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Abstract: A new exact method of measuring the Volterra kernels of finite order discrete

nonlinear systems is presented. The kernels are rearranged in terms of multivariate cross-

products in the vector form. The one-, two-, . . . , and `-dimensional kernel vectors are

determined using a deterministic multilevel sequence with ` distinct levels at the input

of the system. It is shown that the defined multilevel sequence with ` distinct levels
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novel method for estimation of the kernels are presented. Simulation results are given to

illustrate the effectiveness of the proposed method.
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I. INTRODUCTION

Nonlinear system identification is important due to the shortcoming of linear models

when applied to inherently nonlinear problems which are abundant in real life applications

[1]-[9]. Typical examples include trying to relate two signals whose significant spectral

components do not overlap, satellite communication channels [3]-[5] where amplifiers are

operated near saturation or magnetic recording channels [6]. The truncated (or “doubly

finite”) Volterra series representation constitutes an appealing nonlinear system model,

since the output is linearly dependent on the kernel parameters, hence making the iden-

tification process mathematically tractable [1], [7]. The most common class of Volterra

system identification methods include cross-correlation methods based on random inputs

[8]-[15]. In this class some effort has been directed towards Gaussian inputs [2], [13] be-

cause their higher order moments are tractable. However the results are non-trivial and

prone to error due to their sequential nature where error in one kernel estimate propagates

to the next. In similar vein use of phase shfit keying (PSK) inputs which also have many

vanishing moments has been considered [15]. With these sequences, the Volterra kernels

are made orthogonal to each other and they are estimated separately. However, still the

closed form results depend on higher order cumulants and hence necessitate relatively

long input sequences. Harmonic probing methods using multitone signals to determine

frequency domain Volterra kernels have also been developed [16], [17]. Another attractive

approach [18] is the use of pseudorandom multilevel sequences (PRMS). Encouraged by

the use of pseudorandom binary sequences (PRBS) for linear system identification, PRMS

which can be chosen to be persistently exciting for any finite order Volterra system were

considered for nonlinear system identification. However, as stated in [18] PRMS include

input sequences which are redundant for the identification of a regular Volterra system.

The condition on the order of the PRMS to guarantee persistence of excitation is neces-

sary for the extended Volterra filter, which is introduced using Kronecker products [18].

However, this condition is sufficient but not necessary for the regular Volterra filter and

this introduces redundancy. The PRMS includes input sequences which are unnecessary

when the system under consideration is a regular Volterra filter.

In this work, we focus on deterministic excitation sequences for the identification of
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nonlinear systems modelled using the truncated Volterra series representation. A similar

approach was used in [19] for the continuous-time case and it was shown that a pth-order

kernel can be completely determined using p distinct impulses at the input of the system.

This method was applied to the discrete-time two-dimensional (2-D) quadratic filters in

[20]. However, for higher order systems because of the high complexity of this approach

no practical applications were devised [1, pp.38-39].

This paper proposes a novel partitioning of the Volterra kernels, resulting in simple

closed form solutions when deterministic multilevel input sequences are used. Kernels

are estimated separately hence error propagation is prevented. A scheme where kernels

are calculated using past outputs rather than using lower order kernel estimates provides

robustness to noise and simplicity of implementation. Special matrices, which can be

calculated recursively are utilized to form the input ensembles and to pick up the correct

past outputs which should be subtracted. These matrices supply us with a closed form

formula, and the high complexity problem which impeded the use of the algorithm in [19]

for higher order systems is overcome. Our algorithm utilizes only the necessary input

sequences and eliminates redundancy. The proposed identification algorithm is simulated

for two Volterra systems of different orders and memory lengths, and its performance is

compared with existing algorithms [15], [18].

The paper is organized is as follows: Section II describes the novel partitioning of

the Volterra kernels, which is called as the multivariate kernel vector representation and

proves the equivalence between this setup and the regular Volterra parameterizations.

Section III describes the method to identify the Volterra kernel vectors using multilevel

deterministic input signals. The algorithm is first described for 1-D kernel vectors, then

for 2-D and 3-D kernel vectors and the necessary matrices are defined in a step-by-step

fashion. Then, the algorithm is generalized to the identification of the `-D kernel vectors.

Section IV discusses the persistence of excitation of the multilevel input sequence. The

condition number of the matrices whose inverses appear in the algorithm and the problem

of ill-conditioning are discussed. Section V contains numerical studies demonstrating

the algorithm and comparing its performance to PRMS and PSK excitations. Lastly,

comments and concluding remarks are provided in Section VI.
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II. MULTIVARIATE KERNEL VECTOR REPRESENTATION

In this section, the M th-order discrete Volterra system is reformulated in terms of the

multivariate cross-term complexity. The M th-order system N [·] under consideration can

be modelled by the following triangular representation:

y(n) = N [x(n)]

=
M
∑

k=1

N
∑

i1=0

N
∑

i2=i1

· · ·
N
∑

ik=ik−1

bk (i1, i2, . . . , ik) x(n − i1)x(n − i2) · · · x(n − ik)
(1)

where N is the memory length of the nonlinear system and bk (i1, i2, . . . , ik) is the triangular

Volterra kernel of degree k [1]. In this section, a new representation for the Volterra system

is developed utilizing a rearrangement of the Volterra kernels. The nonlinear system output

y(n) is decomposed as the sum of the outputs of the M different multivariate cross-term

nonlinear subsystems, H(`); that is

y(n) = N [x(n)] =
M
∑

`=1

y(`)(n) (2a)

in which

y(`)(n) = H(`)[x(n)] (2b)

H(`)[x(n)] =















N
∑

i=0

h(1)T

(i) x(1)(n − i) for ` = 1

Q1
∑

q1=1

· · ·
Q`−1
∑

q`−1=1

N−q̄`−1
∑

i=0

h(`)T

(q1, . . . , q`−1; i) x(`)(q1, . . . , q`−1; n − i) for 2 6 ` 6 M

(2c)

where Qj = N + 1 + j − ` − q̄j−1 for j = 1, . . . , ` − 1 with q̄m = q1 + · · · + qm and

q̄0 = 0. In this representation, the symbol H(`)[·], which represents ` summations, is called

as an `-D cross-term Volterra subsystem and h(`)(q1, . . . , q`−1; i) is called as an `-D kernel

vector. The 1-D kernel vectors h(1)(i) and the corresponding input vectors x(1)(n) can be

formulated in terms of the triangular kernels and the input signal x(n), respectively.

h(1)(i) = [b1(i) b2(i, i) · · · bM(i, . . . , i)]T (3a)

x(1)(n) =
[

x(n) x2(n) · · · xM(n)
]T

(3b)
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The `-D input vector in (2c) can be expressed in the following form:

x(`) (q1, . . . , q`−1; n) =

















x
(`)
` (q1, . . . , q`−1; n)

x
(`)
`+1(q1, . . . , q`−1; n)

...

x
(`)
M (q1, . . . , q`−1; n)

















(4a)

in which

x
(`)
k (q1, . . . , q`−1; n) ≡

[

x
(p1,··· ,p`)
k (q1, . . . , q`−1; n)

]

σ(p1,...,p`)
. (4b)

The subinput vectors x
(`)
k (q1, . . . , q`−1; n)’s for k = `, ` + 1, . . . ,M in (4a) consist of all

possible inputs of degree k,

x
(p1,··· ,p`)
k (q1, . . . , q`−1; n) = xp1(n) xp2(n − q1) · · · xp`(n − q1 − · · · − q`−1). (5)

σ(p1, p2, . . . , p`) defines
(

k−1
`−1

)

=
(

k−1
k−`

)

= Ck−1,`−1 combinations for pi = 1, 2, . . . , k − ` and

p1+p2+· · ·+p` = k and k = `, `+1, . . . ,M . Hence, we get the Ck−1,`−1 terms of the subin-

put vector in (4b). For example, for ` = 3 and k = 5, all possible combinations (C4,2 = 6)

can be written as σ(p1, p2, p3) = (1, 1, 3), (1, 2, 2), (1, 3, 1), (2, 2, 1), (2, 1, 2), (3, 1, 1).

Therefore, the `-D input vector in (4a) has a total of CM,` =
M
∑

k=`

Ck−1,`−1 terms. Similarly,

the corresponding `-D kernel vector in (2c) can be rewritten in terms of subkernels as

h(`)(q1, . . . , q`−1; i) =

















h
(`)
` (q1, . . . , q`−1; i)

h
(`)
`+1(q1, . . . , q`−1; i)

...

h
(`)
M (q1, . . . , q`−1; i)

















(6a)

in which

h
(`)
k (q1, . . . , q`−1; i) ≡

[

h
(p1,p2,···p`)
k (q1, . . . , q`−1; i)

]

σ(p1,p2,...,p`) (6b)

where the subkernel vector h
(`)
k (q1, . . . , q`−1; i) consists of all possible kernels of degree k

with ` cross-terms corresponding to the subinput vector x
(`)
k (q1, . . . , q`−1; n − i). How-

ever, there exists an equivalent triangular kernel bk(i1, i2, . . . , ik) as given in (1) for each

component of the subkernel vector h
(`)
k (q1, . . . , q`−1; i) in (6a);

h
(p1,p2,...,p`)
k (q1, . . . , q`−1; i) = bk(i1, i2, . . . , ik)
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where

ij =































i for 1 6 j 6 p1

i + q1 for p1 + 1 6 j 6 p1 + p2

...
...

i + q1 + · · · + q`−1 for p1 + · · · + p`−1 + 1 6 j 6 p1 + · · · + p`

Example 2.1: Let us give an example for the novel representation for a system with

M = 3 and N = 1. The triangular representation is given by:

y(n) = b1(0)x(n) + b1x(n − 1) + b2(0, 0)x
2(n) + b2(0, 1)x(n)x(n − 1) + b2(1, 1)x

2(n − 1)

+ b3(0, 0, 0)x3(n)+ b3(0, 0, 1)x
2(n)x(n−1)+ b3(0, 1, 1)x(n)x2(n−1)+ b3(1, 1, 1)x

3(n−1)

(7)

Since N = 1, we do not have any three cross-term nonlinear subsystem. Then,

y(n) =
1
∑

i=0

h(1)T

(i) x(1)(n − i) + h(2)T

(1; 0) x(2)(1; n)

where

h(1)(i) =











h
(1)
1 (i)

h
(1)
2 (i)

h
(1)
3 (i)











=











b1(i)

b2(i, i)

b3(i, i, i)











, for i = 0, 1

x(1)(n − i) =











x
(1)
1 (n − i)

x
(1)
2 (n − i)

x
(1)
3 (n − i)











=











x(n − i)

x2(n − i)

x3(n − i)











, for i = 0, 1

h(2)(1; 0) =





h
(2)
2 (1; 0)

h
(2)
3 (1; 0)



 =











h
(2)
2 (1; 0)

h
(2,1)
3 (1; 0)

h
(1,2)
3 (1; 0)











=











b2(0, 1)

b3(0, 0, 1)

b3(0, 1, 1)











x(2)(1; n) =





x
(2)
2 (1; n)

x
(2)
3 (1; n)



 =











x
(2)
2 (1; n)

x
(2,1)
3 (1; n)

x
(1,2)
3 (1; n)











=











x(n)x(n − 1)

x2(n)x(n − 1)

x(n)x2(n − 1)











Remark 2.1: The cross-product kernel representation presented in this section does

not increase the number of kernels in the triangular form, i.e., Ctri in (1). However, many
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identification procedures presented in the recent years require high number of unnecessary

kernel computations, [18], [21]. The number of kernels in the cross-term representation is

Ccross =
M
∑

`=1

(

M

`

)(

N+1
`

)

. It is not difficult to show that these numbers are the same, i.e.,

Ctri = Ccross =
(

N+M+1
M

)

− 1.

Remark 2.2: Another way to think about (2c) is as a parallel combination of 1-D

LTI filters. If we define new filters h
(`)
(q1,...,q`−1)(n) = h(`)(q1, . . . , q`−1; n) and new signals

x
(`)
(q1,...,q`−1)(n) = x(`)(q1, . . . , q`−1; n), then (2c) can be rewritten as

y(`)(n) =

Q1
∑

q1=1

· · ·

Q`−1
∑

q`−1=1

h
(`)T

(q1,...,q`−1)(n) ∗ x
(`)
(q1,...,q`−1)(n)

where ∗ is the convolution operation. A similar break-up of the Volterra system was

proposed in [22]. It is called as the Diagonal Coordinate Representation (DCS) for the

discrete-time finite memory Volterra filters. There, the output of the nth-order trian-

gular Volterra kernel is expressed as a sum of 1-D convolutions, where the linear filter

coefficients are obtained from the diagonals of the sampled hypercube defined by the tri-

angular Volterra kernels. This representation parallels the one used for the identification

of continuous-time Volterra filters given in [19]. Our representation is similar to the DCS,

in that the linear filter coefficients in DCS are given in a coordinate system analogous

to our delay variables, (q1, . . . , q`). However, we group the linear filters differently, in-

troducing the concept of delay-wise dimensionality and cross-term subsystem rather than

the multiplicational dimensionality of the triangular Volterra kernels. This novel grouping

enables us to devise an exact closed form algorithm for identifying the Volterra kernels

using deterministic multilevel sequences.

III. IDENTIFICATION OF THE KERNEL VECTORS USING

MULTILEVEL INPUT SIGNALS

In this section, we derive an efficient algorithm to identify the kernel vectors h(`)(q1, . . . , q`−1; i)

defined in (6) by using multilevel input sequences with ` distinct impulses. Starting to

identify the kernel vectors with one cross-term (` = 1), which will be called as the 1-D

kernel vectors, all other kernel vectors with increasing cross-term complexity can be de-

termined by using only the present and the appropriate previous outputs of the lower
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dimensional subsystems given in (2). In order to explain this identification technique, we

first shall discuss the procedure for determining Volterra kernels of one-, two-, and three-

dimensional subsystems. The generalization of the procedure to the `-D subsystems will

then be given.

A. 1-D Kernel Vectors and the Ensemble Input Matrix

The input-output relation of the 1-D subsystem H(1)[·] can be written as in (2c)

y(1)(n) = H(1)[x(n)] =
N
∑

i=0

h(1)T

(i) x(1)(n − i) (8)

It is possible to show that multilevel single impulses, x(1)(m1; n) = am1
δ(n), for m1 =

1, 2, . . . ,
(

M

1

)

can be used to obtain the 1-D kernel vectors in (3a). Using the cross-term

representation in (2), it is trivial to prove that the higher dimensional outputs are zero

for these multilevel single impulses, i.e., y(`)(n) = 0 for ` > 1. Hence, the output of the

M th-order nonlinear system when the input is x(1)(m1; n) is given by

N
[

x(1)(m1; n)
]

=
N
∑

i=0

h(1)T

(i)u(1)(m1; n − i) (9a)

in which

u(1)(m1; n) =
[

x(1)(m1; n) x(1)2(m1; n) · · · x(1)M

(m1; n)
]T

=
[

am1
a2

m1
· · · aM

m1

]T
δ(n)

(9b)

where m1 denotes the ensemble index of the input sequence. Now we can write all
(

M

1

)

ensemble outputs in the matrix form as follows:

y(1)
e (n) = N

[

x(1)
e (n)

]

= H(1)
[

x(1)
e (n)

]

=
N
∑

i=0

U(1)
e (n − i) h(1)(i) (10)

where x
(1)
e (n),y

(1)
e (n) and U

(1)
e (n) denote the ensemble input, ensemble output vectors and

the input matrix, respectively.

x(1)
e (n) = [a1 a2 · · · aM ]T δ(n) (11)

y(1)
e (n) =

[

N
[

x(1)(1; n)
]

N
[

x(1)(2; n)
]

· · · N
[

x(1)(M ; n)
]

]T

(12)
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and

U(1)
e (n) =

















u(1)T

(1; n)

u(1)T

(2; n)
...

u(1)T

(M ; n)

















(13)

where u(1)(m1; n) is defined in (9b). Hence, U
(1)
e (n − i) in (10) can be replaced with

U
(1)
e (n − i) = U

(1)
e δ(n − i) and the matrix U

(1)
e is written as

U(1)
e =

















a1 a2
1 · · · aM

1

a2 a2
2 · · · aM

2

...
...

. . .
...

aM a2
M · · · aM

M

















(14)

Hence, we get

y(1)
e (n) =

N
∑

i=0

U(1)
e h(1)(i) δ(n − i) = U(1)

e h(1)(n) (15)

and therefore, provided the inverse of the M×M matrix U
(1)
e exists, the 1-D kernel vectors

can be obtained as

h(1)(n) =
[

U(1)
e

]−1
y(1)

e (n) for n = 0, 1, . . . , N (16)

It is also possible to write the solution for all 1-D kernel vectors together in the matrix

form as follows:

H(1) =
[

U(1)
e

]−1
Y(1)

e (17)

where H(1) =
[

h(1)(0) h(1)(1) · · · h(1)(N)
]

and Y
(1)
e =

[

y
(1)
e (0) y

(1)
e (1) · · · y

(1)
e (N)

]

. This

result shows that all M(N + 1) 1-D kernels with one cross-term can be determined by

using only the inverse of an M × M ensemble matrix times the ensemble output matrix

as shown in (17). Note that the linear FIR filter identification via the impulse response is

covered by this method as the special case M = 1.

Example 3.1: Consider as an example the nonlinear system M = 3 and N = 1,

described by

y(n) =x(n) − x(n − 1) + 2x2(n) − 4x(n)x(n − 1) − 2x2(n − 1)

+ 3x3(n) + 4x2(n)x(n − 1) + 5x(n)x2(n − 1) − 3x3(n − 1)
(18)
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For this section, our aim is to calculate the 1-D kernel vectors, h(1)(0) = [1 2 3]T and

h(1)(1) = [−1 − 2 − 3]T , from the 1-D input sequences and the corresponding outputs.

We choose a1 = 1, a2 = −1, a3 = 2, and the 1-D input ensemble to the system becomes

x(1)
e (n) =











1

−1

2











δ(n) (19)

The 1-D output ensemble defined in (12) becomes

y(1)
e (n) =











6

−2

34











δ(n) +











−6

2

−34











δ(n − 1) (20)

Using (14) and (19), the matrix U
(1)
e is given as,

U(1)
e =











1 1 1

−1 1 −1

2 4 8











(21)

Using (16), (20) and (21) we can calculate the 1-D kernel vectors as,

h(1)(0) =
[

U(1)
e

]−1











6

−2

34











=











1

2

3











and h(1)(1) =
[

U(1)
e

]−1











−6

2

−34











=











−1

−2

−3











(22)

Remark 3.1: In order to guarantee the Vandermonde like input matrix U
(1)
e in (14) to

be nonsingular, the coefficients of the multilevel ensemble inputs must be chosen to be

distinct and nonzero, i.e., ai 6= 0 and ai 6= aj , ∀ i 6= j. In the following sections we

will deal with the inverses of input matrices of similar form for the higher order cross-

terms. The invertibility of the input matrix U
(1)
e is sufficient to assure the invertibility of

the higher order input matrices. However, in addition to the nonsingularity constraint, we

have to take into consideration the condition number of these input matrices U
(`)
e , because

these condition numbers will determine the effect of the observation noise on the accuracy

of the kernel estimates. Hence, the values of the parameter vector, a=̂[a1 a2 · · · aM ]T

are determined to optimize a collective criterion for the condition numbers of U
(`)
e for

` = 1, 2, . . . ,M which will be discussed in the following sections.
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B. 2-D Kernel Vectors and Ensemble Input Formation Matrices

At this stage, we are interested in computing the 2-D kernel vectors namely h(2)(q1; i)

for q1 = 1, . . . , N and i = 0, 1, . . . , N − q1 using the 2-D ensemble inputs which are related

to the 1-D ensemble ones. Indeed, the following 2-D sequence consisting of two impulses

with distinct amplitudes will only excite the 2-D kernel vector h(2)(q1; n− q1) and the 1-D

kernel vectors h(1)(n) and h(1)(n − q1).

x(2)((m1,m2), q1; n) = x(1)(m1; n) + x(1)(m2; n − q1)

for m1 = 1, . . . ,M − 1; m2 = m1 + 1, . . . ,M (23)

where x(1)(mi; n) = ami
δ(n), i = 1, 2 and the amplitudes are assigned by using the

parameters of the 1-D input ensemble sequences, am1
, am2

∈ {a1, . . . , aM}. It is possible

to show that the 2-D input signal in (23) does not excite the Volterra kernels having more

than two cross-terms, i.e., H(`)
[

x(2)((m1; m2), q1; n)
]

= 0 for ` > 3. Hence, the output for

the input in (23) can be written as

N
[

x(2)
(

(m1,m2), q1; n
)]

= H(1)
[

x(2)
(

(m1,m2), q1; n
)]

+ H(2)
[

x(2)
(

(m1,m2), q1; n
)]

(24)

Here,

H(2)
[

x(2)
(

(m1,m2), q1; n
)]

= v(2,2)
(

(m1,m2), q1; n
)

H(1)
[

x(2)
(

(m1,m2), q1; n
)]

= v(2,1)
(

(m1,m2), q1; n
)

= v(1,1)(m1; n) + v(1,1)(m2; n − q1)

with v(1,1)(mi; n) = H(1)
[

x(1)(mi; n)
]

. The notation v(i,j)(· · · ) will denote the output of

the j-D subsystem to the i-D input signal, i.e., v(i,j)(· · · ) = H(j)
[

x(i)(· · · )
]

. The output of

the 2-D subsystem can be obtained from (24).

v(2,2)
(

(m1,m2), q1; n
)

= N
[

x(2)
(

(m1,m2), q1; n
)]

−
(

v(1,1)(m1; n) + v(1,1)(m2; n − q1)
)

(25)

(25) can be verified by direct substitution in (2). It is also interesting to note that the

output of the 2-D subsystem is obtained by subtracting the appropriate previously com-

puted 1-D outputs from the overall nonlinear system output. Since the 2-D kernel vectors

have CM,2 components, we must use CM,2 distinct ensemble inputs as given in (23). The
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main idea of the proposed method is based upon the observation of the outputs for these

particular 2-D ensemble inputs which are given in the matrix form as follows:

x(2)
e (q1; n) = T

(M)
2,1 x(1)

e (n) + T
(M)
2,2 x(1)

e (n − q1) (26)

where x
(1)
e (n) = [a1 a2 · · · aM ]T δ(n) and the constant T

(M)
2,1 and T

(M)
2,2 matrices with

CM,2 rows and CM,1 columns are used to determine the necessary CM,2 combinations of

CM,1 = M ensemble inputs when taken two at a time. A recursive algorithm is given

in Table 1 for constructing these T
(M)
`,k matrices for ` = 1, 2, . . . ,M and k = 1, 2, . . . , `.

Each row of these ensemble input formation matrices has only one nonzero unity element.

Similar to the single-input single-output case in (24), using the 2-D ensemble input vector

in (26), we can determine the corresponding output vectors of 1-D and 2-D subsystems,

v
(2,1)
e (q1; n) = H(1)

[

x
(2)
e (q1; n)

]

and v
(2,2)
e (q1; n) = H(2)

[

x
(2)
e (q1; n)

]

, respectively. Using

(24) and (26), it is not difficult to show that the response of the 1-D system to the 2-D

input ensemble can be decomposed in terms of the 1-D responses as

v(2,1)
e (q1; n) = H(1)

[

T
(M)
2,1 x(1)

e (n)
]

+ H(1)
[

T
(M)
2,2 x(1)

e (n − q1)
]

= T
(M)
2,1 v(1,1)

e (n) + T
(M)
2,2 v(1,1)

e (n − q1)
(27)

The response of the 2-D subsystem can be obtained by subtracting the response of the 1-D

subsystem from the nonlinear system output vector y
(2)
e (q1; n) = N [x

(2)
e (q1; n)] as follows:

v(2,2)
e (q1; n) = y(2)

e (q1; n) − v(2,1)
e (q1; n)

= y(2)
e (q1; n) −

[

T
(M)
2,1 v(1,1)

e (n) + T
(M)
2,2 v(1,1)

e (n − q1)
] (28)

It is possible to write the 2-D subsystem equation for the ensemble input case,

v(2,2)
e (q1; n) =

N−q1
∑

i=0

U(2)
e (q1; n − i)h(2)(q1; i) (29)

Similar to the 1-D case, U
(2)
e (q1; n − i) is replaced with U

(2)
e δ(n − q1 − i). U

(2)
e has the

dimension CM,2 × CM,2 and it is written in terms of a1, a2, . . . , aM gain factors,

U(2)
e =

















u(2)T

(1, 1)

u(2)T

(1, 2)
...

u(2)T

(M − 1,M)

















(30a)
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where

u(2)T

(i, j) =

[

u
(2)
2 (i, j)

... u
(2)T

3 (i, j)
... · · ·

... u
(2)T

M (i, j)

]

(30b)

with

u
(2)
2 (i, j) = [aiaj]1×1

u
(2)T

3 (i, j) =
[

aia
2
j a2

i aj

]

1×2

u
(2)T

4 (i, j) =
[

aia
3
j a2

i a
2
j a3

i aj

]

1×3
...

u
(2)T

M (i, j) =
[

aia
M−1
j a2

i a
M−2
j · · · aM−1

i aj

]

1×M

(30c)

As an example, for M = 4 and ` = 2, the matrix U
(2)
e will be given as

U(2)
e =



























a1a2 a1a
2
2 a2

1a2 a1a
3
2 a2

1a
2
2 a3

1a2

a1a3 a1a
2
3 a2

1a3 a1a
3
3 a2

1a
2
3 a3

1a3

a1a4 a1a
2
4 a3

1a4 a1a
3
4 a2

1a
2
4 a3

1a4

a2a3 a2a
2
3 a2

2a3 a2a
3
3 a2

2a
2
3 a3

2a3

a2a4 a2a
2
4 a2

2a4 a2a
3
4 a2

2a
2
4 a3

2a4

a3a4 a3a
2
4 a2

3a4 a3a
3
4 a2

3a
2
4 a3

3a4



























The 2-D Volterra kernel vectors are obtained by using (28) and (29),

h(2)(q1; n − q1) =
[

U(2)
e

]−1
v(2,2)

e (q1; n) (31)

for q1 = 1, . . . , N and n = q1, q1 + 1, . . . , N, provided the inverse exists.

Example 3.2: Consider the same nonlinear system given in (18). For this section,the

problem is to determine the 2-D kernel vector h(2)(1; 0) = [−4 4 5]T . Using the 1-D input

ensemble vector x
(1)
e (n) in (19) and constructing the constant T

(2)
2,1 and T

(2)
2,2 ensemble input

formation matrices from Table 1, the 2-D input ensemble in (26) is found as

x(2)
e (1; n) =











1 0 0

1 0 0

0 1 0





















1

−1

2











δ(n) +











0 1 0

0 0 1

0 0 1





















1

−1

2











δ(n − 1)

=











1

1

−1











δ(n) +











−1

2

2











δ(n − 1) (32)
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For this particular 2-D input ensemble in (32), the output of the nonlinear system in (18)

becomes

y(2)
e (1; n) =











6

6

−2











δ(n) +











−5

46

38











δ(n − 1) +











2

−34

−34











δ(n − 2) (33)

We can determine the response of the 1-D subsystem to the 2-D input ensemble in (32)

from the 1-D output ensemble given in (20) as follows:

v(2,1)
e (1; n) = T

(2)
2,1y

(1)
e (n) + T

(2)
2,2y

(1)
e (n − 1)

=











6

6

−2











δ(n) +











−8

28

36











δ(n − 1) +











2

−34

−34











δ(n − 2) (34)

The response of the 2-D subsystem can be left alone by subtracting v
(2,1)
e (1; n) from the

nonlinear system output y
(2)
e (1; n) in (33).

v(2,2)
e (1; n) = y(2)

e (1; n) − v(2,1)
e (1; n)

=











0

0

0











δ(n) +











3

18

2











δ(n − 1) +











0

0

0











δ(n − 2) (35)

The 2-D Volterra kernel h(2)(1; 0) is determined by substituting (35) into (31)

h(2)(1; 0) =
[

U(2)
e

]−1
v(2,2)

e (1; 1)

=











−1 1 −1

2 4 2

−2 −4 2











−1









3

18

2











=











−4

4

5











(36)

The constant matrix U
(2)
e is calculated using x

(1)
e (n) and (30).
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C. 3-D Kernel Vectors and Output Pick-up Matrices

The 3-D kernel vectors h(3)(q1, q2; i) for q1 = 1, . . . , N − 1, q2 = 1, . . . , N − q1 and

i = 0, 1, . . . , N − q1 − q2 are determined by using the 3-D ensemble responses along with

the responses of the 1-D and 2-D subsystems. The following 3-D ensemble input with

three distinct impulses excites only 1-D, 2-D and 3-D subsystems.

x(3)
e (q1, q2; n) = T

(M)
3,1 x(1)

e (n) + T
(M)
3,2 x(1)

e (n − q2) + T
(M)
3,3 x(1)

e (n − q1 − q2) (37)

The output of the nonlinear system can be written as the sum of the outputs of the exited

subsystems,

y(3)
e (q1, q2; n) = N

[

x(3)
e (q1, q2; n)

]

=
3
∑

i=1

v(3,i)
e (q1, q2; n) (38)

where the output of the 1-D subsystem for the 3-D ensemble input can be written as the

sum of the 1-D ensemble outputs

v(3,1)
e (q1, q2; n) =

C3,1
∑

j=1

S
(M)
31,j v

(1,1)
e (n − n

(3,1)
j ) (39)

where the matrices S
(M)
31,j for j = 1, 2, 3 which have CM,3 rows and CM,1 columns, are used

to pick up the appropriate 1-D ensemble output values. Each row of these matrices has

only one nonzero unity element. The superscript M denotes the order of the nonlinearity

of the nonlinear system N . The subscripts `, k and j in S
(M)
`k,j indicate the dimension of the

ensemble input, the dimension of the subsystem, and the index number of the excited k-D

outputs, respectively. A recursive algorithm is given in Table 2 for constructing the S
(M)
`k,j

matrices for ` = 1, . . . ,M, k = 1, . . . , ` − 1 and j = 1, . . . , C`,k. The necessary delays

n
(3,1)
j in (39) for j = 1, 2, 3 can be obtained by using the formation matrix T

(3)
1,1 = IC3,1

= I3.

n(3,1) = T
(3)
1,1q

(3) (40)

where n(3,1) =
[

n
(3,1)
1 n

(3,1)
2 n

(3,1)
3

]T

and q(3) = [0 q2 q1 + q2]
T . It is also possible to deter-

mine the responses of the 2-D subsystem for the 3-D ensemble inputs,

v(3,2)
e (q1, q2; n) =

C3,2
∑

j=1

S
(M)
32,j v

(2,2)
e (q

(3,2)
j ; n − n

(3,2)
j ) (41)
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where the output pick up matrices S
(M)
32,j for j = 1, 2, 3 which have CM,3 rows and CM,2

columns are used to determine the appropriate 2-D ensemble output values for x
(3)
e (q1, q2; n).

The necessary 2-D parameters q
(3,2)
j and n

(3,2)
j can be obtained by using the input formation

matrices T
(3)
2,1 and T

(3)
2,2 as follows

q(3,2) =
[

T
(3)
2,2 − T

(3)
2,1

]

q(3) and n(3,2) = T
(3)
2,1q

(3) (42)

where q(3,2) =
[

q
(3,2)
1 q

(3,2)
2 q

(3,2)
3

]T

and n(3,2) =
[

n
(3,2)
1 n

(3,2)
2 n

(3,2)
3

]T

. In a similar fashion to

the equations for the 1-D and 2-D subsystems ((15), (29)), the output of the 3-D subsystem

v
(3,3)
e (q1, q2; n) can be written as

v(3,3)
e (q1, q2; n) = U(3)

e h(3)(q1, q2; n − q1 − q2) (43)

for q1 = 1, . . . , N − 1, q2 = 1, . . . , N − q1 and n = q1 + q2, q1 + q2 + 1, . . . , N , where the

matrix U
(3)
e has the dimensions CM,3×CM,3 and can be written in terms of the gain factors

in a way analogous to (13) and (30)

U(3)
e =

















u(3)T

(1, 2, 3)

u(3)T

(1, 2, 4)
...

u(3)T

(M − 2, M − 1, M)

















(44a)

where

u(3)T

(i, j, k) =

[

u
(3)
3 (i, j, k)

... u
(3)T

4 (i, j, k)
... · · ·

... u
(3)T

M (i, j, k)

]

(44b)

with

u
(3)
3 (i, j, k) = [aiajak]1×(2

2)

u
(3)T

4 (i, j, k) =
[

aiaja
2
k aia

2
jak a2

i ajak

]

1×(3

2)

u
(3)T

5 (i, j, k) =
[

aiaja
3
k aia

2
ja

2
k · · · a3

i ajak

]

1×(4

2)
...

u
(3)T

M (i, j, k) =
[

aiaja
M−2
k aia

2
ja

M−3
k · · · aM−2

i ajak

]

1×(M−1

2 )

(44c)
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As an example, for M = 4 and ` = 3, the matrix U
(3)
e will be given as

U(3)
e =















a1a2a3 a1a2a
2
3 a1a

2
2a3 a2

1a2a3

a1a2a4 a1a2a
2
4 a1a

2
2a4 a2

1a2a4

a1a3a4 a1a3a
2
4 a1a

2
3a4 a2

1a3a4

a2a3a4 a2a3a
2
4 a2a

2
3a4 a2

2a3a4















From (38)-(43), we get

h(3)(q1, q2; n − q1 − q2) =
[

U(3)
e

]−1

[

y(3)
e (q1, q2; n) −

(

3
∑

j=1

S
(M)
31,j v

(1,1)
e (n − n

(3,1)
j ) +

3
∑

j=1

S
(M)
32,j v

(2,2)
e (q

(3,2)
j ; n − n

(3,2)
j )

)]

(45)

D. `-D Kernel Vectors

We assume that all k-D kernel vectors h(k)(q1, . . . , qk−1; i) for k = 1, 2, . . . , ` − 1 are

determined or that all the k-D output vectors v
(k,k)
e (q1, . . . , qk−1; n) for k = 1, 2, . . . , ` − 1

are available. Now, we try to identify the `-D kernel vectors by using the response of

the nonlinear system for the `-D ensemble input vector and all the previously computed

subsystem outputs, v
(k,k)
e (q1, . . . , qk−1; n) for k = 1, 2, . . . , ` − 1. Similar to 1-, 2-, and

3-D ensemble input vectors in (11), (26) and (37), the `-D input ensemble vector can be

written as

x(`)
e (q1, . . . , q`−1; n) =

∑̀

i=1

T
(M)
`,i x(1)

e (n − n
(`)
i ) (46)

where n
(`)
1 = 0 and n

(`)
i =

i−1
∑

j=1

q`−j for i = 2, . . . , `. The input formation matrices, T
(M)
`,i ’s

can be constructed from the Table 1. The response of the nonlinear system to the ensemble

input in (46) can be written in terms of the outputs of the subsystems,

y(`)
e (q1, . . . , q`−1; n) = N

[

x(`)
e (q1, . . . , q`−1; n)

]

=
∑̀

k=1

v(`,k)
e (q1, . . . , q`−1; n) (47)
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where v
(`,k)
e (q1, . . . , q`−1; n) for k = 1, . . . , `−1 can be obtained from the previous subsystem

outputs

v
(`,1)
e (q1, . . . , q`−1; n) =

(`

1)
∑

j=1

S
(M)
`1,j v

(1,1)
e (n − n

(`,1)
j )

...

v(`,k)(q1, . . . , q`−1; n) =
(`

k)
∑

j=1

S
(M)
`1,j v

(k,k)
e (q

(`,k)
j,1 , . . . , q

(`,k)
j,k−1; n − n

(`,k)
j )

(48)

for k = 2, 3, . . . , ` − 1, where the parameters q
(`,k)
j,i and n

(`,k)
j for i = 1, . . . , k − 1 and

j = 1, 2, . . . ,
(

`

k

)

can be written in the vector form as follows

q
(`,k)
j =

[

q
(`,k)
j,1 · · · q

(`,k)
j,k−1

]T

and n(`,k) =

[

n
(`,k)
1 · · · n

(`,k)

(`

k)

]T

(49)

Now we can determine the necessary parameter vectors q
(`,k)
j and n(`,k) using the `-D input

delay vector q(`) = [0 q1 · · · q`−1]
T and the input formation matrices given in Table 1.

q
(`,k)
j =

[

T
(`)
k,j+1 − T

(`)
k,j

]

q(`) for j = 1, . . . ,
(

`

k

)

n(`,k) = T
(`)
k,1q

(`)
(50)

The output of the `-D subsystem can be written as

v(`,`)
e (q1, . . . , q`−1; n) = H(`)

[

x(`)
e (q1, . . . , q`−1; n)

]

=

N−q̄`−1
∑

i=0

U(`)
e (q1, . . . , q`−1; n − i)h(`)(q1, . . . , q`−1; i)

(51)

The input matrix U
(`)
e (q1, . . . , q`−1; n− i) is replaced with U

(`)
e δ(n− q̄`−1 − i). The matrix

U
(`)
e has the dimension CM,` × CM,` and can be written in terms of the gain factors

a1, a2, . . . , aM as,

U(`)
e =

















u(`)T

(1, 2, . . . , ` − 1, `)

u(`)T

(1, 2, . . . , ` − 1, ` + 1)
...

u(`)T

(M − ` + 1, M − ` + 2, . . . ,M)

















(52a)

where

u(`)T

(i1, . . . , i`) =

[

u
(`)
` (i1, . . . , i`)

... u
(`)T

`+1 (i1, . . . , i`)
... · · ·

... u
(`)T

M (i1, . . . , i`)

]

(52b)
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The subvector u
(`)
k (i1, . . . , i`) includes all the possible input gain factor products corre-

sponding to the Volterra kernels of degree k with ` cross-terms,

u
(`)
k (i1, i2, . . . , i`) =

[

a
p1

i1
a

p2

i2
· · · ap`

i`

]

σ(p1,p2,...,p`)
(53)

for all
(

k−1
`−1

)

combinations σ (p1, p2, . . . , p`), where p1 + p2 + . . . + p` = k and pi > 1,

i = 1, . . . , ` and k = `, ` + 1, . . . ,M . Thus

u
(`)
` (i1, i2, . . . , i`) = [ai1ai2 · · · ai` ]1×(`−1

`−1)

u
(`)T

`+1 (i1, i2, . . . , i`) =
[(

ai1 · · · ai`−1
a2

i`

)

. . .
(

ai1a
2
i2
ai3 · · · ai`

) (

a2
i1
ai2 · · · ai`

)]

1×( `

`−1)

u
(`)T

`+2 (i1, i2, . . . , i`) =
[(

ai1 · · · ai`−1
a3

i`

)

. . .
(

a2
i1
a2

i2
ai3 · · · ai`

) (

a3
i1
ai2 · · · ai`

)]

1×(`+1

`−1)
...

u
(`)T

M (i1, i2, . . . , i`) =
[(

ai1 · · · ai`−1
aM−`+1

i`

)

· · ·
(

aM−`
i1

a2
i2
ai3 · · · ai`

) (

aM−`+1
i1

ai2aii3 · · · ai`

)]

1×(M−1

`−1 )
(54)

The nonsingularity of the input matrix U
(1)
e , i.e. ai 6= 0 and ai 6= aj, ∀ i 6= j, is a sufficient

condition for the nonsingularity of the higher order input matrices U
(`)
e 1 < ` 6 M , as

defined above.

The `-D Volterra kernel vectors can be written for n = q̄`−1, q̄`−1 + 1, . . . , N as

h(`)(q1, . . . , q`−1; n − q̄`−1) =
[

U(`)
e

]−1
v(`,`)

e (q1, . . . , q`−1; n) (55a)

where

v(`,`)
e (q1, . . . , q`−1; n) = y(`)

e (q1, . . . , q`−1; n) −

(`

1)
∑

j=1

S
(M)
`1,j v

(1,1)
e (n − n

(`,1)
j )

−
`−1
∑

k=2

(`

k)
∑

j=1

S
(M)
`k,j v

(k,k)
e (q

(`,k)
j,i , . . . , q

(`,k)
j,k−1; n − n

(`,k)
j ) (55b)

(55) shows that our algorithm can form the estimate for any Volterra kernel independent

from other kernels. (55a) only includes the inverse of a matrix (U
(`)
e ) which can be calcu-

lated beforehand, and output values (v
(`,`)
e ) which should be obtained for certain multilevel

input sequences. In this equation there is no reference to estimates of other kernel values.

Hence, any error in previous kernel estimates cannot leak into current kernel estimate

calculations. This equation proves the no-error propagation property of our algorithm.
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We define the following output pick-up operators for k = 1, 2, . . . , ` − 1:

S
(M)
`,k

[

v(k,k)
e (q1, . . . , qk−1; n)

]

=

(`

k)
∑

j=1

S
(M)
`k,j v

(k,k)
e (q

(`,k)
j,1 , . . . , q

(`,k)
j,k−1; n − n

(`,k)
j ) (56)

With this definition, (55b) can be rewritten in a more compact form.

v(`,`)
e (q1, . . . , q`−1; n) = y(`)

e (q1, . . . , q`−1; n) −
`−1
∑

k=1

S
(M)
`,k

[

v(k,k)
e (q1, . . . , qk−1; n)

]

(57)

Fig. 1 depicts the identification of the Volterra kernels of orders one through M using

the proposed algorithm. Let us discuss the practical implementation of the algorithm.

The system to be modelled is assumed to have a known order of nonlinearity M . The

memory length N might be assumed to be known, or it might get estimated during the

identification procedure on the fly. The steps of the measurement process might be listed

as follows:

(i) The impulse levels are chosen, possibly using numerical optimization.

(ii) Multilevel sequences composed of a single impulse are applied to the system and the

observed output vectors are stored (y
(1)
e (n) in Fig. 1).

(iii) For i = 2, . . . ,M

Multilevel sequences composed of i distinct impulses are applied to the system and the

observed output vectors are stored (y
(i)
e (q1, . . . , qi−1; n) in Fig. 1). Appropriate previ-

ously stored output vectors are chosen by S
M
i,j operators, and these are subtracted from

y
(i)
e (q1, . . . , qi−1; n). Hence, v

(i,i)
e (q1, . . . , qi−1; n) are formed.

(iv) For i = 1, . . . ,M

v
(i,i)
e (q1, . . . , qi−1; n) are multiplied by the inverse of U

(i)
e , and the Volterra kernel esti-

mates are formed.

Remark 3.2: We find the length of the deterministic input sequence that should be

applied to identify the kernels ` = 1, . . . ,M of an M th-order system, assuming the input

ensembles are applied serially to a single system box. We put an all zero guarding interval

of length N at the end of each of the input ensembles x
(`)
e (q1, . . . , q`−1; n), to flush out that

ensemble and to prepare the system for the next ensemble. The total length of the overall
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input sequence is calculated as

L =
M
∑

`=1

(q̄`−1 + N + 1)
(

M

`

)(

N

`−1

)

6 (2N + 1)
M
∑

`=1

(

M

`

)(

N

`−1

)

= (2N + 1)
(

N+M

M−1

)

(58)

The length of the deterministic input sequence is upper-bounded by (2N + 1)
(

N+M

M−1

)

.

Example 3.3: We consider the identification of a Volterra filter with M = 3 and

N = 1 as discussed in Examples 3.1 and 3.2. The overall deterministic input sequence

which should be applied to identify the kernels of this system is shown in Fig. 2. This figure

depicts all the input ensembles utilized in the Examples 3.1 and 3.2 for the identification

of the nonlinear system. The overall input sequence is assumed to be applied serially to

a single system, and there is a guarding interval of length N = 1 between all individual

input ensembles. The distinct input amplitude levels are chosen as a1 = 1, a2 = −1 and

a3 = 2 as in the examples. The length of the overall sequence is seen from the figure as

L = 14. This value is indeed less than the upper-bound (2N + 1)
(

N+M

M−1

)

= (3)
(

4
2

)

= 18

from (58).

IV. PERSISTENCE OF EXCITATION AND NUMERICAL ISSUES FOR

THE MULTILEVEL INPUT SIGNALS

In this section, we prove that the multilevel input signals given in Section III persistently

excite a Volterra filter. We also show that the identification algorithm of Section III gives

the optimal least squares estimate of the Volterra kernels. Ideally, the input signal excites

all modes of the filter equally. However, it is known that polynomial systems suffer from

severe ill-conditioning if the order is high. Here, the condition numbers of the input

matrices are quantified to assess the uniformity of excitation to the system.

A. Persistence of Excitation for the Multilevel Deterministic Inputs

The definition of the persistence of excitation condition for Volterra filters with deter-

ministic inputs is as follows [18]: Let τ > 0 be a fixed observation period and λmax and

λmin denote the largest and smallest eigenvalues of the sample correlation matrix. If there

exists ρ1,ρ2 > 0 such that for every time instant k, ρ1 6 λmin 6 λmax 6 ρ2, then the input

signal is said to be persistently exciting (PE).

The `-D ensemble input signals do not excite the Volterra kernels having more than `
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cross-terms, i.e., v
(`,k)
e = H(k)

[

x
(`)
e

]

= 0, ∀ k > `, and N
[

x
(`)
e

]

=
∑̀

k=1

v
(`,k)
e . By subtracting

the appropriate previously stored lower dimensional outputs, we can obtain the response of

the `-D subsystem alone. With this subtraction we single out the input-output ensembles

for the `-D cross-term subsystem H(`). If we can prove that the input ensembles are PE

for H(`), then the input ensembles will also be PE for the composite nonlinear structure

N . The `-D multivariate cross-term subsystem can be further decomposed according to

the delay variables. (2c) can be rewritten as

y(`)(n) = H(`) [x(n)] =

( N

`−1)
∑

p=1

N−sum(qp)
∑

i=0

h(`)T

(qp; i) x(`)(qp; n − i),

where the sum over p is a sum over all possible delay structures, and qp = [q1, . . . , q`−1]p is

an (`− 1)-D delay vector with sum(qp) 6 N . We can reformulate the output at time n as

y(`)(n) =
( N

`−1)
∑

p=1

h(`)T

(qp)x
(`)
n (qp) , where h(`)(qp) and x

(`)
n (qp) are column vectors. h(`)(qp)

is a concatenation of the kernel vectors h(`)(qp; i), whereas x
(`)
n (qp) is a concatenation of

the expanded input vectors x(`)(qp; n − i). We can rewrite this linear combination as a

single vector product

y(`)(n) = h(`)T

x(`)(n) (59)

by rearranging the vectors h(`)(qp) and x
(`)
n (qp). h(`) and x(`)(n) are column vectors

generated by concatenating respectively the vectors h(`)(qp) and x
(`)
n (qp) for all

(

N

`−1

)

possible delay structures qp together. Let us assume that we apply our total multilevel

ensemble input signal periodically. Suppose we begin observing the output of the `-D

system at some time n and collect data over an observation period τ > 0. The output

vector y(`)(n) =
[

y(`)(n) . . . y(`)(n + τ)
]T

is related to the input by

y(`)(n) = X(`)(n)h(`) (60)

where the data matrix X(`)(n) =
[

x(`)(n) · · · x(`)(n + τ)
]T

. We want to form the sample

correlation matrix

S
(`) =

1

τ
X(`)T

(n) X(`)(n) =
1

τ

n+τ
∑

m=n

x(`)(m) x(`)T

(m) (61)
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We take τ as the overall period of the input ensembles together, i.e., as the length of the

overall input sequence which we assumed is applied periodically. Then, at each time m

for which the current ensemble input has a delay structure other than qp, x
(`)
m (qp) = 0.

If the current input has a delay structure given by qp, then all the subvectors of x
(`)
m (qp),

i.e., x(`)(qp; m− i), i = 0 . . . N −sum(qp) will be zero vectors except only one subvector for

a certain shift i, that is, x
(`)
m (qp) =

[

0T · · · 0T x(`)(qp; m − i)T 0T · · · 0T
]T

. Hence, the

sample correlation matrix S
(`) will become a block diagonal matrix. For each ensemble

input sequence with a delay structure given by qp, x
(`)
m (qp) will have the nonzero subvector

at the position i = 0 at some time m, and at every next point in time the nonzero subvector

will travel down until it reaches i = N − sum(qp). The total ensemble input sequence

includes all possible `-level combinations for all possible delay structures. Hence, when we

form the block diagonal sample correlation matrix, the matrices on the diagonal will be

equal, i.e., for the multilevel deterministic ensemble input sequence

S
(`) =

1

τ

















[

S(`)

]

[0] · · · [0]

[0]
[

S(`)

]

· · ·
...

...
...

. . . [0]

[0] · · · [0]
[

S(`)

]

















. (62)

where S(`) is
(

M

`

)

×
(

M

`

)

. It can be shown that S(`) =
(M

` )
∑

j=1

u(`)(ij)u
(`)T

(ij), where the vector

u(`)(ij) is as defined in (52b). ij = [i1 i2 · · · i`]j denotes which impulse amplitudes to

pick and the index j = 1 . . .
(

M

`

)

is such that all possible impulse amplitude ensembles are

covered. S(`) can be rewritten as

S(`) = U(`)T

e U(`)
e (63)

where U
(`)
e is the `-D ensemble input matrix as given in (52a). Hence, for our deterministic

input ensemble the eigenvalues of the sample correlation matrix S
(`) =

1

τ
X(`)T

(n)X(`)(n)

are equal to the eigenvalues of the matrix S(`) = U
(`)T

e U
(`)
e . Positive definiteness of S(`)

is necessary and sufficient for the persistence of excitation condition, in which case ρ1 =

λS,min and ρ2 = λS,max where λS,min and λS,max are the smallest and largest eigenvalues

of S(`), respectively. It is a known fact that S(`) = U
(`)T

e U
(`)
e will be a symmetric and
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positive definite matrix if and only if the square matrix U
(`)
e is nonsingular. Therefore, the

multilevel input sequence is PE for the subsystem H(`) if and only if the input ensemble

matrix U
(`)
e is nonsingular. Hence, the multilevel input sequence will be PE for the overall

nonlinear system N if and only if all the input ensemble matrices U
(`)
e , 1 ≤ ` ≤ M are

nonsingular, for which the nonsingularity of U
(1)
e is a sufficient condition. Therefore, the

input ensemble is assured to be PE when we choose distinct and nonzero amplitude levels.

Remark 4.1: A PRMS sequence is PE of order M if and only if the number of distinct

levels of the sequence, i.e., the order of the sequence q > M +1 [18]. Our deterministic `-D

sequence is PE of degree M , if and only if the total number of distinct levels the sequence

can assume is M + 1 (counting ‘0’ as a level also).

Remark 4.2: Let blkdiag (A, p) denote the block diagonal matrix which results from

p−times block diagonal concatenation of the matrix A. For example, (62) can be rewritten

as S
(`) = blkdiag

(

S(`),
(

N+1
`

))

. Using this definition and (63)

S
(`) = blkdiag

(

U
(`)T

e ,
(

N+1
`

)

)

blkdiag

(

U
(`)
e ,
(

N+1
`

)

)

(64)

From (60)-(64), the least squares estimate of the kernel vector h(`) is given by

ĥ(`) =
(

X(`)T

(n)X(`)T

(n)
)

−1

X(`)T

(n)y(`)(n)

= blkdiag

(

[

U
(`)
e

]

−1

,
(

N+1
`

)

)

blkdiag

(

[

U
(`)T

e

]

−1

,
(

N+1
`

)

)

X(`)T

(n)y(`)(n)
(65)

It is not difficult to show that blkdiag

(

[

U
(`)T

e

]

−1

,
(

N+1
`

)

)

X(`)T

(n) in (65) is simply a

permutation matrix, which changes the order of the output terms in y(`)(n) and regroups

them. This reordered output vector v(`)(n) = blkdiag

(

[

U
(`)T

e

]

−1

,
(

N+1
`

)

)

X(`)T

(n)y(`)(n)

is a concatenation of the output ensemble vectors v
(`,`)
e (q1, . . . , q`−1; n) which were defined

in (55b). The least squares solution in (65) becomes

ĥ(`) = blkdiag

(

[

U
(`)
e

]

−1

,
(

N+1
`

)

)

v(`)(n)

This result is equivalent to the `-D kernel vector calculation equation in (55a). Hence,

equation (55a) is indeed the least squares solution for h(`)(q1, . . . , q`−1; n).
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B. Uniform Excitation of Volterra System

Practically the estimation error is determined by the noise power at the output of the

system and the size of the eigenvalues of the sample correlation matrix. However, here we

examine rather the ability of the deterministic sequences to uniformly excite all the modes

of the Volterra filter. The condition to uniformly excite all modes of the `-D substructure

H(`) requires to find an input level ensemble such that the condition number of the matrix

U
(`)
e is minimized. Since we want uniformity of excitation for all the substructures of

the orders ` = 1, . . . ,M , the condition numbers for all the input matrices U
(`)
e should

be minimized simultaneously. A collective criterion should be chosen to define what the

optimally conditioned input matrices would be. The criterion we used to optimize the

input level values was to minimize the maximum condition number among all the condition

numbers. Other criteria, for example the mean-square of the condition numbers, could as

well be used. The maximum condition numbers and the optimal level values are given in

Table 3 for nonlinearity orders M = 1, . . . , 6. Here the optimization was unconstrained;

however, for the simulations in next section the input levels should also fulfill certain power

constrains. Hence, in the case of the simulations the optimal levels which are subject to

certain average power constrains are found by constrained optimization.

All the results in this paper are based on the real input case. However, it is possible

to use impulses with complex values as the multilevel input sequences of our algorithm.

Changes in the values of the impulses included in the multilevel sequence will simply result

in different U
(`)
e matrices. The data correlation matrices will still be of the same sparse

block diagonal form. Using complex values for the impulses might result in input ensemble

matrices with better condition numbers. Hence, we can have better error performance for

the algorithm without compromising any power constraints.

V. SIMULATIONS

Two numerical simulations to demonstrate the performance of the novel identification

procedure are presented. The simulation setups are taken from [15] and [18]. To compare

the performance with the existing algorithms, we have to use input lengths equal to the

setups given in these. However, our required input ensemble length is much shorter than
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the required lengths for the PRMS and PSK inputs. In order to retain comparable input

lengths, we resend our input ensembles until the total input length is close to those given

in [15] and [18] and we take the mean of the estimates coming from individual input cycles.

The input impulse levels are chosen optimally as to satisfy the average power constrains

of their respective examples, and to minimize the condition number criterion as defined in

Section IV. The optimal level values are given in Table 4.

Example 5.1: We simulate a second order Volterra filter with memory length N = 2.

The average input power is unity for both PRMS and our multilevel sequence. Gaussian

white noise (GWN) of power 0.1 is added to the system output to represent observation

noise. This setup is equivalent to the simulation in [18] with the difference that in the

example there an extended Volterra filter had to be used, which is a drawback of using

the Kronecker product representation. In Table 5 the averaged squared error between the

estimated and true kernels and the number of floating point operations required are given

for four different input sequence lengths. For PRMS the results are taken from Table IV

in [18], and the average is over 200 independent trials. For our algorithm the average is

also taken over 200 independent trials.

From the results in Table 5, it is clear that our algorithm uses less operations and gives

better results than the PRMS method [18]. To get comparable data lengths, we simply

resent our input of length 15 and averaged over the estimates. This is reflected in the

decrease of the mean square error for our algorithm. The length of the PRMS sequences

are calculated as qN+1, where q > M is the order of the PRMS sequence. As we go

down the Table 5, the order of the PRMS sequence used is increased as q = 3, 4, 5, 7, and

the improvement in the condition number of the PRMS sample correlation matrix gets

reflected in the error performance of the PRMS. Only after q = 7, PRMS has better error

performance than our algorithm. However, it should not be overlooked that this example

has a limited memory length N = 2, and for larger N using higher order PRMS would

make the input length qN+1 prohibitively large.

The reason why our algorithm performs better than the PRMS method in Table 5 is

that our algorithm has an input diversity better than the PRMS input. The PRMS has

to spend some of the allowed input power on input sequences, which are redundant for
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the identification of the regular Volterra filter, whereas our algorithm only includes the

necessary input signals.

There are examples for the use of the PRMS in Volterra system identification also in [23].

However, these examples illustrate the errors associated with the use of finite data in the

absence of observation noise. In the case of PRMS, to get an exact least squares solution

in the absence of observation noise, a full period of the PRMS, i.e., a sequence of length

(M + 1)N+1 has to be used. For example, for a third-order filter (M = 3) with memory

length 11 (N = 11), to get the exact solution with PRMS a data record of length 412 is

required. Use of shorter data records removes the PE property, and estimate errors occur

as studied in [23]. However, our algorithm is much more effective in the input diversity

than PRMS, because our multilevel deterministic input completely eliminates those input

combinations which are required for the identification of the extended Volterra filter but

not for the regular Volterra system, which are included in the PRMS. For example, using

(58) we can show that for the Volterra filter with (M = 3) and (N = 11) to get the exact

kernel estimates our algorithm needs a data record of length less than (2N + 1)
(

N+M

M−1

)

=

2093. This is a radical improvement over the required length 412 for PRMS.

Example 5.2: We simulate a fourth-order Volterra filter with memory length N = 3

after the example 2 in [15]. Average input power is set to 4, and additive GWN observation

noise with variance 0.5 is present. The data length for the PSK input is 4096. Our

multilevel sequence is of length 211 and we send it through 19 times; thus our total input

length is 4009. The optimal level values used in our multilevel sequence are given in Table

4. Table 6 shows the true values for the non-redundant kernels and the mean and the

standard deviations of the estimates from our algorithm and the PSK input method of

[15]. There are five nonzero Volterra kernels, and the values are taken from [15]. The

results for PSK and the results for our algorithm are averaged over 200 independent trials.

The results for our algorithm are better than those for PSK inputs and our estimates are

very accurate despite the high order of nonlinearity and the presence of noise.

The PSK input method uses higher-order moments. Example 1 in [15] presents the

results for the identification a third order Volterra filter with N = 4, where the mean and

deviations of the estimates are tabulated in the absence of observation noise for an input
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length of 4096. Our algorithm is an exact algorithm. Hence, in the absence of observation

noise, our input sequence identifies the exact kernel values of this filter for an input length

as short as 155.

VI. CONCLUDING REMARKS

We have developed a novel algorithm for input-output nonlinear system identification.

The optimal estimation of Volterra kernels requires the solution of a large system of simul-

taneous linear equations. Our algorithm avoids the direct computation of the least squares

estimate. By using a certain deterministic multilevel sequence and a novel partitioning of

the Volterra kernels, the data correlation matrix reduces to a block diagonal matrix with

relatively smaller dimensional matrices on the diagonal. These matrices depend only on

the order of nonlinearity M and the input levels, hence they and their inverses can be cal-

culated and stored beforehand. Our algorithm is in closed-form, exact, non-iterative and

a computationally efficient implementation is also presented. It is shown that the input

sequence is PE and the problem of ill-conditioning is also discussed. It is demonstrated

with simulations that the algorithm can produce better parameter estimates than some

existing algorithms [15], [18].

There are some other merits of this input sequence, which it shares with the PRMS. In

some identification problems the normal operating input of the nonlinear system may be

restricted to a fixed amplitude range. In this case the deterministic input sequence can

utilize the full dynamic amplitude range of the normal operating interval of the system

input. Another benefit of our algorithm is that it gives the Volterra kernel estimates

directly. Some methods in the literature first calculate coefficients which have no directly

interpretable results (i.e. the Wiener coefficients in [24]), and then obtain the Volterra

kernels from these. An additional advantage is that the deterministic input sequence is

suited to low rank approximations. The eigenvectors and the eigenvalues of the sample

correlation matrix of the deterministic input sequence can be computed a priori as in the

case of the PRMS. The algorithm presented in this paper will facilitate better Volterra

kernel estimates for short input sequences. This will help in devising better Volterra-based

compensators, because the quality of such compensators depend on the accuracy of the

Volterra kernel estimates for the nonlinear system. One disadvantage our algorithm might
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have is that the excitation sequence cannot be controlled according to the experimental

setting. For example, the PSK input method [15] is natural to get used in a channel

identification setting where the communication signal is PSK modulated. The probing

signal simply becomes the communication signal. However, our algorithm requires the use

of synthetic impulse sequences, which might result in additional overhead.

Finally, we comment on the possible future research directions using the results in this

paper. One application might be the use of the novel kernel partitioning in the efficient

implementation of the Volterra filters and in transform domain structures. Another direc-

tion might be the use of the identification algorithm in the implementation of nonlinear

compensators and nonlinear system inverses and equalization.
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Table 1

Ensemble Input Formation Matrices

Define

T
(p)
1,1 = Ip , ik = [1 · · · 1]T1×k ,

Cp,` =
(

p

`

)

, Πk,i = [0 · · · 0 1 0 · · · 0]1×k

where only ith-entry is unity.

for ` = 2, 3, . . . ,M

T
(`)
`,i = ΠC`,1,i ; i = 1, 2, . . . , `

for p = `, ` + 1, . . . ,M − 1

T
(p+1)
`,1 =





iCp,`−1
0Cp,`−1×p

0Cp,`×1 T
(p)
`,1





Cp+1,`×(p+1)

for i = 2, 3, . . . , `

T
(p+1)
`,i =





0Cp,`−1×1 T
(p)
`−1,i−1

0Cp,`×1 T
(p)
`,i





Cp+1,`×(p+1)
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Table 2

Ensemble Output Pick Up Matrices

Initial Matrices:

for p = 2, 3, . . . ,M, ` = 1, 2, . . . , p and k = 1, 2, . . . , `

S
(p)
`1,i = T

(p)
`,i , i = 1, 2, . . . , C`,1

S
(p)
pk,j = ΠCp,k,j , j = 1, 2, . . . , Cp,k

S
(p)
``,1 = ICp,`

for p = 4, 5, . . . ,M, ` = 3, 4, . . . , p − 1 and

k = 2, 3, . . . , ` − 1

for i = 1, 2, . . . , C`−1,k−1

S
(p)
`k,i =





S
(p−1)
(`−1)(k−1),i 0Cp−1,`−1×Cp−1,k

0Cp−1,`×Cp−1,k−1
S

(p−1)
`k,i





Cp,`×Cp,k

for j = 1, 2, . . . , C`−1,k

S
(p)
`k,i =





0Cp−1,`−1×Cp−1,k
S

(p−1)
(`−1)k,j

0Cp−1,`×Cp−1,k−1
S

(p−1)
`k,C`−1,k−1+j





Cp,`×Cp,k
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Table 3

Optimal Deterministic Input Levels

M max

(

cond2 U
(`)
e

)

optimal level values

1 1.00 1.00

2 1.00 -1.00, 1.00

3 7.54 0.59, -0.92, 1.11

4 14.15 -0.90, 0.51, 1.00, -0.7291

5 40.31 -0.92, 0.86, -0.38, 1.05, -1.12

6 48.74 -1.13, 1.03, -0.84, 0.76, -0.50, 0.93,
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Table 4

Optimal Input Levels for Simulations

Example power constraint optimal level values max

(

cond2 U
(`)
e

)

I, M = 2, N = 2 P = 1.00 -1.58, 1.58 1.58

II, M = 4, N = 3 P = 4.00 -3.84, -2.53 2.53, 3.84 161.05
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Table 5

Averaged Squared Error of Estimates for Example I

PRMS multilevel deterministic input

length error flops length error flops

27 7.80 × 10−1 1.22 × 103 15 2.26 ×10−1 0.12 ×103

64 9.93 × 10−2 1.64 ×103 60 5.42 × 10−2 0.29 × 103

125 2.89 × 10−2 2.24 × 103 120 2.84 × 10−2 0.53 × 103

343 6.18 × 10−3 4.12 ×103 330 9.70 × 10−3 1.34 × 103
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Table 6

Results for Example II

(i1, i2, i3, i4) (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 1) (0, 0, 1, 2) (0, 1, 2, 3)

true b4 (i1, i2, i3, i4) 1.0000 1.2000 0.8000 -0.5000 0.6000

mean of b̂4 (i1, i2, i3, i4) for PSK 1.0066 1.1969 0.7982 -0.5021 0.5997

std of b̂4 (i1, i2, i3, i4) for PSK 0.1890 0.0454 0.0263 0.0147 0.0039

mean of b̂4 (i1, i2, i3, i4) for new alg. 0.9998 1.1997 0.8001 -0.4997 0.6000

std of b̂4 (i1, i2, i3, i4) for new alg. 0.0023 0.0042 0.0019 0.0038 0.0069



Fig. 1. Proposed Volterra kernel identification method using multilevel deterministic sequences as inputs.
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Fig. 2. Deterministic multilevel input sequence for Example 3.3.




