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Abstract—Recently, methods based on deep learning have
been introduced to the literature as a solution for accelerating
magnetic resonance imaging technique. However, Image recon-
struction from subsampled data is an ill-posed problem. In the
current study, the wavelet package has been applied to deep net-
works. The replacement of the conventional downsampling and
upsampling layers with Discrete Wavelet Transform (DWT) and
Inverse Wavelet Transform (IWT) improved the reconstruction
results. Moreover, the consequence of this substitution has been
investigated on potent densely connected deep networks. The pro-
posed novelty resulted in promising performance improvement
in MR Image reconstruction.
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I. INTRODUCTION

Medical imaging is now a vital application that gives a

wealth of information for disease diagnosis and treatment.

As a vital aspect of this area, medical image reconstruction

aims to collect high-quality slices while offering minimal

health hazards to patients. One of these medical imaging

modalities is magnetic resonance imaging (MRI). The key

advantage of MRI over other conventional imaging techniques

such as x-rays or CT (computerized tomography) scans is

that patients are not exposed to radiation. However, in ad-

dition to its benefits, this technique suffers from long-time

signal acquisition [1]. Different solutions have addressed this

drawback of MR imaging. These major solutions include MR

image acceleration using MRI physics, MRI device hardware

modification, and signal processing techniques. In the current

work, it has focused on signal processing techniques that

accelerate MR imaging by reconstructing images from sub-

sampled datasets. One of these solutions is offered based on

deep learning techniques. Deep learning techniques have lately

shown promising results in a range of image processing tasks.

Plenty of deep learning techniques was offered for MR image

reconstruction [2], [3], [4], [5].

The wavelet transform is a useful feature extractor, it

contains both spatial and frequency features of an image

[6], [7]. There are increasing research efforts to explore how

wavelet transform operations can be incorporated into image
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processing problems [8], [9], [10]. Convolutional operations

are good at capturing spatial features, while wavelet transform

can capture features with constant scale using spectral details.

Therefore, it is better to use a single model that incorporates

both spectral and spatial knowledge [9]. On the other hand,

wavelet-based CNN (Convolutional neural network) structures

presented a satisfactory performance in different image pro-

cessing problems. In a study, a wavelet residual network

(WavResNet) and single-image super-resolution (SISR) is

proposed for image denoising [11]. It has been offered that

these wavelet subbands can benefit CNN learning [11]. In

[12], the deep wavelet super-resolution (DWSR) method was

proposed to recover missing information in the subbands. A

multi-level wavelet CNN (MWCNN) model was developed

for the first time in [13]. Recently, a deep cascade wavelet-

based CNN (DC-WCNN) was developed in [14] to recover

fine details in MR image reconstruction. Wavelet transforms

[15] provide effective signal separation with time-frequency

localization features, while inverse wavelet transform can

accurately reconstruct the original signal for wavelet subbands.

Inspired by these features, a progressive training (PTMWRN)

strategy and a multilevel wavelet residual network (MWRN)

technique were offered as a solution in [16] for the image

denoising problem.

Motivated by this successful application of the wavelet

package in the literature, we have proposed a novel structure

using the advantages of the DWT and IWT in MR image

reconstruction. The DWT performs encoding with reversible

features and provides the ability to recover information during

the decoding step. To the best of our knowledge, for the

first time, we have applied the wavelet package inside the

densely connected residual autoencoder structure and named

it Densely Connected Residual Wavelet-based Autoencoder

Network (DCR-WAN). The utilization of the wavelet pack-

age forced the densely connected deep network for further

performance improvement.

We can summarize the rest of this paper as follow. In

Section II, the overall pipeline for MR image reconstruction

and the suggested structures are detailed. Also, the proposed

structure is depicted in this section. In Section III, the ex-

perimental results are summarized using the qualitative and

quantitative evaluation metrics. In the final part of the result
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Fig. 1. Proposed WAN with DCR.

section, representative reconstructed slices are provided for all

of the developed networks. Finally, in section IV, we have

summarized the contribution of the current study.

II. PROPOSED APPROACH

A. General Framework

Deep networks attempt to reconstruct MR slices by propos-

ing the optimal method for translating measurements to desired

outputs while reducing the cost between the network output

and the original image.

In this regard, observation data can be provided by applying

desired mask function with desired acceleration factor to

subsample the data in the Fourier domain.

y = FΩxorig (1)

As we can follow from equation 1, the measurements y are

acquired by applying the Fourier transform function FΩ to

the ground truth data xorig. FΩ initially transforms the image

domain data into a k-domain using Fourier transform F and

then applies the mask function U .

FΩ = U F (2)

The undersampled k-space data y transform into an Zero

Filled (ZF) image xzf using the Inverse Fast Fourier Trans-

form F−1 (IFFT).

xzf = F−1y (3)

We give the xzf into the model with θ parameters as

input and the deep learning model Nθ(x) tries to learn

from the difference between the desired output xorig and the

reconstructed image x̃ for any slice with index i. Afterward,

backpropagate the calculated error to the network to optimize

the cost in several iterations.

argmin
θ

ndata∑
i=0

‖Nθ(x̃
(i) − x

(i)
orig)‖ (4)

Here, ndata is the total number of training images.

B. Architecture

In the current study, a new architecture has been proposed

for deep networks to attain better reconstruction results. For

emphasizing the amount of improvement regarding the state-

of-the-art networks, the suggested network’s skeleton was

selected same as U-Net with DCR [17], but we have included

a wavelet package. The normal downsampling and upsampling

pooling layers were replaced with DWT and IWT blocks,

respectively. DWT is a reversible operation. Such a down-

sampling approach can ensure that all of the data can be

preserved and information can be restored by IWT. DWT can

preserve the locational and frequency information related to

the feature maps. These details can be useful for maintaining

rich textures[18], [19]. The proposed DCR-WAN structure

is represented in Fig. 1. As we can follow from Fig. 1, in

comparison to WCNN [13], [14] we have concatenated the

feature maps from the same pooling layer with upsampled

feature maps instead of calculating the element-wise summa-

tion of the feature maps from these steps. The feature maps are

downsampled up to 80 × 80 sizes using two pooling layers in

all of the autoencoder structures. In Fig. 2 the utilized wavelet

blocks for encoding decoding steps are depicted. In the DWT

block, we initially apply a discrete wavelet transform then we

convolve the data to halve the number of downsampled feature

maps. In the decoding stage, we simply double the size of the

feature maps using a convolutional layer and inverse wavelet

transform.

III. SIMULATION RESULTS

A. Quantitative Results

In this study, all of the developed models in the result table

were trained and tested using the fastMRI dataset. Initially,

the fully-sampled data in the k-domain were subsampled using

the random mask function with the 4-fold acceleration factor.

Then the ZF images were acquired by applying IFFT and they
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Fig. 2. Structure of (a) downsampling block. (b) upsampling block.

were forwarded to the models for training and test purposes.

In Table I, the reconstruction results for the suggested novel

wavelet-based structure are compared with the state-of-the-

art and similar networks. As we can follow from the result

table, despite the significant decrease in the number of training

parameters in comparison to WCNN[13], [14], the proposed

structure was shown better reconstruction results. Moreover,

the DCR-WAN has even outperformed the potent U-Net with

DCR blocks. The time needed for reconstructing 32 slices

is provided in the result table. The reconstruction time of

the developed models is fair enough to be used in medical

imaging.

B. Qualitative Results

This section depicts a visual comparison between the sug-

gested novel structure and cutting-edge networks. In Fig. 3, we

have provided a reconstruction result with developed networks

for a specific slice from the test dataset. We have evaluated

the performance of the recommended structure by comparing

produced slices. In this regard, in addition to reconstructed

images, we have also included a ZF image undersampled with

a 4-fold acceleration factor, ground truth image, error map,

and region of interest (ROI) in Fig. 3. As we can observe,

the proposed novel framework resulted in a higher level of

perceptual quality, less severe artifacts and it has recovered

of more details. As we expected, the reported experimental

results in Table I are in compliance with the qualitative

representations in Fig. 3.

IV. CONCLUSION

Dense connections have recently demonstrated their effec-

tiveness in averting the gradient vanishing in deep networks.

Inspired by the promising result of the wavelet package in

a wide range of image processing problems, we offered a

wavelet-based structure for deep networks. To do so, the

conventional contracting and expanding layers have been re-

placed with wavelet transform blocks to improve even potent

densely connected residual models like U-Net with DCR. The

quantitative and qualitative reconstruction results are reported

for developed models. The proposed structure is compared

with cutting-edge MR image reconstruction models in terms

of PSNR, SSIM, and NMSE. The proposed DCR-WAN im-

proved the simulation results based on these three evaluation

metrics without a significant increase in computational cost

and reconstruction times.
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TABLE I
SIMULATION RESULTS FOR DEVELOPED MODELS.

Acceleration factor 4-fold
#Parameter Time (s)
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U-Net with DCR [17] 26.599±18.19 790.18±83.37 32.490±3.19 2,550,629 0.604
Proposed WAN with DCR 26.393±18.13 787.08±85.79 32.533±3.203 2,581,349 0.733

Ground truth image 4-fold zero-filling image

CNN Deep Cascade CNN

WCNN U-Net

U-Net with DCR WAN with DCR

Fig. 3. Proposed techniques’ and contender networks’ reconstructed images, ROI, and error map for 4-fold undersampled slices.

[18] I. Daubechies, The wavelet transform, time-frequency localization and
signal analysis. Princeton University Press, 2009.

[19] ——, Ten lectures on wavelets. SIAM, 1992.

[20] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert,
“A Deep Cascade of Convolutional Neural Networks for Dynamic MR
Image Reconstruction,” IEEE Transactions on Medical Imaging, vol. 37,

no. 2, pp. 491–503, 2017.
[21] J. Zbontar, F. Knoll, A. Sriram, M. J. Muckley, M. Bruno, A. Defazio,

M. Parente, K. J. Geras, J. Katsnelson, H. Chandarana et al., “fastMRI:
An open dataset and benchmarks for accelerated MRI,” arXiv preprint
arXiv:1811.08839, 2018.

215

Authorized licensed use limited to: ULAKBIM UASL  ISTANBUL TEKNIK UNIV. Downloaded on September 24,2022 at 12:49:38 UTC from IEEE Xplore.  Restrictions apply. 


