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Abstract. Magnetic Resonance Image (MRI) reconstruction from un-
dersampled data is an important ill-posed problem for biomedical imag-
ing. For this problem, there is a significant tradeoff between the recon-
structed image quality and image acquisition time reduction due to data
sampling. Recently a plethora of solutions based on deep learning have
been proposed in the literature to reach improved image reconstruction
quality compared to traditional analytical reconstruction methods. In
this paper, a novel densely connected residual generative adversarial net-
work (DCR-GAN) is being proposed for fast and high-quality reconstruc-
tion of MR images. DCR blocks enable the reconstruction network to go
deeper by preventing feature loss in the sequential convolutional layers.
DCR block concatenates feature maps from multiple steps and gives them
as the input to subsequent convolutional layers in a feed-forward manner.
In this new model, the DCR block’s potential to train relatively deeper
structures is utilized to improve quantitative and qualitative reconstruc-
tion results in comparison to the other conventional GAN-based models.
We can see from the reconstruction results that the novel DCR-GAN
leads to improved reconstruction results without a significant increase in
the parameter complexity or run times.

Keywords: Magnetic resonance imaging · MR Image Reconstruction ·
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1 Introduction

Magnetic resonance (MR) imaging is one of the key non-invasive modalities
among clinical imaging techniques due to its ability to acquire high-contrast im-
ages from soft tissues. Despite its popularity, MR imaging is a rather lengthy
process, and it is sensitive to motion [4]. This long image acquisition time makes
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MRI susceptible to motion artifacts like ghosting and blurring because of pos-
sible motions originated from patient discomfort. Any motion during the MRI
phase encoding causes ill-matching in the spatial domain [23]. Shortening the
MR imaging time is one of the effective solutions for this problem. Recently,
deep learning (DL) models proved their capability for solving different image
processing problems [3]. In this regard, deep learning based methods [13, 1, 6, 20,
8, 12] came to be an antidote for this issue. Through this path, the deep learning
methods are trained using an undersampled dataset. Generative adversarial net-
works (GANs) as a particular DL framework have presented superb performance
in imaging inverse problems in recent literature [7].

2 Related Works

GAN models predict the generative framework through an adversarial pipeline.
GAN trains two networks at the same time in parallel. In MR image reconstruc-
tion, as shown in Fig. 1 the generative model G tries to reconstruct high-quality
images while the discriminative network D predicts if the result is a ground
truth image or it is a reconstructed one. In another point of view, G gives its
best to reconstruct such a unique duplicate of a real image that fool D and
push it to make mistake and accept the generator result as real one. GAN-based
frameworks are proved their potential to predict undersampled k-space data and
reconstruct high-resolution images [18].

In [21] a deep de-aliasing GAN has been proposed for reconstructing MR
images. In DAGAN, a U-Net structure was used as the generator network [21]
and the VGG (Visual Geometry Group) [19] perceptual loss was used along-
side generative loss. TM Quan et al [16] deployed cyclic loss in residual GAN
for MR image reconstruction under name of RefineGAN. In a study, CS-based
GAN (GANCS) has been provided by Mardani et al [14] for MRI reconstruc-
tion. Coupling perceptual loss, pixel-wise, and the cyclic data consistency loss
can improve the GAN-based model’s performance for image synthesis [2]. Syn-
thesis accuracy can be enriched using information from cross-section neighbors in
each volume [2]. Recently, deep networks gained attention due to their promising
performance but as they get deeper, their training becomes more challenging.
They need more connections to prevent feature loss and gradient vanishment
[10]. To address this drawback, layers during training can be referenced to the
input layer by adding them together [9]. Huang et al [11] has been demonstrated
that employing dense connections among layers can prevent gradient vanishing.
Dense connections concatenate receptive fields step by step from all convolu-
tional layers and feed them into the subsequent layer as an input [11]. Then,
these residual and dense connections were proved their capacity in various im-
age processing problems. In RDN [25] residual and densely connected networks
are coupled together for image restoration. In a study, dense connections are
applied to a U-Net based network for image denoising problems [15]. In the MR
image segmentation study, the dense connections were added into the U-Net
downsampling and upsampling stages [22]. Recently, a wide multimodal dense
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U-Net has been put forward for reconstructing MR images related to patients
who suffer from MS disease [5].

Getting inspired from the vantage points of both GAN-based and densely
connected networks, we couple DCR blocks into the generative network. To the
best of our knowlede, this is the the first time a DCR-GAN structure is being
used for MR image reconstruction. The deep networks are applied on initial
zero-filling (ZF) image estimates. The ZF images are generated directly from the
undersampled k-space data via inverse DFT. For the k-space undersampling we
utilize randomized Cartesian mask functions with 4-fold and 8-fold acceleration
factors. In this regard, initially we developed a GAN (Fig. 1) using standard CNN
with five convolutional layers as the generator (Fig. 2) and a binary classifier

a)

b)

c)

Fig. 1. GAN structure: a) Generator network during training step, b) Discriminator
network during training step, c) Test step.
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Fig. 2. Generative network architecture based on conventional CNN.

Fig. 3. Discriminator network architecture.

CNN as shown in Fig. 3 as the discriminator. We also adopted a VGG loss
inside the generator loss. Secondly, we develop a densely connected residual GAN
(DCR-GAN) and conduct qualitative and quantitative performance comparisons
between these models. In this study, we have used the fastMRI challenge dataset
of [24] for both training and testing purposes.

The rest of this article is arranged as follows. In Section 3, the general frame-
work for MR image reconstruction and proposed structures are illustrated in de-
tail. Moreover, in this section the developed network architectures are presented.
In Section 4, qualitative and quantitative reconstruction results are compared
using various metrics. Sample reconstructed images for all compared networks
are presented in the final part of this section. In the last section, the contribu-
tions of the presented work are summarized and future research directions are
given.
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3 Proposed Approach

3.1 General Framework

The deep learning models reconstruct MR images by learning from the difference
between ZF and ground truth images. In this regard, the fully-sampled data are
undersampled in the spatial domain (xzf ) through a preprocessing step, then
they are transported to the image domain using Inverse Fast Fourier transform
(IFFT):

y = FΩxorig (1)

xzf = F−1y (2)

Here y is the undersampled data (observed data) in the k-space domain. FΩ

indicates the undersampled Fourier transform function, F−1 is the IFFT, and
xorig shows the real image. MR image reconstruction model tries to complete
missing points in input undersampled k-space data. This model tries to learn
in the training step by minimizing the error between reconstructed image x̃
and desired output. In another word, the goal is to find the best E function
that minimizes the cost. So, the training process corresponds to the following
optimization problem:

x̃ = E(xzf ) (3)

argmin
θ

ndata∑
i=0

‖Eθ(x̃(i) − x(i))‖ (4)

Here, ndata refers to the number of training slices, and i is the image slice index.
Eθ(x) denotes the network function, where θ represents the parameters of the
underlying deep network model.

3.2 Proposed DCR-GAN

As shown in Fig. 1 the ZF images go into the proposed GAN. In general, GAN
pipeline includes two competing networks, a generator (G) and a discriminator
(D), with training parameters θG and θD, respectively. G should create fake
images which must not be recognizable from ground truth images. To achieve
this goal, network D help network G by classifying between fake and real images.
Basically, this binary classifier for real samples gives value D(xorig) = 1 and for
fake data (x̃) = 0. In mathematical terms, D and G play a two-player minimax
game which is summarized in the following function:

min
G
max
D

V (D,G) = Ex∼pdata
(x)[log(D(x))] + Ez∼pz (Z)[1− log(D(G(z)))] (5)

Here, x indicates a sample slice from the fully sampled dataset distribution,
and z is a sample image from ZF image distribution. Eq. 5 can be optimized
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by training D to maximize the possibility of correct labeling, while G tries to
minimize log(1 − D(G(z))) and deceive D to accept the generated image as a
real one. In this study, content loss was applied for generator network training.
To this end, VGG loss is appended to the mean absolute error.

LTotal = αLMAE + βLV GG + LGENadv
(6)

m
θG
inLMAE(θG) = ‖xorig − x̃‖ (7)

m
θG
inLV GG(θG) =

1

2
‖fvgg(xorig)− fvgg(x̃)‖22 (8)

Here, fvgg denotes the end-to-end function related to the pretrained VGG
network. The generator adversarial loss is defined as follows.

m
θG
inLGENadv

(θG) = − log (DθD (GθG(xzf ))) (9)

In this study, as in [21] the experimental hyperparameters α and β are set to 15
and 0.025, respectively. Here, we also applied data consistency (DC) layer [1] to
improve our reconstruction results. DC layer can be defined as below:

xout = F−1
{
M ◦ (F x̃) + y

}
(10)

In Eq. 10, M designates the complement of the mask function used for undersam-
pling the fully-sampled data. Here, ◦ is the point-wise multiplication operator,
and y is defined through (1).

3.3 Architecture

The GAN model for MR reconstruction is provided in Fig. 1. As shown in Fig. 2,
the generator pipeline includes five convolutional layers with the same training
parameters as proposed in [17]. The discriminator network is shown in Fig. 3
and is similar to the one which is offered in [18]. This binary classifier includes 7
convolution layers that are followed by leaky-ReLU activation functions and end
with a fully-connected layer. In DCR-GAN, initially the generator convolves the
single channel ZF image into 64 feature-map, just like the plain CNN. Then these
feature-maps are directed through three succeeding DCR blocks. The details of
the DCR block can be seen in Fig. 4. In the final step, the single channel grayscale
image is reconstructed through a reconstruction layer. The overall DCR-GAN
generator network is seen in Fig. 5. Finally, a DC layer [1] can be applied to the
resulting image to improve the reconstruction results.

4 Experimental Results

4.1 Quantitative Results

In this study, we developed a novel GAN based structure for MR image recon-
struction. We have trained the proposed models using the fastMRI dataset [24].



MR image reconstruction based on DCR-GAN 7

Fig. 4. DCR block structure.

Fig. 5. Structure of the novel generator network with n DCR blocks.

The details for the dataset are provided in Table 1. The fully-sampled k-space is
undersampled using random mask function with 4-fold and 8-fold acceleration
factors. The simulation results are summarized in Table 2 for both undersam-
pling acceleration factors. In Table 2, we have evaluated the proposed models
performance using three popular performance metrics, namely Normalized Mean
Squared Error (NMSE), Peak Signal to Noise Ratio(PSNR) and Structural Sim-
ilarity Index Measure (SSIM) [8]. We did not utilize the VGG loss while training
the DCR-GAN. Despite this factor, the proposed structure achieved promising
results in terms of all three performance indices. In Table 2, the reconstruc-
tion time is provided for 32 test image slices. The required reconstruction times
indicate that these methods are suitable for real-time clinical practice.
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Table 1. Number of image volumes and image slices in the fastMRI single-coil dataset
[24].

Subset name Volumes Slices

Training 973 34742

Validation 199 7135

Test 108 3903

Challenge 92 3305

Table 2. Simulation results for various models undersampled by 4-fold and 8-fold
acceleration factor.

Acceleration 4-fold 8-fold
Time (s)

Network Loss NMSE(×10−3) SSIM(×10−3) PSNR Loss NMSE(×10−3) SSIM(×10−3) PSNR

ZF - 41.679 711.59 29.876 - 77.751 603.37 26.921 -

GAN 0.308 34.317 755.26 30.894 0.451 69.212 637.63 27.466 0.098

GAN with VGG 0.308 34.152 755.92 30.908 0.451 69.218 639.12 27.474 0.10

GAN with VGG +DC 0.307 33.176 751.53 31.085 0.449 66.206 634.15 27.671 0.10

GAN with 3 DCR 0.297 31.273 766.34 31.413 0.432 62.106 651.63 27.972 0.29

GAN with 3 DCR +DC 0.299 30.925 759.57 31.501 0.432 59.189 643.37 28.208 0.30

4.2 Qualitative Results

In this section, the reconstructed images for all the realized methods for a par-
ticular test sample are visualized. The performance of the proposed networks is
evaluated by comparing the quality of these output reconstructed images. Fig.
6 depicts the original image, the ZF images (undersampled data with 4-fold and
8-fold acceleration factors), resulting images for Conventional GAN and the pro-
posed networks. As shown in Fig. 6 the baseline GAN has not fully recovered
the details while the proposed networks reconstructed images have better per-
ceptual quality, and they have restored more detail and patterns. Moreover, the
proposed structures resulting images have less severe artifacts, and most of the
blurring defects have been removed. The quantitative results provided in Table
2 confirm the reconstructed images which are provided in Fig. 6.
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Ground truth image 4-fold zero-filling image 8-fold zero-filling image

4-fold GAN 8-fold GAN

4-fold GAN with VGG loss 8-fold GAN with VGG loss

4-fold GAN with VGG loss + DC layer 8-fold GAN with VGG loss + DC layer

4-fold DCR-GAN with 3 DCR block 8-fold DCR-GAN with 3 DCR block

4-fold DCR-GAN with 3 DCR block + DC layer 8-fold DCR-GAN with 3 DCR block + DC layer

Fig. 6. Reconstructed images for 4-fold and 8-fold undersampling with random mask
function.
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5 Conclusion

Recently, densely connected deep residual networks have shown their capacity
for improving performance results in various image processing problems. Inspired
by this fact, in this work dense connections are applied inside a generative ad-
versarial network for MR image reconstruction. Appending DCR blocks to the
generative network improves the qualitative and quantitative reconstruction re-
sults of the plain CNN based generator structure. We conducted simulations
comparing the quantitative and qualitative performance results for the proposed
structure and other methods from literature. Results reveal that in MR image re-
construction, the proposed DCR-GAN can compete with potent models from the
literature. DCR-GAN with just three DCR blocks inside the generative network
can get promising results for both 4-fold acceleration factor and the more ag-
gressive 8-fold acceleration factor. In future work, DCR-GAN can get deepened
using more DCR blocks. The DCR blocks may also get utilized in conjunction
with more challenging generator structures, incorporating possibly U-Net based
models or cascade network structures.
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