561,

"dynamixel.h" that includes motor functions and "serial.h" that defines the serial

communication functions can be defined at the beginning of source code to include if

they are useful for the project. To achieve a proper coding, input output configuration

of microcontroller has to be known and can be achieved from "Hardware Port Map"

topic in [13]. After finishing coding, the code is compiled with "Build Solution (F7)"

command which is in "Build" part of menu. The "hex" file is created after this process
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to be loaded to CM-510 by using "RoboPlus Terminal" through the instructions which

are detailed in the related topic of [13]. Following the load process, the code will run

on the controller with switching off and on.

2.2.1 Functions

Here the functions that were used mostly are explained briefly. Dynamixel

SDK(Software Developement Kit) can be used in order to programme the motors.

These functions take place in "Dynamixel SDK" topic of User’s Guide.

dxl_initialize(devIndex,Baudnum) function starts serial communication elements. This

function has two parameters that the first one defines the port number while

the second is related to communication speed. dxl_read_byte(id,address) and

dxl_read_word(id,address) functions are used to read 1 byte or 2 bytes data

respectively. "id" parameter represents for the motor number and "address" stands for

indicating the parameter of motor which will be read. dxl_write_byte(id,address,value)

and dxl_write_word(id,address,value) functions write the parameter value to related

address on the motor which is identified by id parameter. They are used to write 1 byte

or 2 bytes to motors.

2.2.2 An Example Application on Motors

This application includes the coding style of motors for "Probing Robot" [13] to make

the robot move in forward direction.

void Forward(int Speed){

dxl_write_word(1,P_GOAL_SPEED_L,Speed+1024); //in CW direction with Speed

velocity

dxl_write_word(2,P_GOAL_SPEED_L,Speed); //in CCW direction with Speed

velocity

dxl_write_word(3,P_GOAL_SPEED_L,Speed+1024);

dxl_write_word(4,P_GOAL_SPEED_L,Speed); }

The above code assigns a Speed parameter, which defines the velocity of robot

in the forward direction, to "Forward" function. The first and third motors are
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move in clockwise direction while the other two turn in counter clockwise direction.

The turning directions are related to robot’s assembly. To make the robot move

dxl_write_word function is used. The predefined value of P_GOAL_SPEED is 32

which is the address of low byte of speed parameter. The first byte of Speed parameter

is written on the address of 32 while the second byte is written on the address of

33 which corresponds to the high byte of speed parameter. Adding 1024 to Speed

parameter corresponds to making the tenth bit of parameter one which defines the

turning direction. This code can be combined as the one below which makes the robot

go in forward direction and after a while stop. This move and stop process goes on

permanently. serial_initialize() function defines the speed of serial communication.

sei() function activates interrupts which is used while communicating with the motors.

_delay_ms() function is a delay function which makes the process wait on that line of

code for the input value milliseconds.

int main(void) {

serial_initialize(57600);

dxl_initialize( 0, DEFAULT_BAUDNUM );

sei(); // Activation of interrupt

_delay_ms(300);

while(1){

Forward(400);

_delay_ms(1000);

Forward(0);

_delay_ms(300);

}

return 0;}

Even programming with embedded C doesn’t have an easy user interface, it provides

user a flexible structure to programme. It is possible to construct more complex

programming structures with embedded C. Despite in the beginning phase of this

project RoboPlus Task was used, after noticing that RoboPlus Task has a limited

environment, embedded C is utilized.
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3. IMPLEMENTATING BTC MODEL ON BIOLOID

In order to implement learning to select a proper action in a changing environment to

the Bioloid robot, the computational model of Basal Ganglia-Thalamus-Cortex (BTC)

for action selection given in [5] is considered. The learning process is implemented in

such a way that by effecting the dynamics of the BTC model, Bioloid robot is led to

choose appropriate action; this is acomplished by reinforcement learning.

3.1 Basal Ganglia-Thalamus-Cortex(BTC) Model

The BTC circuit used for action selection is the one in [6] and its sheme is given

in Figure 3.1 . Basal ganglia (BG) along with the related parts of Cortex (Ctx) and

Thalamus (Thl) take part in decision making tasks [1, 5, 6].

Figure 3.1: Block diagram of Basal ganglia circuit: This diagram shows the relations,
which are defined as inhibitory or excitatory bounds between substructures
of Basal ganglia, cortex and thalamus.

Once the cortex is activated by sensory inputs which is denoted by I in the model, these

sensory inputs are evaluated through reinforcement learning and their significance in
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the environmental context is determined through reinforcement learning by modifying

the weight of each sensory input. These weights are denoted by Wc and the weighted

sensory inputs are denoted by S. The relation between sensory inputs I and S is linear

and is given by Equations 3.1 .

S11 =Wc11I11 +Wc12I21 +Wc13I31 (3.1)

S21 =Wc21I11 +Wc22I21 +Wc23I31

S31 =Wc31I11 +Wc32I21 +Wc33I31

As, three different sensor information obtained from two different sensors; distance

sensor and infrared sensors are used, I and S are vectors of dimesion 3X1 and Wc is a

matrix of 3X3. The substructures of BG considered in the model are striatum (Str),

globus pallidus external (GPe), subthalamic nucleus (Stn), globus pallidus internal

(GPi). There are three different actions to choose for the task considered, so the

dimension of each variable considered in BTC is 3X1, and actions are coded binary.

The interrelation between these substructures and Ctx, Thl are modeled with difference

equations as the process is a dynamical one and represented by Equations 3.2.

Ctx(k+1) = f (λCtx(k)+T hl (k)+S (k)) (3.2)

Str(k+1) =Wr f (Ctx(k))

GPe(k+1) = f (−Str (k))

Stn(k+1) = f (Ctx(k)−GPe(k))

GPi(k+1) =Wd f (Stn(k)−Str (k))

T hl (k+1) = f (Ctx(k)−GPi(k))

λ coefficient denotes the recurrent behavior within the cortex. Wr, in these equations

is a 3x3 dimensional diagonal matrix and represents the effect of dopamine on action

selection. In this study Wr is taken constant. Wd is a 3x3 dimensional matrix whose

elements have the same value and it represents the diffusive influence of Stn on GPi.

The function f (.) is a tangent hyperbolic function, and it is used to model the mean

activity of a population of neurons considered and given by Equation 3.3.

f (x) = 0.5(tanh(3(x−0.45))+1) (3.3)
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The Equations 3.2 are related to the BTC circuit which is responsible for decision

making. The result of action selection is determined by Ctx values. Once the variables

of BTC model converge to an equilibrium point [5], the Ctx value determines which

action is choosen. The learning part of the model consist of temporal difference

learning (TDL) rules which is a method of reinforcement learning [15]. It is claimed to

be related to reward based learning in basal ganglia [14]. The learning is accomplished

through updating the weight of sensory inputs, namely, Wc. Only, diagonal elements of

Wc matrix are updated, the others are kept same at a value close to zero. The detailed

structure is available in [5, 6]. The Equations 3.4 to 3.7 define the TDL rules. In

these Equations v is the value function and r is the reward obtained as a result of

action selected. First, the value of sensory input is determined according to TDL with

Equation 3.4 using value function v, then expectation error δc is calculated as given in

Equation 5. This expectation error is used to modify the diagonal of weight matrix and

value function as given in Equations 3.6 and 3.7.

V (k+1) =Wv(k)S (k) (3.4)

δc(k+1) = rc +µV (k+1)−V (k) (3.5)

Wv(k+1) =Wv(k)+ηcδc(k+1)S (k) (3.6)

Wc(k+1) =Wc(k)+ηcδc(k+1)Ctx(k)S (k) (3.7)

With the updated values of Wc, the behavior of BTC is determined. This behavior is

kept, if due to it a reward is obtained, and is expected to be changed if no reward is

obtained. In the next section how this model is implemented on Bioloid robot will be

explained.

3.2 Bioloid Robot Implementation

The Bioloid Robot is an educational robot that can be assembled in various forms. The

robot is able to get data from environment with its sensors and respond to these data

with motor actions after processing them [13]. The task considered is foraging task of a

rat, thus Bioloid robot is expected to mimic the behavior of a rat. So, Bioloid must have

abilities as noticing an object or a nest, taking the proper object, lifting it and carrying it

to a proper place, which corresponds to nest. Hence, Bioloid is assembled as "Probing

Robot" example of Bioloid Premium Kit as given in the Robotis e-Manuel [13].

13



Figure 3.2: Environmental setup for foraging task. An educational robot assembled to
model rat and moves on a platform that has a different reflection coefficient
from nest.

The sensors and movements of Bioloid are set parallel with a rat’s behaviour and

its interaction with the environment. There are two sensors on Bioloid suitable for

interaction with the environment, these are infrared and distance measurement sensors.

Robot uses its distance measurement sensor (DMS) to find an object or food and

infrared sensor (IR) to find the nest. In this work, the food is represented as a box

whose dimensions are 5x5x5 cm and the nest is represented as a black band whose

reflection coefficient is different from ground the experiment is set up. Robot uses

its gripper to grab the food and places to the nest in the same way. To provide

an easy movement of robot, robot is chosen to have wheels instead of foot (Figure

3.2). The environment to programme Bioloid consist of RoboPlus and Atmel Studio

6. These tools are useful to programme Bioloid with embedded C. In addition to

these programmes, Dynamixel Wizard tool of RoboPlus is used to communicate

with and programme the motors of Bioloid externally [13]. Furthermore, Bioloid

Robot has a controller CM-510 on itself which has an ATmega2561 microcontroller

to control and communicate with all peripherals and Atmel Studio 6 is used to

programme ATmega2561. RoboPlus Terminal is advantageous in loading hex file to

microcontroller and visualising the programme output on computer. So, with these

facilities, sensor information is carried to the motors through embedded C to control
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motion of them and this control in this graduation project is done by employing the

BTC on Bioloid.

3.2.1 Implementing the Foraging Task on Bioloid Robot

Studies have shown that a rat stands still until it gets used to a new environment.

After rat is accustomed to the new environment, feeling of hunger becomes more

dominant than feeling of fear [3]. Thus, the rat begins foraging. Rat can distinguish

the possible food by smelling or touching it and has to find a secure place to hide its

food. Therefore, it seeks a nest. So, Bioloid robot should decide between actions of

searching, recognizing food and placing food to nest in order to represent foraging

behaviour of a rat. Here, all these decisons will be given using the BTC model

and learning of these actions are accomplished by reinforcement learning rule as

summarized in Section II. Thus, once a decision is made, Bioloid evaluates its actions

and learns searching, recognizing food and nest by using reinforcement learning.

Firstly, robot gets accustomed to the environment and learns that it has to search for

food. During the on going searching process, robot has to recognize the food. To do

that, it tries to lift a lot of boxes and identifies the ones that it can lift as possible food.

Once, it learns that the little box means food, and the big box that it cannot lift means

the object to be avoided, robot needs to find a nest. Hence, it has to choose the most

secure one among possible nests. In this work the most secure nest is defined with a

black band. Thus, Bioloid comes across the black band many times before recognizes

it as the nest. The Bioloid robot and its environment is given in Figure 3.2.

3.2.2 Programming Bioloid

The block diagram of operation of robot can be seen in Figure 3. There are three

possible situations which urge robot to evaluate sensor values and sensors return analog

values that correpond to discrete values between 0 and 1023. First two of these possible

situations are detecting an object at the front of robot and a possible nest under the

robot. The third situation is being motionless, as standing motionless is an unwanted

situation, this triggers to get new sensory data and observe the environment. At the

beginning, Bioloid waits motionless, this phase represents observing environment.

In this situation robot gets data from its sensors and with this sensor information
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reinforcement learning updates the first Wc value till it reaches a value that triggers

robot searching. Robot searches till it gets across with an object, if there is an object

in front of the robot, DMS returns 630 at an appropriate distance. The detecting of

an object as food or not food depends on the size of an object, thus an object with

value of 80 or less is determined as food, while an object with value greater than 80

is considered as an obstacle to avoid. To detect nest, information from IR sensor is

considered. IR returns 700 in normal ground, if this value decreases under 500 then

there is a nest possiblity. These three environmental sensor data are used to form

Figure 3.3: Block diagram of the operation in Bioloid. Operation begins with reading
sensory data. The data used to make decision in basal ganglia circuit as an
input and evaluate the learning rules.

sensory information denoted by I. As the BTC system values are in the interval of

[0,1] due to sigmoid function, these sensor data should be scaled. The sensor value
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for searching obtained with DMS data is scaled to [0,1] interval by tangent hyperbolic

function given in Figure 4 as blue line. The second sensor value is related to lifting

a food. Since the lifting food behaviour is related to the size of an object, the value

is calculated by using DMS. The size information is also scaled into the [0,1] interval

with Gaussian function given in Figure 4, as red line. The third value is related to

placing the food to the nest. Since for detecting nest IR data is used this IR data is

scaled to [0,1] interval with Gaussian function given in Figure 3.4, as black line.

After scaling sensor data, the calculated input values are fed to the BTC model which

is the decision making block. To achieve a valid output from BTC model, output

values have to set to a stable equilibrium point so the discrete time system outputs are

calculated at the end of 30 iteration steps. Basal ganglia circuit generates output to

choose a behaviour. If just one of the outputs value is over 0.67, the behaviour that

is represented by the chosen output is realized. Learning an appropriate behaviour is

realized with reinforcement learning rules after related decision is made. If there is no

decision, then the coefficients of all three behaviour are updated with RL rules. After

updating Wc, the process turns to the beginning and a new sensor data is read.

3.2.3 Scaling and Normalizing

In the previous section, the need for the scaling is mentioned, here first normalization

of raw data will be explained in detail and then how scaled values are used to control

Bioloid robot will be given. Though the sensor data are scaled to [0,1] interval

with Gaussian and tangent hyberbolic functions before this scaling normalization is

done. The data of DMS which is used to determine the searching behaviour is up to

800 in practice even the highest value that the DMS data can get is 1023 in theory.

Thus, normalization is made by dividing the sensory output to 1000. Hence, the

normalization function is DMS/1000. For lifting food process, the size information

of an object is used. This is also calculated with DMS. The value is between 65-70 for

the little box and 80 for a big object. The normalization is made by dividing the size

value to 85 and extracting this from 1. Because the values over 80 is meaningless for

this study. Hence, the normalization function for lifting food behaviour is 1-(Size/85).

Placing food to the nest behaviour is determined by the information on the IR sensor

output. Even the output range is between 0 to 1023, the meaningful range is between 0
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to 800. Hence, the normalization is made by the 1-(IR/1000) function. The normalized

sensory outputs are then scaled with Gauss and tangent hyperbolic functions. The

normalized sensory data is suppressed in the meaningless areas for the robot and left

same in the meaningful area. This operation can be associated with an object being

more familiar to a rat. Therefore, robot’s coherence between BTC circuit and real

behaviour is provided by scaling with these functions. The front side of robot has to be

clear in order to realize the searching task. A clear front side is represented by 0.3 or

below considering the normalized values. Hence, to realize this, a tangent hyperbolic

function is used to give the same value for 0.3 or below and to decrease values more

than 0.3. The meaningful situation for lifting food task is that object is little enough

for robot to lift. This value is normalized 0.2 for lifting task. To leave same 0.2 value

and around a Gaussian function is used whose mean value is 0.2. The same situation

is valid also for placing food to the nest task. The significant values are the normalized

ones which are around 0.62. Hence, a Gaussian function with a mean value of 0.62 is

used. The Gaussian functions that are used can be followed in Figure 3.4.

Figure 3.4: Scaling functions of the inputs: These functions take the useful inside the
data of environmental sensory inputs.

3.2.4 Basal Ganglia Circuit

BTC model, which is mentioned in the second part, is used to determine the robot

responses to the sensory inputs. Once the scaled sensor data which corresponds to I

in the BCT circuit model is obtained, S vector is determined by multiplying I with

Wc matrix. Wc provides weightening of sensor inputs, which has been differentiated

from each other by using scaling functions, to provide the compatibility of the robot

to the environment . The input of BCT circuit which are elements of S vector are

applied to cortex, striatum, GPe, Stn, Gpi respectively. At last, the information which

is the result of relations between these basal ganglia parts is transferred to thalamus.
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The new calculated results are the inputs of the next iteration. It is a must for a BTC

model to make the right action selection that the outputs have to settled to a stable

equilibrium point. Hence, the iterations must continue until the difference of the last

two outputs is infinitesimal. However, since the robot works in real time and increasing

load of calculations causes delay, an assumption that the output values can converge

in 30 iteration, has been made. Thus, the outputs of cortex in the last iteration are the

outputs of BCT circuit also. To conclude action selection, an if condition is used. To

select an action, only one of the cortex output has to be greater than 0.67 while the

others are smaller than 0.67. Otherwise, at the output of BCT more than one action

(or behaviour) is selected and this is meaningless for robot application in this study.

If none of the cortex outputs are greater than 0.67, that means none of the actions are

selected. When only one action is selected, the related Wc coefficients are updated. If

none of the actions are selected, then all diagonal elements of Wc are updated. These

updates are made according to the reinforcement rules given with Equation 3.4 to 3.7.

While trying to work robot under these conditions, a situation is noticed. When the

robot meet a possible nest position, there will not be an object in the front of the robot.

Therefore, robot will try to select two actions at the same time, one being to leave food

to the nest and the other is continuing to search. The values that are related to the

search behaviour are suppressed when this situation occurs.

3.2.5 Reinforcement Learning

Updating a diagonal element of Wc matrix is related to reward. Reward is denoted by

r in the equation 3.5. If the robot has choosen the right action then the value of r is

determined zero otherwise one. Though this is not the conventional way of assigning

reward, for the robot application this worked out as explained in the sequel. If robot

does the right action, expectation error given in Equation 3.5 decreases. Contrarily,

when a wrong decision is made, the expectation error function increases and this rises

the related element of Wc matrix. Making wrong decision indicates that the value of

related element in Wc matrix is high enough to choose that action. Thus, the expectation

error increases the value of related coefficient. Giving reward to the robot is determined

by evaluating the inputs and outputs of BCT circuit. When inputs are high enough to

select an action and cortex outputs select the action than reward is given to the robot
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by making the value of r zero. This means decreasing expectation error. When inputs

are high enough to select an action, but cortex outputs do not respond to this, r value

is set to one making the expectation error high. When a wrong action is selected or

none of the actions is selected, robot gets the run away command, because, there is a

possibility of an object standing in front of it. Thus, robot has to run away from the

object not to collide. After all the updating operations, robot turns to the beginning

and realizes the last selected action.
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4. RESULTS

The robot is expected to learn to make right decisions on searching, recognizing the

food and the nest. These actions together complete the three phases of foraging task.

The meaning of being successful on learning for all three phases of foraging task is to

behave similarly in a changing environment without an outer affect.

After programming the robot, eight trials for training are completed. In all these

training trials, only the diagonals of Wc matrix representsthe ability of perceiving the

environment are changed by RL. The duration of learning process depends on the

initial values of diagonals. During these eight trials, the initial values of diagonals

are kept as Wc11=0.1201, Wc22=0.0875 and Wc33=0.3764 which are determined

randomly. The robot accomplished learning on all trials and is able to make the right

decisions. As seen in Table4.1, the robot learned to decide to begin the search task in

an average of four seconds. After beginning to search, the robot is encountered with

the possible foods and tried to recognize them. The number of trials is in avarage 6.4

times. In the last one of the trials, it was able to decide to lift the food. After lifting

the food, the robot tried to recognize the nest and this trial took an avarage of 4.25

times. At last, it decided to set the food to the nest. In all eight training trials, the robot

achieved the goal and completed the three phases.

Table 4.1: Test results of learning durations for three actions.

A. Experiments
Search Pick up Deposit

Average 4.3sn 6.4 trial 4.25 trial
Standart Deviation 0.29sn 2 trial 1.4 trial

This training process can be followed from the change in expectation error, too.

Expectation error gives the difference between the robot’s expectation on the response

of environment to its action and the real response of environment to the action. The

expectation error is evaluated with the equation 3.5. The responses to the actions are

evaluated with the value function which is given by equation 3.6. As seen in Figure

4.1a, the expectation error of searching task is decreasing to a value close to zero, after
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Table 4.2: Initial values of parameters on learning operations.

Test Step Count Wc11 Wc22 Wc33 Wr11 Wr22 Wr33
Test1 1428 0.1201 0.0875 0.3764 0.1 0.2641 0.1
Test2 3408 0.1001 0.0675 0.2243 0.1 0.2641 0.1
Test3 2994 0.1201 0.0875 0.3764 0.9 0.2641 0.1
Test4 1416 0.1201 0.0875 0.3764 0.3 0.9000 0.1

learning searching task as all decreases to zero at the end of trial. Since the initial value

of error is taken 0.1, increasing to 1 means that the trials on learning begins. Like the

searching task, the expectation error for decision making on lifting food task decreases

to a zero after robot recognizes the food. At last, the error related to recognizing the

nest decreases to zero that means learning is successful.

Figure 4.1: Expectation error which becomes zero at the end of learning.

Although the learning of process of the nest begins after learning the food, the error

related to the nest increases to one at the beginning in Figure 4.1b. This is a situation

related to sensors which produced an incorrect data at that moment. The wrong data,

which comes from the sensory inputs, make the robot to behave as there is a possible

nest, so the robot starts learning nest also. Learning is possible while the decision

making process goes on. In Figure 4.1a a different food, which has slightly different

size from the prior one, is presented to the robot at the 550th step. Even the robot has

learned the prior food, it didnot lift the last one. After one encountering, the learning

process of the food with different size is also accomplished and the robot began to lift

the food. This means that the robot is able to adapt to a change in the environment.

The learning duration and decision making depends of initial values of diagonals of

Wc and Wr. Despite the robot learns to choose one action, it may not be able to select

the right action because of Wr which models dopamine effect on action selection in

basal ganglia [6]. To observe the effect of Wc on duration and Wr on action selection,
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Figure 4.2: Test1:(a),(b),(c) shows expectation errors and (d),(e),(f) shows variations
on diagonal’s Wc on the learning of search, food and nest respectively.

tests are repeated with different values of Wc and Wr. Four of the tests’ results are

shown here. The changed initial values of Wc and Wr are given in Table 4.2 according

to the tests. The first one is control test and the values are the default ones. Test2

shows the effect of different initial values of Wc on duration. Test3 and Test4 show the

effect of dopamine on action selection process. The four processes finished in different

step numbers. However, their graphs has given here for the same interval to make the

comparison possible.

In Figure 4.2 there are graphs of expectation error and cortex outputs. The first and

fourth are related to search task, the second and fifth are related to recognizing food
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Figure 4.3: Test1:(a),(b),(c) shows cortex outputs of BTC which shows whether the
robot choose an action.

and the third and sixth are related to recognizing nest. The change of expectation error

gives information about learning process while cortex outpts give the information of

selected action. Zero expectation error means learning has accomplished. Also, when

the value of cortex is above 0.67 it means that the action is selected. In the first test,

error is one at the beginning. The learning process is accomplished while the error

decreases to zero. At the same time in Figure 4.2(d-e-f) it is seen that the first cortex

output is chosen meanwhile search task is also selected. As seen in Figure 4.2(a) robot

makes wrong decisions for search task which can be followed by the increases to one

in error. However, through learning process the error falls down approximately to zero.

As it is seen in Figure 4.2(d) the search task is selected generally. In a step time close

to 300 learning begins for food. Through learning process, the second cortex output

tries to select the lifting food action, but cannot make decisions until nearly 800th step

which corresponds to the end of learning for food (Figure 4.2(e)). The same process is

valid for nest. After 800th step in Figure 4.2(f) robot tries to select to set the food to the

nest. At approximately step size of 1200 robot is able to make the right decision. On

a natural foraging task, only one action can be selected at a time. So, a cortex output

of one action decreases to below 0.67 while the other rises up to 0.67. The values of

diagonals of Wc matrix can be seen in Figure 4.3. Through learning process all values

rises. A true decision makes the values decrease a little.
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Figure 4.4: Test2:(a),(b),(c) shows expectation errors and (d),(e),(f) shows variations
on diagonal’s Wc on the learning of search, food and nest respectively.
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Figure 4.5: Test2:(a),(b),(c) shows cortex outputs of BTC which shows whether the
robot choose an action.

In Test2, only the initial values of Wc is changed. The initial values are decreased to

investigate the role of initial conditions on duration of learning process(Table4.2). It

is expected that the duration of learning will increase. Duration of learning search is

almost same with the first test. Test2 has also more steps then Test1 because learning

processes of food and nest take much more time. In Test1 the operation of learning

food is completed at approximetely 600 steps which is seen in Figure 4.2(e) as the

pulses that are lower than 0.67. However, in Test2 the robot takes 1200 steps to learn as

seen in Figure 4.4(e). Concerning the recognizing nest operation of the robot, it takes

approximately 300 steps to learn while in Test2 it takes about 1100 steps. Looking

at the Figure 4.5 Wc of Test2 has nearly same values as the values in Test1. Since,

the tests have the same structure, being close of the last values of Wc matrixes is

expected. Therefore, changing the initial values of Wc for different operations changes

the duration of task. In Test3 and Test4 the effect of dopamine on learning process is

investigated. The dopamine is represented by diagonals of Wr matrix. Increasing the

values of Wr means rising dopamine. In Test3 dopamine value of search task is rised

to 0.9 from 0.1. As it is seen in Figure 4.6(a) error value of search task is close to zero.

However, error value of recognizing food task is 0.1 because the RL never works for

learning food. The situation is same for detecting nest until the 2700th step after then

RL begins for recognizing nest. Looking at cortex values (Figure 4.6), it is seen that

only search task is chosen until the 2700th step. At that point the robot encounteres
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Figure 4.6: Test3:(a),(b),(c) shows expectation errors and (d),(e),(f) shows variations
on diagonal’s Wc on the learning of search, food and nest respectively.
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Figure 4.7: Test3:(a),(b),(c) shows cortex outputs of BTC which shows whether the
robot choose an action.

with the nest, and begins to learn. Even error value of nest high, robot tries to choose

depositing food action. The robot never give up the search action and tries to choose

both of searching and placing food. Thus, it cannot decide one of them. Looking at

the Wc values, the values related to search and food donot change while the value of

recognizing nest rises after encountering with the nest. Even though the Wc value of

search task doesnot change, robot can choose the action from the beginning. Changing

values of Wr affects all learning process and makes the robot always choose the first

action. This situation causes robot not to work on tasks properly.

In Test4 two initial values of Wr are changed while the last one is constant. It is seen

at Figure 4.8 that robot is able to realize a normal process. It learns to search for food,

lift the food and set to the nest respectively. It chooses only one action at a time and its

Wc values, which are given in Figure 4.9, are close to ones at the first test(Figure 4.3).

Thus, even with the changed initial Wr values, robot is able to make right decisions and

learn them. It is seen in Figure 4.8(e) that robot can choose to lift the food at the 1300th

step after it learnt to do that about at the 1150th step. Changing Wr and Wc means

mathematically changing the place of equilibrium points of dynamical system on

weight space. Since the equations of RL and decision making, which are the equations

from 3.1 to 3.7, are difference equations of a dynamical nonlinear deterministic system,

the bifurcation analysis for equilibrium points is investigated in [6]. If the robot learns
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Figure 4.8: Test4:(a),(b),(c) shows expectation errors and (d),(e),(f) shows variations
on diagonal’s Wc on the learning of search, food and nest respectively.
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Figure 4.9: Test4:(a),(b),(c) shows cortex outputs of BTC which shows whether the
robot choose an action.

then it means that the system can converge to the right equilibrium point according to

the inputs of system which are the sensory data.
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5. CONCLUSIONS AND RECOMMENDATIONS

In this project, the BTC model which is a decision making model of brain circuit

including cortex, basal ganglia and thalamus and RL model, which is used for robot

to learn, are coded in embedded C for a real time application of decision making task.

The proposed model for the basal ganglia circuit in [5] is implemented on a real mobile

robot with embedded C programmimg to show the applicability of this approach. The

BTC model’s implementation had been already discussed on the simulation platform

using Khepera II [12]. In this graduation study a simple robot, Bioloid, is used to show

the applicability of the proposed model.

It has been emphasized that the computational model and learning method proposed

in [5] are used for realizing the foraging task on a mobile robot. Instead of focusing on

the model and learning method, the proposed method is realized on Bioloid robot with

a real-time application. It is shown that even with a simple robot, the computational

model is capable of realizing high-level learning tasks. Thus, here the main goal is to

show the proposed model’s applicability rather than robot’s abilities. Since the learning

process considered is reward-modulated learning and indicates that the basal ganglia

particularly striatum [16] is responsible for accomplishing the action selection task,

the method also embraces the biological realism. Based on this, one of the main goal

is testing the biological substructures of brain to understand how they operate and

how diseases show up. Thus, testing these kind of models are both advantageous

concerning time and requirements in comparison to human tests. This graduation

project is presented in the 11. National Neuroscience Congress [17], to improve it

further with feedback from neuroscience group.

At a later stage on this graduation process, Wr, which represents dopamine effect on

decision making task, can be evaluated by RL to find an appropriate decision space
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automatically or to see how it behaves on a changing environment. Also, the BTC

model can be changed to a more biologically realistic with a more realistic task.
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