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ABSTRACT

Sparse regularization of the reconstructed image in a trans-
form domain has led to state of the art algorithms for mag-
netic resonance imaging (MRI) reconstruction. Recently, new
methods have been proposed which perform sparse regular-
ization on patches extracted from the image. These patch
level regularization methods utilize synthesis dictionaries or
analysis transforms learned from the patch sets. In this work
we jointly enforce a global wavelet domain sparsity con-
straint together with a patch level, learned analysis sparsity
prior. Simulations indicate that this joint regularization cul-
minates in MRI reconstruction performance exceeding the
performance of methods which apply either of these terms
alone.

Index Terms— Magnetic resonance, Image reconstruc-
tion, Sparsity, Transform learning, Compressed Sensing

1. INTRODUCTION

Using sparsity as a regularizer for ill-conditioned inverse
problems has been an active research area in the last decade.
Sparse regularization and compressed sensing (CS) ideas
have also been applied to image reconstruction in Magnetic
Resonance Imaging (MRI). In the pioneering work [1], an
equivalent of the following optimization problem has been
introduced to regularize the MRI reconstruction problem.

min 3| Fx =yl + o1 @x[ + p2llxfrv. (D)

Here, x € C¥ is the reconstructed MR image in vectorized
form. J, is the undersampled Fourier transform operator
which realizes the conversion from the vectorized image to
the k-space. y = F,x* + n € C" is the observation vec-
tor in the k-space, where x* is the true underlying image and
7 is the additive noise. The ratio x/N quantifies the sever-
ity of undersampling. ||-||; denotes the ¢; norm for the ar-
gument vector. P is a sparsifying operator applied to the
reconstructed image vector. Throughout this paper we will
assume it to be a square wavelet transform. ||-||rv is the To-
tal Variation (TV) norm of the argument vector. TV is an-
other common sparse regularizer which has been shown to
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be beneficial in many image processing applications. In the
original Sparse MRI algorithm [1], a nonlinear conjugate gra-
dient method is used for the solution of (1). There are several
other approaches for solving (1) or its variants, including the
RecPF [2] and FCSA [3] algorithms. In these algorithms op-
erator and variable splitting methods are applied to solve the
composite regularization problem (1).

Examplar or patch based methods have also been very
popular for sparsity based image processing. Dictionary
learning (DL) based synthesis sparsity methods [4] or anal-
ysis sparsity [5] based analysis operator learning methods
have readily been applied in regularizing corpus of patches
extracted from images in a variety of image processing appli-
cations. Dictionary learning from patches has been applied
to MRI reconstruction in [6] in an algorithm called as the
DLMRI. The same authors have developed a novel model
for analysis sparsity operator learning, which they have
called as sparsifying transform learning (TL) [7]. Sparsifying
transform learning can train analysis sparsity operators in a
computationally efficient way when compared with other al-
gorithms [8]. The sparsifying transform learning over image
patches has been utilized to regularize the MRI reconstruction
problem in [9] resulting in the TLMRI algorithm. The results
in [6] and [9] indicate that sparse representation of image
patches over learned synthesis dictionaries or learned analy-
sis transforms can come up with state of the art performance
results for MRI reconstruction.

As discussed above, methods such as Sparse MRI [1],
RecPF [2] and FCSA [3] use (1). Hence, they apply global,
image-scale regularization on the reconstructed image x.
DLMRI [6] and TLMRI [9] algorithms utilize local, patch-
scale regularization via learned dictionaries or transforms.
However, they lack a global regularizing term. In this work,
we aim to bring these two ends together. Recently, a similar
idea has been presented in [10], where the DLMRI framework
is modified by adding a global TV cost and also by using a
different DL algorithm, namely beta process factor analysis
(BPFA). The resulting algorithm is called as the CS-MRI-
BPFA [10]. In this work on the other hand, we will introduce
a general global sparsifying cost into the TLMRI framework



and provide the algorithm for solving this modified problem.
Working in the transform learning domain we avoid the rather
costly dictionary learning step. The resulting algorithm has
an efficient reconstruction step realized via proximal split-
ting, which is different from the least squares step of TLMRI.
Our algorithm is also different from the DLMRI and CS-
MRI-BPFA algorithms, because these algorithms regularize
the image patches using synthesis sparsity over a learned dic-
tionary. The simulation results indicate that the merger of the
global [1] and local [9] regularization terms in our algorithm
results in reconstruction performance surpassing the usage of
either term alone.

2. TRANSFORM LEARNING MRI FORMULATION

TL framework for analysis sparse representation has been in-
troduced in [7]. The square TL approach has been applied to
patchwise regularization of MRI image reconstruction in [9].
The cost function as introduced in [9] can be stated as follows.

(PO) min [WX - A% +AQ(W) +7|R(x) - X%
W, X A

, X

+n|Fux—yl5, st legllo<s;Vi=1...M. (2)
|I|| 7 is the Frobenius matrix norm, and ||-||o denotes the ¢,
pseudo-norm. W € C™*" is the learned square transform
which enforces the transform sparsity in the vectorized patch
domain. X € C<M , and its columns X; € C™ denote vec-
torized 2D patches of size \/n x /n. The patches stored
in X are approximations for the patches of the reconstructed
image x, where the X patches also satisfy the transform spar-
sity model as dictated by the learned transform W. A €
C"*M includes the sparse codes for the patches in X, with
columns a; € C”. Q(-) represents the required penaliza-
tion term for the learned W to avoid degenerate solutions.
In the square transform setting considered here Q(W) =
[W]|% — log|det W|. We use a modified notation here, and
‘R is a patch generating operator, such that R(x) becomes a
patch matrix of the same size as X'. Each column of R(x)
is a patch vector extracted from its proper location by R;x,
Vi =1,....,M. R; € {0,1}"*¥ is the patch extracting
matrix for an individual patch. The allowed overlap between
patches and the patch size determine the number of patches
M and the required operator R.

The TLMRI algorithm as described by (P0O) applies lo-
cal patch scale regularization via a learned sparsifying trans-
form. The observation fidelity is enforced on the global im-
age using the || F,x — y||3 term as usual. The results in [9]
indicate that the patch level regularization has performance
surpassing state of the art reconstruction algorithms utilizing
sparse regularization via a nonadaptive global operator, such
as the wavelet plus TV regularization as in [1]. TLMRI has
better performance than the earlier DLMRI algorithm, which
enforces sparsity on the patches via a learned dictionary [6].

The complexity of TLMRI is much reduced when compared
to the DLMRI, because TLMRI avoids the NP-hard sparse
representation substeps. Still the TLMRI only applies regu-
larization at the patch level. It misses a global regularizer as
used in many recent algorithms, which have come up with
exact and efficient algorithms for the reconstruction [3]. In
this work we propose to include an additional global image
regularization term in the TLMRI framework. Our modified
new cost function together with the global regularizer is as
follows.

(P1) min
wW,X,A

)

WX — Al + \Q(W) + 5|l A|x

, X

+7|R(x) = X|F + 0] Fux —yl3 + | @x]i. ()

When compared with (P0), in (P1) firstly we have replaced
the £y norm constraints for the az; with an ¢; constraint via the
| All1 term, with [|A]l1 = >_/la;|1. The other and crucial
change is the introduction of the ||®x||; term. Simulations
will demonstrate that the addition of this global regularizer
enhances performance when compared to the TLMRI which
lacks this term. We will denote this modified framework as
the Globally regularized TLMRI (G-TLMRI). Next we will
try to devise an algorithm for the solution of the G-TLMRI
cost (P1) and underline its difference from the TLMRI.

3. THE G-TLMRI ALGORITHM

To solve the minimization problem (P1) (3), we utilize the
iterative alternating minimization procedure which has been
extensively used in dictionary and analysis operator learning
algorithms, and also in TLMRI [6]. As in TLMRI, we firstly
separate the algorithm into two steps with and without opti-
mization on x. The first stage should solve the following cost
with constant x.

(P2) min [|[WX - A|} + QW)
W, X, A

+ B AL+ 7 R(x) — X7 @)

We will divide (P2) into two in the following form similar to
the TLMRI.

(P2.1) min [|WX — A||% + AQ(W) + 5[lA[l1- (5a)
(P2.2) min [WA — AJ% + B[l Alls + TR (x) = 2|7 (5b)

(P2.1) is a transform learning problem, whereas (P2.2)
can be considered as patchwise denoising. This division de-
couples (P2) such that only a fraction of the patches can be
used for transform learning, whereas all patches can be used
for denoising. (P2.1) can be approximately solved using iter-
ative alternation over two steps [7, 8].

(P2.1.1) min WX — A%+ 8|l Allx. (6a)

(P2.12) min (WX — A||% + A\Q(W). (6b)



In [6] a similar iteration is devised for transform learning, al-
beit with the £y norm replacing the £; norm. Both (P2.1.1) and
(P2.1.2) have closed form solutions [6]. (P2.1.1) is solved by
simple soft thresholding [11]. The solution for (P2.1.2) in-
volves an SVD over the matrix L~ AH, where L is the

solution to X2 + \I = LL” . Here, I is the identity matrix
of the appropriate size and (-)* is the Hermitian transpose.

(P2.2) realizes patch denoising and dealiasing. Two alter-
nating steps for (P2.2) become as follows.

(P2.2.1) min WX — A|% + BllAlL. (Ta)
(P2.22) min [WX — A||% + 7| R(x) — X||%.  (7b)
X

(P2.2.1) is the same as (P2.1.1), hence it is solved by soft
thresholding. (P2.2.2) has a simple least squares solution for
fixed A given by (WHW +7I)"L(WH A+ 7R (x)). In [6],
it is advised to guarantee that the denoising error ||R(x) —
X |2 goes below a certain threshold C after solving (P2.2.2).
This translates into solving (P2.2.1) for a sequence of regular-
ization parameters until the required threshold is reached. We
have not realized this approach in our setting. Thus we have
stuck with a constant regularization parameter 3, as opposed
to the adaptive s; parameter of (P0). Eqns. (5-7) have defined
the algorithm for solving (P2).

Now, we are at the position to introduce the second main
step for the solution of (P1), namely the reconstruction step.

(P3) min 3| Fux—y 3+ 35 1R ()~ X5+ 55 ®xl1. (8)

We have normalized the regularization parameters as to leave
only two of them intact. Now, let us define the operator
R(X) = (E] R]T&j)./w. Here “./” is an elementwise
division. R is the image generating operator which adds
patches together in a suitable manner and normalizes the
overlapping pixel values with the proper constants in w as to
generate an averaged vectorized image. After this definition,
(P3) can be approximately rewritten as follows.

(P3) min § (| Fux—y|3+7'[lx=R(X)|3) +v|@x]l1. )

Now we define two functions g(x) = 1 ([|Fux — y||3+
7|lx — R(X)||3) and f(x) = v|®x|;. Hence, the cost in
(P3’) is of the form f(x) 4+ g(x), where g(x) is a smooth
and differentiable convex function and f(x) is a nonsmooth
and nondifferentiable convex function. This problem can be
solved very efficiently by proximal splitting methods. We
have in particular used the well-known forward-backward
splitting algorithm [12]. The forward-backward splitting
iterations consist of the below given two steps.

(P3.1) z=x—~Vyg(x).
(P3.2) x =x+ p(prox, ;(z) — x).

(10a)
(10b)

Algorithm 1 G-TLMRI Algorithm
Input: Observation, y =
A? /87 T7 TI7U7,77 /’l"

Goal: min |[WX — A|2 + QW) + 8| Alx
W, X A x

+ 7| R(x) = || % +n| Fux—yll5+0'|| @]

F.x* + m; parameters

Initialize x = .7-'5 y.

fori:=1,2,...do > main iteration
Initialize X = R(x). > denoising starts
Iterate (6), N7 times.
Iterate (7), N times.
Initialize x = R(X).
Iterate (10), N3 times.

end for > end of main iteration

Output reconstructed MR image x.

> reconstruction starts

D A A

Here, we have utilized constant values for the step-size ~
and relaxation parameter p. Using the above given def-
inition of the function ¢(-), its gradient is calculated as
Vy(x) =FH(F,x — y)+7/(x — R(X)). F is the ad-
joint operator of F,,, and it realizes zero-filled reconstruction.
The prox;,(-) operator denotes the proximal operator for the
function h. For f(x) = v||®x||1, prox. ,(-) is realized by
soft thresholding in the transform (@) domain with the proper
constant and consequently taking an inverse transform. In our
simulations we have utilized only a few (e.g. 5) iterations of
the forward-backward algorithm each time it is invoked, and
we have initialized it with x = R(X). We should note
that the modified reconstruction step (P3’) and its solution
constitute the main difference of our proposed method from
the TLMRI. The reconstruction step of the TLMRI which
lacks the global regularization term is simply solved by least
squares.

With the reconstruction step we have finalized the G-
TLMRI algorithm. Eqns. (3-10) and the corresponding
solutions constitute the G-TLMRI algorithm. We give a
condensed description of the G-TLMRI algorithm in Alg.1.

4. SIMULATION RESULTS

In this section we compare the reconstruction performance of
the new G-TLMRI algorithm with the original TLMRI [9],
the DLMRI' [6] and the FCSA? [3] algorithms. The trans-
form learning and denoising parts of the G-TLMRI and
TLMRI are realized with the exact same parameters and
methodology using (P2). This facilitates a fair comparison
and underlines the contribution of the novel global regular-
ization term in G-TLMRI. The patch size in all three patch
based algorithms is 6 x 6. We employ maximally overlapping
patches for denoising, but only a fraction (200 x 36) of these

Uhttp://www.ifp.illinois.edu/~yoram/DLMRI-Lab/DLMRI.html
Zhttp://ranger.uta.edu/~huang/R_CSMRILhtm



patches are used for training. The inner iteration numbers
are Ny = Ny = 10 and N3 = 5. The parameters for each
method are approximately optimized for the best SNR result.
For TLMRI and G-TLMRI A = 105, 8 = 10~2 and 7 = 1.
For G-TLMRI 7/ = 1073, v = 107%,y = 10, x = 0.1. For
FCSA which solves (1), p1 = 107! and p; = 5 x 1073,
DLMRI is realized using its publicly available code with
the parameters as optimized in [6]. The simulations are
repeated with the same parameters for two separate MR im-
ages of size (256 x 256). The downsampling ratio for F,
is ©/256% = 0.25 (4 fold downsampling) with a random
sampling mask in a noiseless setting. The simulations were
realized in Matlab on a computer with an Intel i7 CPU at
2.4GHz, 12GB memory and 64-bit operating system. The
signal-to-noise ratio (SNR) is calculated as follows: SNR
= 10log, (var(x*)/var(x — x*)), where var(-) denotes the
variance.

Fig.1 shows a sample undersampling mask in the k-space,
and also the original MR images. Figs. 2 and 3 detail the re-
constructed images and SNR curves for the brain and shoul-
der MR images, respectively. The local patch regularization
based TLMRI has better performance than the global regu-
larization based FCSA and also the DLMRI for both images.
However, it is also evident that the global regularization term
introduced in the novel G-TLMRI algorithm has a clear effect
on performance, as the G-TLMRI has almost a 2dB gain over
the TLMRI. Hence, we can state that the use of both the lo-
cal patch regularization and global sparse regularization terms
together has resulted in performance gain when compared to
the use of these terms alone. The execution times per iteration
for the different methods are given in Table 1. The non-patch,
globally regularizing FCSA is clearly the fastest. G-TLMRI
is only very slightly slower than the TLMRI. DLMRI is the
slowest due to its use of NP-hard sparse representation steps.

Table 1: Time per iteration for the algorithms.

Algorithm || G-TLMRI | TLMRI | DLMRI | FCSA
159 [ 155 [ 417 ]0.025

Time (sec) ||

5. CONCLUSIONS

We have presented a new algorithm called as G-TLMRI for
MRI reconstruction. G-TLMRI algorithm builds upon the
patch level sparsification approach of the previously intro-
duced TLMRI. G-TLMRI introduces a sparsity based but this
time global regularizer into the TLMRI framework. The per-
formance of G-TLMRI is compared with TLMRI and two
other recent methods from the literature. Simulation results
indicate that G-TLMRI has reconstruction performance ex-
ceeding all three of these competing methods. Hence, we can
state that the combination of the local and global regulariza-
tion terms as in G-TLMRI has some merit which deserves
further study.
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Fig. 1: Sampling mask in k-space with 4-fold undersampling (a), the original MRI test images (b,c).
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Fig. 2: Brain image results. First row: Zero-filling recon-
struction (left), G-TLMRI reconstruction (right). Second row:
TLMRI reconstruction (left), FCSA reconstruction (right).
Third row: SNR versus iteration.
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Fig. 3: Shoulder image results. First row: Zero-filling recon-
struction (left), G-TLMRI reconstruction (right). Second row:
TLMRI reconstruction (left), FCSA reconstruction (right).
Third row: SNR versus iteration.



