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Introduction
c -]

B Sparse adaptive filtering, where the impulse response for
the system to be identified is assumed to be of a sparse
form has acquired attention recently.
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Introduction

B Sparse adaptive filtering, where the impulse response for
the system to be identified is assumed to be of a sparse
form has acquired attention recently.

B The sparsity prior has applications in acoustic and network
echo cancellation and communication channel identification.
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Introduction

B Sparse adaptive filtering, where the impulse response for
the system to be identified is assumed to be of a sparse
form has acquired attention recently.

B The sparsity prior has applications in acoustic and network
echo cancellation and communication channel identification.

B Proportionate adaptive algorithm is a well-known approach
to the problem.
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Introduction
c -]

B Recently, novel LMS type algorithms which incorporate the
sparsity condition directly into the cost function have been
developed.
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Introduction

B Recently, novel LMS type algorithms which incorporate the
sparsity condition directly into the cost function have been
developed.

B The common idea is to add a penalty term in the form of an
¢, norm of the weight vector into the overall cost function to

be minimized.
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Introduction
c -]

B Recently, novel LMS type algorithms which incorporate the
sparsity condition directly into the cost function have been
developed.

B The common idea is to add a penalty term in the form of an
¢, norm of the weight vector into the overall cost function to
be minimized.

B Sparsity based adaptive algorithms have been mostly
confined to the LMS domain.
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Introduction
c -]

B Recursive least squares (RLS) adaptive filtering is another
Important modality in the adaptive system identification
setting.

et
L

o oA o
LN B

e
IQSHRAJ t‘)‘lO, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.5

)

H

N



Introduction

B Recursive least squares (RLS) adaptive filtering is another
Important modality in the adaptive system identification
setting.

B |n this paper, we propose an RLS adaptive algorithm for
sparse system identification.
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B Recursive least squares (RLS) adaptive filtering is another
Important modality in the adaptive system identification
setting.

B |n this paper, we propose an RLS adaptive algorithm for
sparse system identification.

B The algorithm will utilize the modified RLS cost function with
an additional sparsity inducing ¢/, penalty term.
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Introduction

B Recursive least squares (RLS) adaptive filtering is another
Important modality in the adaptive system identification
setting.

B |n this paper, we propose an RLS adaptive algorithm for
sparse system identification.

B The algorithm will utilize the modified RLS cost function with
an additional sparsity inducing ¢/, penalty term.

B \We find the recursive minimization procedure in a manner
similar to the conventional RLS approach.
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Introduction

B Recursive least squares (RLS) adaptive filtering is another
Important modality in the adaptive system identification
setting.

B |n this paper, we propose an RLS adaptive algorithm for
sparse system identification.

B The algorithm will utilize the modified RLS cost function with
an additional sparsity inducing ¢/, penalty term.

B \We find the recursive minimization procedure in a manner
similar to the conventional RLS approach.

B The difference occurs in the weight vector update equation,
where a novel zero-attracting, sparsity inducing additional
term is included.
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Introduction

B Recursive least squares (RLS) adaptive filtering is another
Important modality in the adaptive system identification
setting.

B |n this paper, we propose an RLS adaptive algorithm for
sparse system identification.

B The algorithm will utilize the modified RLS cost function with
an additional sparsity inducing ¢/, penalty term.

B \We find the recursive minimization procedure in a manner
similar to the conventional RLS approach.

B The difference occurs in the weight vector update equation,
where a novel zero-attracting, sparsity inducing additional
term is included.

m \We will call this new algorithm as the /;-RLS.
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Introduction

B Firstly give a brief outline of the adaptive system
identification setting.

® Then, we develop the novel /1-RLS algorithm by outlining
the similarities to the development of regular RLS.
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Introduction

B Firstly give a brief outline of the adaptive system
identification setting.

® Then, we develop the novel /1-RLS algorithm by outlining
the similarities to the development of regular RLS.

®m \We give the final form of /1-RLS algorithm.
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Introduction

B Firstly give a brief outline of the adaptive system
identification setting.

® Then, we develop the novel /1-RLS algorithm by outlining
the similarities to the development of regular RLS.

®m \We give the final form of /1-RLS algorithm.

m We will present simulation results comparing the novel
¢1-RLS algorithm to regular RLS, regular LMS and other

adaptive algorithms.
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£1-RLS Algorithm

®m Consider the system identification setting given by the
following input-output equation.

y(n) =h'x(n) +1n(n) (1)
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£1-RLS Algorithm
« 0000

B Consider the system identification setting given by the
following input-output equation.

y(n) =h'x(n) +5(n) (1)

B The aim of the adaptive system identification algorithm is to
estimate the system parameters h from the input and output
signals in a sequential manner.
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£1-RLS Algorithm
« 0000

B Consider the system identification setting given by the
following input-output equation.

y(n) =h'x(n) +5(n) (1)

B The aim of the adaptive system identification algorithm is to
estimate the system parameters h from the input and output
signals in a sequential manner.

B |n conventional RLS, the cost function to be minimized by
the weight estimate is given by

£(n) = 32 A" le(m)]® @
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£1-RLS Algorithm

B \We assume that the underlying filter coefficient vector h has
a sparse form.
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£1-RLS Algorithm
« 0000

B \We assume that the underlying filter coefficient vector h has
a sparse form.

B Hence, we want to modify the cost function in a manner that
underlines this a priori information.
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£1-RLS Algorithm
« 0000

B \We assume that the underlying filter coefficient vector h has
a sparse form.

B Hence, we want to modify the cost function in a manner that
underlines this a priori information.

B A tractable way to force sparsity is by using the ¢;-norm of
the weight vector.
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£1-RLS Algorithm
« 0000

B \We assume that the underlying filter coefficient vector h has
a sparse form.

B Hence, we want to modify the cost function in a manner that
underlines this a priori information.

B A tractable way to force sparsity is by using the ¢;-norm of
the weight vector.

B Hence, we regularize the RLS cost function by including the
weighted /1 norm of the current tab estimate as a sparsifying
term.
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£1-RLS Algorithm

J(n) = 5&(n) +|h(n)l (3)
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£1-RLS Algorithm

J(7) = () + 7 [Ih(n) 3

®m Here, v > 0is a parameter that governs the tradeoff
between sparsity and estimation error.
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£1-RLS Algorithm
« 0000

J(n) = 5€(n) + 7[R ®)

B Here, ¥ > 0 Is a parameter that governs the tradeoff
between sparsity and estimation error.

B ||h(n)l||; is the ¢; norm of the weight vector and is given by

N—-1
h(n)lls = ) [ (n)] (4)
k=0
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£1-RLS Algorithm

m \We want to minimize this regularized cost function J(n) with
respect to the filter tab weights.
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£1-RLS Algorithm
« 0000

® \We want to minimize this regularized cost function J(7) with
respect to the filter tab weights.

B |n the standard RLS case when the cost function is simply
£ (n), the minimization condition is written in terms of the
gradient of £(n) with respect to h(n).
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£1-RLS Algorithm
« 0000

® \We want to minimize this regularized cost function J(7) with
respect to the filter tab weights.

B |n the standard RLS case when the cost function is simply
£ (n), the minimization condition is written in terms of the
gradient of £(n) with respect to h(n).

®m However, the /1 norm term ||h(n)||1 in J(n) in (@) is
nondifferentiable at any point where h(n) = 0.
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£1-RLS Algorithm
« 0000

® \We want to minimize this regularized cost function J(7) with
respect to the filter tab weights.

B |n the standard RLS case when the cost function is simply
£ (n), the minimization condition is written in terms of the
gradient of £(n) with respect to h(n).

®m However, the /1 norm term ||h(n)||1 in J(n) in (@) is
nondifferentiable at any point where h(n) = 0.

B A substitute for the gradient in the case of nondifferentiable
convex functions such as ||h(n)||; here is offered by the
definition of the subgradient.
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£1-RLS Algorithm
« 0000

B One subgradient vector of the penalized cost function J(n)
with respect to the weight vector h(n) can be written as

1

Vo] (n) = EVS + v sgn(h(n)) (5)
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£1-RLS Algorithm
« 0000

B One subgradient vector of the penalized cost function J(n)
with respect to the weight vector h(n) can be written as

VS](n) = %VS + 7y sgn(h(n)) (5)

m The ith element of this vector is calculated as below.

{VS } = — Z AT (m—i+1)+ v sgn(h;(n))
(6)
g
lg\,sm 2610 Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.11

U}J



£1-RLS Algorithm

B \We set the subgradient equal to zero to find the optimal least
squares solution, namely h(n).
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£1-RLS Algorithm
« 0000

B \We set the subgradient equal to zero to find the optimal least
squares solution, namely h(n).

A

n N-1_
= 2 A {ym) = X elmyx(m =) i41) =~y sgn ()
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£1-RLS Algorithm
« 0000

B \We set the subgradient equal to zero to find the optimal least
squares solution, namely h(n).

n N-1_ )
= 2 A {ym) = X elmyx(m =) i41) =~y sgn ()
- %

B Written forall: = 1,..., N together in a matrix form, results
In the modified deterministic normal equations.
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£1-RLS Algorithm

®(n)h(n) = r(n) — v sgn(h(n)) (8)
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£1-RLS Algorithm

®(n)h(n) = r(n) — v sgn(h(n)) (8)

m Here, ®(n) is the exponentially weighted deterministic
autocorrelation matrix estimate.
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£1-RLS Algorithm
« 0000

®(n)h(n) = r(n) — 7 sgn(h(n)) 8)
B Here, ®(n) is the exponentially weighted deterministic
autocorrelation matrix estimate.
B r(n) is the deterministic cross-correlation estimate between

y(n) and x(n).
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£1-RLS Algorithm

®(n)h(n) = 1(n) — 7 sgn(h(n)) (8)

B Here, ®(n) is the exponentially weighted deterministic
autocorrelation matrix estimate.

B r(n) is the deterministic cross-correlation estimate between
y(n) and x(n).

B These two quantities can be updated by rank-one recursive
equations.
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£1-RLS Algorithm

®(n)h(n) = r(n) — 7 sgn(h(n)) 8)
B Here, ®(n) is the exponentially weighted deterministic
autocorrelation matrix estimate.
B r(n) is the deterministic cross-correlation estimate between
y(n) and x(n).
B These two quantities can be updated by rank-one recursive
equations.

®(n) =AD(n—1) +x*(n)x! (n)
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£1-RLS Algorithm

®(n)h(n) = r(n) — 7 sgn(h(n)) 8)
B Here, ®(n) is the exponentially weighted deterministic
autocorrelation matrix estimate.
B r(n) is the deterministic cross-correlation estimate between
y(n) and x(n).
B These two quantities can be updated by rank-one recursive

equations.
®(n) =AD(n—1) +x*(n)x! (n)
r(n) = Ar(n —1) +y(n)x*(n)
e
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£1-RLS Algorithm
« 0000

B |nstead of solving the normal equations for the optimal least

squares solution h(n) directly, search for an iterative
solution.
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£1-RLS Algorithm

B |nstead of solving the normal equations for the optimal least
squares solution h(n) directly, search for an iterative
solution.

B \We assume that the sign of the weight values do not change
significantly in a single time step.
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£1-RLS Algorithm
« 0000

B |nstead of solving the normal equations for the optimal least
squares solution h(n) directly, search for an iterative
solution.

B \We assume that the sign of the weight values do not change
significantly in a single time step.

B The normal equation can be rewritten as

h(n) = P(n)8(n) ©)

where P(n) is the inverse of the autocorrelation matrix.
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£1-RLS Algorithm
« 0000

® \We come up with the following result.
h(n)=P(n—1)0(n —1) —k(n)x! (n)P(n —1)0(n — 1)
+y(n)k(n) + 'y(/\ ; 1) X

{P(n—1)sgn(fi(n—1)) — k(m)x" (m)P(n — 1) sgn(h(n~1)) }
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£1-RLS Algorithm
« 0000

B \We come up with the following result.
h(n) =P(n—1)0(n—1) — k(n)x" (n)P(n —1)0(n — 1)
+y(n)k(n) +7(A;1) x
{P(n—1)sgn(f(n—1)) — k(m)x" ()P(n 1) sgn(h(n - 1)) }

m Here, k(n) is the gain vector.

P(n—1)x"(n)

k(n) = 10
() A+ xH(n)P(n—1)x(n) (10)
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£1-RLS Algorithm
« 0000

B Using the matrix inversion lemma, it can be shown that the
time update for the inverse correlation matrix can be
performed by the well known Riccati equation.

P(n) = A‘l{P(n — 1) — k(n)xT (n)P(n — 1)} (11)
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£1-RLS Algorithm
« 0000

B Using the matrix inversion lemma, it can be shown that the
time update for the inverse correlation matrix can be
performed by the well known Riccati equation.

P(n) = A‘l{P(n — 1) — k(n)xT (n)P(n — 1)} (11)

B The recursive update for the tab weight vector assumes its
final form.

h(n)

A(n —1) + k() {y(n) — BT (n = 1)x(n) }+

”Y(A — 1) {IN — k(”)xT(”)}P(n —1)sgn(h(n—1)) (12)

> ‘
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£1-RLS Algorithm
« 0000

B Using the matrix inversion lemma, it can be shown that the
time update for the inverse correlation matrix can be
performed by the well known Riccati equation.

P(n) = A‘l{P(n — 1) — k(n)xT (n)P(n — 1)} (11)

B The recursive update for the tab weight vector assumes its
final form.

h(n) =h(n—1)+ k(n){y(n) Rl (n— 1)x(n)}+

A—1 . n
"Y(T) {In = K(m)xT (n) bP(n — 1)sgn(h(n — 1)) (12)
B This update equation finalizes the ¢;-RLS algorithm.
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£1-RLS Algorithm

¢1 regularized RLS (¢/1-RLS) algorithm.
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¢1 regularized RLS (¢/1-RLS) algorithm.
B inputs: A, v, x(n), y(n)

m initial values: h(—1) =0, P(—1) =61
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£1-RLS Algorithm

/1 regularized RLS (¢1-RLS) algorithm.

B inputs: A, v, x(n), y(n)

m initial values: h(—1) =0, P(—1) =61
mforn:=0,1,2,...
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£1-RLS Algorithm
« 0000

/1 regularized RLS (¢1-RLS) algorithm.

B inputs: A, v, x(n), y(n)

m initial values: h(—1) =0, P(—1) =61
mforn:=0,1,2,...

B k),(n)=Pn—1)x*(n)
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£1-RLS Algorithm
« 0000

/1 regularized RLS (¢1-RLS) algorithm.

B inputs: A, v, x(n), y(n)

m initial values: h(—1) =0, P(—1) =61
mforn:=0,1,2,...

B k),(n)=Pn—1)x*(n)

ka(n)
O k n) —=
= AT ()
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£1-RLS Algorithm
« 0000

/1 regularized RLS (¢1-RLS) algorithm.

B inputs: A, v, x(n), y(n)

m initial values: h(—1) =0, P(—1) =61
mforn:=0,1,2,...

B k),(n)=Pn—1)x*(n)

I SN
k(1) = T ot ()

B G(n) =y(n) —h'(n—1)x(n)
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£1-RLS Algorithm
« 0000

/1 regularized RLS (¢1-RLS) algorithm.

B inputs: A, v, x(n), y(n)

m initial values: h(—1) =0, P(—1) =61
mforn:=0,1,2,...

B k),(n)=Pn—1)x*(n)

ka(n)
Bk —
) = T )k ()
B $(n) =y(n) —h'(n—1)x(n)
1
= P(n) = 5 [P(n 1) - k(n)kgf(n)}
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£1-RLS Algorithm
« 0000

/1 regularized RLS (¢1-RLS) algorithm.

B inputs: A, v, x(n), y(n)

m initial values: h(—1) =0, P(—1) =61
mforn:=0,1,2,...

B k),(n)=Pn—1)x*(n)

G
(1) = 3T (k)

m ((n) =y(n) —h'(n—-1)x(n)

" P(n) = % P(n— 1) — k(n)k} (n)

h(n) =h(n—1) +k(n)é(n)

+ 7(%) {Tn = K(m)x" () }P(n — 1)sgn(h(n — 1))

)
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£1-RLS Algorithm
« 0000

/1 regularized RLS (¢1-RLS) algorithm.

B inputs: A, v, x(n), y(n)

m initial values: h(—1) =0, P(—1) =61
mforn:=0,1,2,...
N

|
w
VS
=
N———"
/'\

1
= P(n) = 5 [P(n 1) k(n)kgf(n)}
O
h(n) =h(n—1)+k(n)é(n)
A—1 .
8. (5 ) {Iv = k)X (n) }P(n = 1)sgn(h(n — 1))
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£1-RLS Algorithm

B \When we compare the /1-RLS weight update with the
regular RLS update equation, we see that the last term

starting with 7(%) constitutes the difference from regular
RLS.
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Simulation results
-]

B \We compare the performance of the novel /1-RLS algorithm
to the reqgular RLS, regular LMS and other sparsity oriented
adaptive algorithm.
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Simulation results
-]

B \We compare the performance of the novel /1-RLS algorithm
to the reqgular RLS, regular LMS and other sparsity oriented
adaptive algorithm.

B The first experiment considers the tracking capabilities of
¢1-RLS, RLS, ZA-LMS (Chen2009) and LMS algorithms
under white excitation.
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B The first experiment considers the tracking capabilities of
¢1-RLS, RLS, ZA-LMS (Chen2009) and LMS algorithms
under white excitation.
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Figure 1: Learning curves for ¢;-RLS, RLS, ZA-LMS and LMS.
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B The first experiment considers the tracking capabilities of
¢1-RLS, RLS, ZA-LMS (Chen2009) and LMS algorithms
under white excitation.
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Figure 1: Learning curves for ¢;-RLS, RLS, ZA-LMS and LMS.

R m /;1-RLS presents convergence and steady-state error
P | Improvements over the regular RLS algorithm. -
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B |n the second experiment we compare the performance of
the novel /1-RLS algorithm to the regular RLS under
different SNR values.
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B |n the second experiment we compare the performance of
the novel /1-RLS algorithm to the regular RLS under
different SNR values.
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Figure 2: Learning curves for ¢;-RLS and RLS for SNR=40, 30, 20 and 10 dB.
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B |n the second experiment we compare the performance of
the novel /1-RLS algorithm to the regular RLS under
different SNR values.
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Figure 2: Learning curves for ¢;-RLS and RLS for SNR=40, 30, 20 and 10 dB.

R ® The /1-RLS has better convergence and steady-state
E;:—'ﬁb | properties than the regular RLS. S
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Conclusions
-]

B This paper introduced a new RLS algorithm, namely /;-RLS,
applicable for the adaptive identification of systems with
sparse impulse response.
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B This paper introduced a new RLS algorithm, namely /;-RLS,
applicable for the adaptive identification of systems with
sparse impulse response.

B The novel update equations for this algorithm are developed
by regularizing the cost function with an /; norm term.
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Conclusions
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B This paper introduced a new RLS algorithm, namely /;-RLS,
applicable for the adaptive identification of systems with
sparse impulse response.

B The novel update equations for this algorithm are developed
by regularizing the cost function with an /; norm term.

B Numerical simulations demonstrate that the algorithm
Indeed brings about better convergence and steady state
performance than regular RLS.
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Conclusions
-]

B This paper introduced a new RLS algorithm, namely /;-RLS,
applicable for the adaptive identification of systems with
sparse impulse response.

B The novel update equations for this algorithm are developed
by regularizing the cost function with an /; norm term.

B Numerical simulations demonstrate that the algorithm
Indeed brings about better convergence and steady state
performance than regular RLS.

B Future work might include theoretical analysis for the steady
state error and simulations studying performance of the
proposed algorithm in the case of sparse, slowly
time-varying systems.

et
L

o oA o
LN B

el
gsmf t‘)‘lO, Malaysia RLS Adaptive Filtering with Sparsity Regularization - p.22

)

H

N



RLS Adaptive Filtering with Sparsity Regularization - p.23




Thanks

Thanks for listening.
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