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Abstract—In this letter the RLS adaptive algorithm is consid-
ered in the system identification setting. The RLS algorithm is
regularized using a general convex function of the system impulse
response estimate. The normal equations corresponding to the
convex regularized cost function are derived, and a recursive
algorithm for the update of the tap estimates is established.
We also introduce a closed-form expression for selecting the
regularization parameter. With this selection of the regularization
parameter, we show that the convex regularized RLS algorithm
performs as well as, and possibly better than, the regular RLS
when there is a constraint on the value of the convex function
evaluated at the true weight vector. Simulations demonstrate
the superiority of the convex regularized RLS with automatic
parameter selection over regular RLS for the sparse system
identification setting.

Index Terms—Adaptive filter, RLS, convex regularization,
sparsity, l1 norm, l0 norm. EDICS: SAS-SYST, SAS-ADAP.

I. INTRODUCTION

The last decade has seen a flurry of activities in regu-
larization of an otherwise ill-posed inverse problem by a
convex, most of the time sparsity based prior. The sparsity
prior utilizes the knowledge that the object to be recovered is
sparse in a certain, known representation. The replacement of
the nonconvex ℓ0 pseudo-norm as a count for sparsity with
the convex ℓ1 norm has led to new data acquisition paradigms
introduced under Compressive Sensing [1], and it has found
numerous applications including sparse channel estimation [2].

These advances in sparse signal representation have also
impacted sparse adaptive system identification. In [3], the au-
thors propose to modify the LMS cost function by addition of
a convex approximation for the ℓ0 norm penalty. The resulting
sparsity enhancing LMS variant is called as the ℓ0-LMS. The
authors of [4] propose to regularize the LMS cost function
by adding an ℓ1 norm term or a log-sum term. They have
recently considered the regularization of the LMS algorithm
by a general convex function [5]. ℓ1-norm regularized recur-
sive least squares (RLS) adaptive algorithms have also been
suggested in the literature. The SPARLS algorithm [6] presents
an expectation-maximization (EM) approach for sparse system
identification. The authors of [7] propose the application of an
online coordinate descent algorithm together with the least-
squares cost function penalized by an ℓ1-norm term. Another
RLS algorithm for sparse system identification is proposed in
[8], where the RLS cost function is regularized by adding a
weighted ℓ1 norm of the current system estimate. Adaptive
sparse system identification has been recently successfully
extended to nonlinear systems [9], [10].

In this letter we consider regularization of the RLS cost
function in a manner alike to the approach as outlined in [8].
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However, here the regularizing term is defined as a general
convex function of the system estimate, rather than being de-
fined specifically as the weighted ℓ1 norm. This generalization
allows utilization of any convex function for regularization,
which permits one to exploit a much more general class of
prior knowledge about the system to be identified, rather than
being limited only to sparsity. We develop the update algorithm
for the convex regularized RLS using results from subgradient
calculus. Additionally, we develop conditions on the proper
selection of the regularization parameter. We prove that if the
regularization parameter is selected accordingly, the convex
regularized RLS algorithm performs as well as, if not better
than, the regular RLS algorithm in terms of the mean square
deviation (MSD) of the tap estimates. We consider ℓ1 norm
and smoothed ℓ0 norm as examples for regularizing convex
functions. Simulations demonstrate that the resulting ℓ1-RLS
and ℓ0-RLS algorithms outperform the regular RLS in the
sparse system identification setting.

II. CONVEX REGULARIZED RLS ALGORITHM

We first review the adaptive input-output system identifica-
tion setting.

yn = wTxn + ηn (1)

w = [w0, w1, . . . , wN−1]
T ∈ RN is the impulse re-

sponse for the FIR system to be identified. xn =
[xn, xn−1, . . . xn−N+1]

T ∈ RN is the input vector where
xn is the input signal. yn is the desired output signal, and
ηn denotes the observation noise at time n. The estimate
for the system tap vector at time n is given by wn =
[w0,n, w1,n, . . . , wN−1,n]

T ∈ RN . The regular RLS cost
function with exponential forgetting factor λ is defined as

En =
n∑

m=0

λn−m(em)2. (2)

Here, en is the instantaneous error between the desired output
and estimated system output.

en = yn −wT
nxn = (wT −wT

n )xn + ηn (3)

We modify the RLS cost function by the addition of convex
function of the instantaneous system estimate. This convex
penalty function can be chosen to reflect any prior knowledge
about the true system, including but not limited to sparsity.

Jn =
1

2
En + γnf(wn) (4)

f : RN → R is a general convex function. γn > 0 is the
possibly time-varying regularization parameter which governs
the compromise between the effect of the regularizing convex
function term and the estimation error. We wish to find the
optimal system tap vector ŵn which minimizes the regularized
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cost function Jn. For convex and nondifferentiable functions
subgradient analysis offers a substitute for the gradient when
finding this minimum [11]. At any point ν where the convex
function f fails to be differentiable, there exist possibly many
valid subgradient vectors. All the subgradients together are
called as the subdifferential of f and is designated by ∂f(ν).
We denote a subgradient vector of f at ν with ∇sf(ν) ∈
∂f(ν). A valid subgradient vector of Jn with respect to
wn can be written as follows, by using the fact that En is
differentiable everywhere.

∇sJn =
1

2
∇En + γn∇sf(wn) (5)

One theorem from the subdifferential calculus states that a
point ν̂ ∈ RN minimizes a convex function f if and only
if 0 ∈ ∂f(ν̂), that is if 0 is a subgradient of f at ν̂ [11].
Hence, to find the optimal ŵn which minimizes Jn we set the
subgradient of Jn as given in (5) equal to 0. After evaluating
the gradient ∇En and setting the subgradient ∇sJn equal to
0, the relation for the ith term reads as follows.

n∑
m=0

λn−m
{
ym −

N−1∑
k=0

ŵk,nxm−k

}
xm−i = γn

{
∇sf(ŵn)

}
i

(6)
The relations for all i = 0, . . . , N − 1 can be written together
in a matrix form as a set of modified normal equations.

Φnŵn = rn − γn∇sf(ŵn) (7)

Φn ∈ RN×N is the deterministic autocorrelation matrix
estimate for the input signal xn.

Φn =

n∑
m=0

λn−mxmxT
m = λΦn−1 + xnx

T
n (8)

rn ∈ RN is the deterministic cross-correlation estimate vector
between yn and xn.

rn =
n∑

m=0

λn−mymxm = λrn−1 + ynxn (9)

Φn and rn both have rank-one update equations associated
with them. For the right hand side of (7) a new variable θn

can be defined.

θn = rn − γn∇sf(ŵn) (10)

The update equation (9) and the definition (10) together
lead to an update equation for θn. Assuming that γn−1 and
∇sf(ŵn−1) do not change considerably over a single time
step, this update equation can be approximately written as

θn≈λθn−1 + ynxn − γn−1(1− λ)∇sf(ŵn−1). (11)

We define the inverse of the autocorrelation matrix by Pn =
Φ−1

n . Using the matrix inversion lemma and (8), there is a
well-known update equation for Pn.

Pn = λ−1
{
Pn−1 − knx

T
nPn−1

}
(12)

kn is the gain vector defined as kn =
Pn−1xn

λ+xT
nPn−1xn

. The
normal equation (7) can be rewritten as follows.

ŵn = Pnθn (13)

Algorithm 1 Convex Regularized-RLS (CR-RLS) algorithm.

λ, δ, xn, yn, ŵ−1 = 0, P−1 = δ−1IN ◃ inputs

1: for n := 0, 1, 2, . . . do ◃ time recursion

2: kn =
Pn−1xn

λ+ xT
nPn−1xn

◃ gain vector

3: ξ̂n = yn − ŵT
n−1xn ◃ a priori error

4: Pn =
1

λ

[
Pn−1 − knx

T
nPn−1

]
5: ŵn = ŵn−1 + ξ̂nkn − γn−1(1− λ)Pn∇sf(ŵn−1)

6: end for ◃ end of recursion

After evaluating (13) using the recursions (11) and (12), we
come up with the following update equation for ŵn.

ŵn = ŵn−1 + knξ̂n − γn−1(1− λ)Pn∇sf(ŵn−1) (14)

where ξ̂n = yn − ŵT
n−1xn is the a priori estimation error. Let

us remember the update equation for the standard a priori RLS
algorithm.

w̃n = w̃n−1 + knξ̃n = w̃n−1 + kn

(
yn − w̃T

n−1xn

)
(15)

Equation (14) differs from the standard RLS algorithm update
equation (15) with the inclusion of the rightmost term. Equa-
tion (14) summarizes an adaptive algorithm which calculates
(approximately) the solution to the convex regularized normal
equation as given in (7). We entitle this adaptive RLS based
algorithm as the “Convex Regularized-RLS” (CR-RLS). The
CR-RLS algorithm is summarized in Algorithm 1.

III. SELECTION OF THE REGULARIZATION PARAMETER

The cost function in (4) includes the γnf(wn) penalty term
to put to use some a priori knowledge about the true system.
The convex function f formalizes this a priori information.
We assume that this a priori information is in the form of a
constraint on the true system parameters w given as follows,

f(w) ≤ ρ (16)

where ρ denotes an upper bound constant. ŵn is the solution to
the convex regularized normal equation (7). w̃n is the solution
to the nonregularized normal equation given as Φnw̃n = rn or
w̃n = Pnrn. We denote the deviation of the system estimates
from the true system parameters as ϵ̂n = ŵn −w and ϵ̃n =
w̃n −w. From (7) it follows that

ϵ̂n = ϵ̃n − γnPn∇sf(ŵn). (17)

The instantaneous square deviation for ϵ̂n is calculated below,

D̂n = ϵ̂Tn ϵ̂n = ∥ϵ̂n∥22
= D̃n − 2γn∇sf(ŵn)

TPnϵ̃n + γ2
n∥Pn∇sf(ŵn)∥22

(18)

where D̃n = ∥ϵ̃n∥22. Equation (18) leads to the following
theorem.
Theorem 1. D̂n ≤ D̃n if γn ∈

[
0,max(γ̂n, 0)

]
, where

γ̂n = 2
∇sf(ŵn)

TPnϵ̃n
∥Pn∇sf(ŵn)∥22

. (19)
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Proof: From (18) it is obvious that D̂n ≤ D̃n as long as
γ2
n∥Pn∇sf(ŵn)∥22 − 2γn∇sf(ŵn)

TPnϵ̃n ≤ 0. This condi-
tion can be rewritten as

γ2
n∥Pn∇sf(ŵn)∥22 ≤ 2γn∇sf(ŵn)

TPnϵ̃n. (20)

We only allow γn ≥ 0, hence when ∇sf(ŵn)
TPnϵ̃n < 0

the above inequality holds only for γn = 0 and becomes an
equality. If ∇sf(ŵn)

TPnϵ̃n ≥ 0, for the inequality to hold
γn can be any value between 0 and γ̂n as given in (19). �

Theorem 1 states that the CR-RLS algorithm provides an
MSD as low as, and possibly lower than, that of the regular
RLS algorithm, if γn is chosen using (19). However, it is not
possible to evaluate γ̂n in (19), because it refers to ϵ̃n and
hence to w. Now we will try to find a calculable approximation
to γ̂n by replacing ϵ̃n. ϵ̃n can be rewritten as,

ϵ̃n = w̃n −w = (ŵn −w) + (w̃n − ŵn)

= ϵ̂n + ϵ′n
(21)

where ϵ′n = w̃n − ŵn. At this stage γ̂n of (19) becomes

γ̂n = 2
∇sf(ŵn)

TPn(ϵ̂n + ϵ′n)

∥Pn∇sf(ŵn)∥22
. (22)

There are two terms in the right hand side nominator of (22).
The term ∇sf(ŵn)

TPnϵ
′
n is calculable. ϵ′n employs w̃n,

the calculation of which would only require O(N) additional
operations per time step in Algorithm 1. The second term is

∇sf(ŵn)
TPnϵ̂n = ∇sf(ŵn)

TPn(ŵn −w). (23)

From the definition of the subgradient for a convex function
f [11] and using (16) the following holds.

∇sf(ŵn)
T (ŵn −w)>f(ŵn)− f(w)>f(ŵn)− ρ (24)

Assuming the input is white and n is large enough, the
following inequality can be deduced using (24).

∇sf(ŵn)
TPnϵ̂n>

tr(Pn)

N

(
f(ŵn)− ρ

)
(25)

Here, tr(·) denotes the matrix trace operator. With (25), the
γ̂n expression in (22) modifies into

γ̂n>γ′
n = 2

tr(Pn)
N

(
f(ŵn)− ρ

)
+∇sf(ŵn)

TPnϵ
′
n

∥Pn∇sf(ŵn)∥22
. (26)

Equation (26) presents a calculable approximation γ′
n for

γ̂n in the case of white input. The instantaneous regular-
ization parameter can be automatically updated by γn ∈[
0,max(γ′

n, 0)
]

as suggested by Theorem 1, where γ′
n is

calculated using (26). The operational complexity of Algo-
rithm 1 with automatic γn update via (26) will be O(N2) per
iteration, just like the regular RLS.

IV. SIMULATION RESULTS

We will employ two sparsity inducing convex penalty func-
tions in the CR-RLS algorithm and analyze their performances
in sparse system identification. The true measure of sparsity
is the ℓ0 pseudo-norm, which is known to be a nonconvex
function. One obvious convex relaxation option for the ℓ0
sparsity measure is the ℓ1 norm. For this choice f(w) =

∥w∥1 =
∑N−1

k=0 |wk|, where a corresponding subgradient is
calculated as ∇s(∥w∥1) = sgn(w) [4], [8]. Here sgn(·) is
the component-wise sign function. The CR-RLS algorithm
resulting from this choice of f is equivalent to the ℓ1-RLS
algorithm as outlined in [8].

Another choice for convexly relaxing ℓ0 is the approxima-
tion as given below [3],

∥w∥0≈fβ(w) =
N−1∑
k=0

(
1− e−β|wk|

)
(27)

where β is an appropriate constant. A subgradient for (27) is
approximately calculated as [3],

∇sfβ(w)k≈

{
β sgn(wk)− β2wk, |wk|6 1

β

0, elsewhere
. (28)

This cost function with the corresponding subgradient has been
utilized in the LMS context, and the resulting algorithm has
been called as the ℓ0-LMS [3]. Fittingly, we entitle the novel
algorithm which results from utilizing the cost function (27)
in the CR-RLS approach as the ℓ0-RLS algorithm.

In the experiments the true system function w has a total of
N = 64 taps, where only S of them are nonzero. The nonzero
coefficients are positioned randomly and take their values from
a N (0, 1

S ) distribution. The input signal is xn ∼ N (0, 1), and
measurement noise is ηn ∼ N (0, σ2), where σ2 is chosen to
fulfill the desired SNR. The CR-RLS algorithms are realized in
two different modes, first with constant γn = γ and secondly
with automatic γn selection using (26). For constant case, γ is
found as the optimum value which results in minimum steady-
state MSD using repeated simulations. For the automatic case
γn = max(γ′

n, 0), where γ′
n is calculated at each time instant

via (26). The ρ value is taken to be the true value of f(w),
that is for ℓ1-RLS ρ = ∥w∥1 and for ℓ0-RLS ρ = ∥w∥0. We
also implement the regular RLS, the SPARLS of [6] 1 and an
oracle RLS algorithm. For SPARLS the algorithm parameters
are fine-tuned as to result in minimum steady-state MSD. The
oracle RLS is the regular RLS algorithm where the positions
of the true nonzero system parameters are known. For all
algorithms λ = 0.995, δ = 1, and each simulation setting
is averaged over 2000 independent realizations. For SPARLS
α = 0.005 and for ℓ0-RLS β = 50.

In the first experiment we realize the algorithms for S = 4
and SNR = 20 dB. For ℓ1-RLS the optimum γ = 1.5, for ℓ0-
RLS the optimum γ = 0.2 and for SPARLS γ = 150. We plot
the variation of the MSD versus iteration number in Fig.1. The
oracle RLS has the best performance as expected. On the other
hand, CR-RLS algorithms present considerable improvement
over the regular RLS. The ℓ0-RLS has better performance than
ℓ1-RLS and SPARLS, and it is not very far off from the oracle.
The CR-RLS variants with automatic regularization parameter
selection converge to almost the same MSD values as the CR-
RLS algorithms with the ad hoc, optimally selected γ. Hence,
we can state that (26) presents a viable systematic method
for automatically selecting γn in the white input case, rather
than resorting to improvisation of a parameter value for each
simulation setting.

1The authors of [6] did generously share their code for simulations.
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Fig. 1. Performance of different algorithms for S = 4 and SNR = 20 dB.

TABLE I
STEADY-STATE MSD FOR DIFFERENT SPARSITY VALUES.

SNR = 20 dB S = 2 S = 4 S = 8 S = 64

RLS 1.7×10−3 1.7×10−3 1.7×10−3 1.7×10−3

Auto ℓ1-RLS 7.6×10−4 8.6×10−4 1.1×10−3 1.7×10−3

SPARLS [6] 2.3×10−4 4.1×10−4 6.2×10−4 1.7×10−3

Auto ℓ0-RLS 1.3×10−4 1.9×10−4 3.2×10−4 1.7×10−3

Oracle RLS 5.0×10−5 1.0×10−4 2.0×10−4 1.7×10−3

As a second experiment we consider the effect of the spar-
sity on the algorithm performance. We simulate the algorithms
with SNR = 20 dB and for S = 2, 4, 8 and 64, where
S = 64 corresponds to a completely non-sparse system. The
respective parameters for SPARLS are γ = {150, 150, 100, 0}.
The steady-state MSD values at the end of 1000 iterations for
the algorithms are given in Table 1. Table 1 shows that RLS
performance does not vary with sparsity. Performance of the
other algorithms deteriorate with decreasing sparsity, where
for S = 64 all MSD values become equivalent. The CR-RLS
algorithms have better performance than RLS when sparsity
is present, and they gracefully converge to the RLS algorithm
with decreasing sparsity. We also did simulations for S = 4
where ρ is chosen nonideally as ρ = 10× f(w). The steady-
state MSD for ℓ0-RLS comes out as 3.3×10−4, and for ℓ1-RLS
it comes out as 1.7 × 10−3. These results suggest that rough
selection of ρ leads to a detoriation of performance for the
CR-RLS algorithms, and it can be stated that for very large ρ
values the CR-RLS algorithms approach the regular RLS.

In Fig. 2, we plot the MSD curves of auto ℓ0-RLS and
RLS with varying S for SNR = 20 dB. The curves affirm
that auto ℓ0-RLS performs better when sparsity is present and
converges to the regular RLS when sparsity vanishes. There
is no need for tweaking any parameters for the automatic CR-
RLS algorithms depending on the simulation scenario.

V. CONCLUSIONS

In this letter we introduced a convex regularized RLS
approach for adaptive system identification, when there is a
priori information about the true system formalized in the form

200 400 600 800 1000

10
−4

10
−3

10
−2

10
−1

10
0

iteration

M
S

D

RLS

Auto l0−RLS (S = 64)

Auto l0−RLS (S = 32)

Auto l0−RLS (S = 16)

Auto l0−RLS (S = 8)

Auto l0−RLS (S = 4)

Auto l0−RLS (S = 2)

Fig. 2. Performance of auto ℓ0-RLS and RLS under SNR = 20 dB and for
varying S.

of a convex function. We develop the update steps for the
resulting algorithm by employing subgradient analysis on the
convex regularized cost function. We also present a closed-
form expression for the automatic selection of the regulariza-
tion parameter in the case of white input. Simulation results
suggest that the automatic parameter selection works almost
as well as optimizing a constant regularization parameter
manually. Simulations also show that the introduced ℓ1-RLS
and ℓ0-RLS algorithms with automatic parameter selection
show better performance than RLS in the sparse setting, and
that they gracefully converge to the regular RLS algorithm
when sparsity vanishes.

REFERENCES

[1] E. J. Candes and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar.
2008.

[2] C. R. Berger, Z. Wang, J. Huang, and S. Zhou, “Application of
compressive sensing to sparse channel estimation,” IEEE Commun.
Mag., vol. 48, no. 11, pp. 164–174, Nov. 2010.

[3] Y. Gu, J. Jin, and S. Mei, “l0 norm constraint LMS algorithm for sparse
system identification,” IEEE Signal Process. Lett., vol. 16, no. 9, pp.
774–777, Sept. 2009.

[4] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,”
in Proc. ICASSP, 19–24 April 2009, pp. 3125–3128.

[5] Y. Chen, Y. Gu, and A. O. Hero, “Regularized Least-Mean-
Square Algorithms,” ArXiv e-prints, Dec. 2010, [Online]. Available:
http://arxiv.org/abs/1012.5066v2.

[6] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The sparse RLS
algorithm,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4013–4025,
Aug. 2010.

[7] D. Angelosante, J.A. Bazerque, and G.B. Giannakis, “Online adaptive
estimation of sparse signals: Where RLS meets the ℓ1-norm,” IEEE
Trans. Signal Process., vol. 58, no. 7, pp. 3436–3447, July 2010.

[8] E. M. Eksioglu, “Sparsity Regularized RLS Adaptive Filtering,” IET
Signal Process., Feb. 2011, to be published.

[9] N. Kalouptsidis, G. Mileounis, B. Babadi, and V. Tarokh, “Adaptive
algorithms for sparse system identification,” Signal Process., vol. 91,
no. 8, pp. 1910–1919, Aug. 2011.

[10] G. Mileounis, B. Babadi, N. Kalouptsidis, and V. Tarokh, “An adaptive
greedy algorithm with application to nonlinear communications,” IEEE
Trans. Signal Process., vol. 58, no. 6, pp. 2998–3007, June 2010.

[11] D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex Analysis and
Optimization, Athena Scientific, Cambridge, Massachusetts, 2003.


