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Case Study: Human Population Growth 

Humans have a 
large impact on 
the global 
environment 
because our 
population has 
grown explosively, 
along with our use 
of energy and 
resources. 

Figure 9.1 Transforming the Planet 



Case Study: Human Population Growth 

Human population reached 6.6 billion in 
2007, more than double the number of 
people in 1960. 

Our use of energy and resources has 
grown even more rapidly.  

From 1860 to 1991 human population 
quadrupled in size, and energy 
consumption increased 93-fold. 



Figure 9.2  Explosive Growth of the Human Population 



Case Study: Human Population Growth 

For thousands of years our population 
grew relatively slowly, reaching 1 billion 
for the first time in 1825. 

Now we are adding 1 billion people 
every 13 years. 



Case Study: Human Population Growth 

In 1975, the population was growing at 
an annual rate of nearly 2%. 

At this rate, a population will double in 
size every 35 years. 

If this growth rate were sustained, we 
would reach 32 billion by 2080. 



Case Study: Human Population Growth 

But growth rate has slowed recently, to 
about 1.21% per year. 

If this rate is maintained, there would be 
roughly 16 billion people on Earth in 
2080.  

Could Earth support 16 billion people? 



Introduction 

One of the ecological maxims is “No 
population can increase in size forever.” 

The limits imposed by a finite planet 
restrict what otherwise appears to be a 
universal feature of all species: A 
capacity for rapid population growth. 

Ecologists try to understand the factors 
that limit or promote population growth. 



Introduction 

Population studies have shown that 
some methods of protecting 
endangered species work poorly. 

Protection of loggerhead sea turtles 
initially focused on hatchlings, but other 
research has identified more effective 
ways to protect loggerheads. 



Figure 9.3  Dash to the Sea 



Life Tables 

Information about births and deaths is 
essential to predict trends or future 
population size. 

Concept 9.1: Life tables show how survival 
and reproductive rates vary with age, size, or 
life cycle stage. 



Life Tables 

Data for a life table for the grass Poa 
annua were collected by marking 843 
naturally germinating seedlings and 
then following their fates over time. 





Life Tables 

Sx = age-specific survival rate—chance 
that an individual of age x will survive to 
age x + 1. 

lx, = survivorship—proportion of 
individuals that survive from birth (age 
0) to age x. 

Fx, = fecundity—average number of 
offspring produced by a female while 
she is of age x. 



Life Tables 

A cohort life table follows the fate of a 
group of individuals all born at the same 
time (a cohort). 

For organisms that are highly mobile or 
have long life spans, it is hard to 
observe the fate of individuals from birth 
to death.  



Life Tables 

In some cases, a static life table can be 
used—survival and reproduction of 
individuals of different ages during a 
single time period are recorded. 

Requires estimating the age of 
individuals. 



Life Tables 

For some species, age is important 
because birth and death rates differ 
greatly between individuals of different 
ages. 

In other species, age is not so important. 
For many plants, reproduction is more 
dependent on size (related to growth 
conditions) than age. 

Life tables can also be based on size or 
life cycle stage. 



Life Tables 

Life tables are constructed for humans for 
many applications. 

Life insurance companies use census 
data to construct static life tables that 
provide a snapshot of current survival 
rates. 

They use these data to determine 
premiums they charge customers of 
different ages. 





Life Tables 

Probability of survivorship for U.S. 
females remains high until age 70. 

In contrast, only 47%–62% of Gambians 
survived to reach age 45. 

Gambians born during the “hungry 
season” (when food stored from the 
previous year is in low supply) had lower 
survivorship than children born at other 
times of the year. 



Figure 9.4  Survivorship Varies among Human Populations 



Life Tables 

A survivorship curve is a plot of the 
number of individuals from a 
hypothetical cohort that will survive to 
reach different ages. 

Survivorship curves can be classified into 
three general types. 



Life Tables 

Type I: Most individuals survive to old 
age (U.S. females, Dall sheep). 

Type II: The chance of surviving remains 
constant throughout the lifetime (some 
birds, and others). 

Type III: Individuals die at high rates 
when young, those that reach adulthood 
survive well (oysters, species that 
produce large numbers of offspring). 



Figure 9.5  Three Types of Survivorship Curves 



Figure 9.6  Species with Type I, II, and III Survivorship Curves (Part 1) 



Figure 9.6  Species with Type I, II, and III Survivorship Curves (Part 2) 



Figure 9.6  Species with Type I, II, and III Survivorship Curves (Part 3) 



Life Tables 

Survivorship curves can vary among 
populations of a species, between 
males and females, and among cohorts 
that experience different environmental 
conditions. 



Age Structure 

A population can be characterized by its 
age structure—the proportion of the 
population in each age class. 

Age structure influences whether a 
population will increase or decrease in 
size. 

Concept 9.2: Life table data can be used to 
project the future age structure, size, and 
growth rate of a population. 



Figure 9.7  Age Structure Influences Growth Rate in Human Populations 



Age Structure 

If a population has many people between 
ages 15 and 30, we would expect it to 
grow rapidly because it contains more 
individuals of reproductive age. 

A population with many people older than 
55 would grow more slowly. 



Age Structure 

Life table data can be used to predict age 
structure and population size. 



Age Structure 

Assume the population starts with 100 
individuals: 

Age class 0 (n0) = 20 individuals 

Age class 1 (n1) = 30  

Age class 2 (n2) = 50  

Assume that all mortality occurs over the 
winter, before spring breeding season, and 
that individuals are counted immediately after 
the breeding season 



Age Structure 

To predict population size for the 
following year, two things must be 
calculated: 

1. Number of individuals that will survive 
to the next time period. 

2. Number of newborns those survivors 
will produce in the next time period. 





Age Structure 

Calculations for one year can be 
extended to future years. 

time t = 0, population size was 100 

time t = 1, population size was 138 

time t = 2, population size can be 
calculated in the same way 



Figure 9.8 A  Growth of a Hypothetical Population 



Age Structure 

The growth rate (λ) can be calculated as 
the ratio of the population size in year t 
+ 1 (Nt+1) to the population size in year t 
(Nt).  



Figure 9.8 B  Growth of a Hypothetical Population 



Age Structure 

When age-specific survival and fecundity 
rates are constant over time, the 
population ultimately grows at a fixed rate. 

The age structure does not change from 
one year to the next—it has a stable age 
distribution. 

In the example, the stable age distribution 
is 0.73 in age class 0, 0.17 in age class 1, 
and 0.10 in age class 2. 



Age Structure 

If survival and fecundity rates change, we 
would obtain different values for the 
population growth rate and the stable 
age distribution. 

For example, if F1 changes from 2 to 
5.07 (and other values remain equal), λ 
increases to 2.0. 



Age Structure 

Any factor that alters survival or fecundity 
of individuals can change the population 
growth rate. 

Ecologists and managers try to identify 
age-specific birth and death rates that 
most strongly influence the population 
growth rate. 

This can be used to develop management 
practices that decrease pest populations 
or increase an endangered population. 



Age Structure 

Example: Loggerhead sea turtles are 
threatened by development on nesting 
sites and commercial fishing nets. 

Early efforts focused on egg and 
hatchling stages. 

This approach was tested using life table 
data. 



Box 9.1, Figure A  Loggerhead Sea Turtle 



Box 9.1, Figure B  Turtle Excluder Device (TED) 



Age Structure 

Even if hatchling survival were increased 
to 100%, loggerhead populations would 
continue to decline. 

Instead, population growth rate was most 
responsive to decreasing mortality of 
older juveniles and adults. 



Age Structure 

Because of these studies, Turtle 
Excluder Devices (TEDs) were required 
to be installed in shrimp nets. 

The number of turtles killed in nets 
declined by about 44% after TED 
regulations were implemented. 

It will be decades before we know 
whether TED regulations help turtle 
populations to increase in size. 



Exponential Growth 

In general, populations can grow rapidly 
whenever individuals leave an average 
of more than one offspring over 
substantial periods of time. 

Concept 9.3: Populations can grow 
exponentially when conditions are favorable, 
but exponential growth cannot continue 
indefinitely. 



Exponential Growth 

If a population reproduces in synchrony 
at regular time intervals (discrete time 
periods), and growth rate remains the 
same, geometric growth occurs. 

The population increases by a constant 
proportion, so the number of individuals 
added to the population becomes larger 
with each time period. 



Figure 9.9 A  Geometric and Exponential Growth 



Exponential Growth 

Geometric growth: 

λ = geometric growth rate; also known 
as the (per capita) finite rate of 
increase. 



Exponential Growth 

Geometric growth can also be 
represented by 

This predicts the size of the population 
after any number of discrete time 
periods. 



Exponential Growth 

In many species, individuals do not 
reproduce in synchrony at discrete time 
periods, they reproduce continuously, 
and generations can overlap.  

When these populations increase by a 
constant proportion, the growth is 
exponential growth. 



Exponential Growth 

Exponential growth is described by 

     = the rate of change in population size 
at each instant in time. 

r is the exponential population growth 
rate or the (per capita) intrinsic rate of 
increase. 



Exponential Growth 

Exponential growth can also be 
described by 

This predicts the size of an exponentially 
growing population at any time t, if we 
have an estimate for r and know N(0), 
the initial population size. 



Figure 9.9 A  Geometric and Exponential Growth 



Exponential Growth 

Geometric and exponential growth 
curves overlap because the equations 
are similar in form, except that λ is 
replaced by er. 



Exponential Growth 

If a population is growing geometrically 
or exponentially, a plot of the natural 
logarithm of population size versus time 
will result in a straight line. 



Figure 9.9 B  Geometric and Exponential Growth 



Exponential Growth 

When λ = 1 or r = 0, the population stays 
the same size. 

When λ < 1 or r < 0, the population size 
will decrease. 

When λ > 1 or r > 0, the population grows 
geometrically or exponentially. 



Figure 9.10  How Population Growth Rates Affect Population Size 



Exponential Growth 

Growth rate (r or λ) can be estimated in 
several ways. 

Life table data can be used to predict 
future population size, plot the predicted 
population size versus time, and 
estimate growth rate (λ) from the graph. 



Exponential Growth 

The doubling time (td) of a population is 
the number of years it will take the 
population to double in size. 



Exponential Growth 

Net reproductive rate (R0) is the mean 
number of offspring produced by an 
individual during its lifetime. 

  xfirst = age of first reproduction 
  xlast = age of last reproduction 



Exponential Growth 

Whenever R0 > 1, λ will be greater than 1 
(and r > 0).  

Under these conditions, populations have 
the potential to increase greatly in size. 

Even a growth rate that appears to be 
small can cause a population to 
increase rapidly. 



Exponential Growth 

For the human population, current annual 
growth rate is 1.21%, which implies that 
r = 0.0121. 

If 2007 is time t = 0, and N(0) = 6.6 
billion, population size 1 year later 
should be N(1) = 6.6 × e0.0121, or 6.68 
billion. 

If r remained constant, population would 
be over 80 billion in 210 years. 



Exponential Growth 

Populations of some species have 
observed λ values close to 1. 

25 reindeer were introduced to Saint 
Paul Island off the coast of Alaska in 
1911. After 27 years, the population had 
increased to 2,046 individuals. 

λ = 1.18 for this population. 



Figure 9.11  Some Populations Have Slow Growth Rates 



Exponential Growth 

Considerably higher annual population 
growth rates have been observed in 
many species, including western grey 
kangaroos (λ = 1.9), field voles (λ = 24), 
and rice weevils (λ = 1017). 



Exponential Growth 

In natural populations, favorable 
conditions result in exponential growth 
of populations, but can favorable 
conditions last for long? 

Exponential growth cannot continue 
indefinitely. There are limits to 
population growth. 



Effects Of Density 

Under ideal conditions, λ > 1 for all 
populations. 

But conditions rarely remain ideal. What 
factors cause λ to fluctuate over time? 

Concept 9.4: Population size can be 
determined by density-dependent and 
density-independent factors. 



Effects Of Density 

Some factors are a function of population 
density, other are not dependent on 
density—density-independent factors. 

Factors such as temperature and 
precipitation, and catastrophes such as 
floods or hurricanes. 

In the insect Thrips imaginis, population 
size fluctuation is correlated with 
temperature and rainfall (Davidson and 
Andrewartha 1948). 



Figure 9.12  Weather Can Influence Population Size 



Effects Of Density 

Density-dependent factors: Cause birth 
rates, death rates, and dispersal rates 
to change as the density of the 
population changes. 

As densities increase birth rates often 
decrease, death rates increase, and 
dispersal from the population 
(emigration) increases, all of which tend 
to decrease population size. 



Figure 9.13  Comparing Density Dependence and Density Independence 



Effects Of Density 

Population regulation occurs when 
density-dependent factors cause 
population to increase when density is 
low and decrease when density is high. 

Ultimately, food, space, or other essential 
resources are in short supply and 
population size decreases. 



Effects Of Density 

Regulation refers to the effects of factors 
that tend to increase λ or r when the 
population size is small and decrease λ 
or r when the population size is large.  

Density-independent factors can have 
large effects on population size, but 
they do not regulate population size. 



Effects Of Density 

Density dependence has been 
documented in natural populations. 

In song sparrows, the number of eggs 
laid per female decreased with density, 
as did the number of young that 
survived (Arcese and Smith 1988). 



Figure 9.14 A  Examples of Density Dependence in Natural Populations 



Effects Of Density 

Density-dependent mortality has been 
observed in many populations. 

Yoda et al. (1963) planted soybeans at 
various densities and found that at the 
highest planting densities, many of the 
seedlings had died by 93 days of age. 



Figure 9.14 B  Examples of Density Dependence in Natural Populations 



Effects Of Density 

In an experiment where eggs of the flour 
beetle Tribolium confusum were placed 
in glass tubes, death rates increased as 
the density of eggs increased. 



Figure 9.14 C  Examples of Density Dependence in Natural Populations 



Effects Of Density 

Density dependence can be detected 
even in populations whose abundance 
is largely controlled by density-
independent factors. 

Smith (1961) replotted Davidson and 
Andrewartha’s data (1948): Change in 
population size from one time period to 
the next versus size of the population at 
the start of the time period.  



Figure 9.15  Density Dependence in Thrips imaginis 



Effects Of Density 

When birth, death, or dispersal rates 
show strong density dependence, 
population growth rates may decline as 
densities increase. 

If densities become high enough to 
cause λ = 1 (or r = 0), the population 
decreases in size. 



Figure 9.16  Population Growth Rates May Decline at High Densities (Part 1) 



Figure 9.16  Population Growth Rates May Decline at High Densities (Part 2) 



Logistic Growth 

Logistic growth: Population increases 
rapidly at first, then stabilizes at the 
carrying capacity (maximum 
population size that can be supported 
indefinitely by the environment). 

Concept 9.5: The logistic equation 
incorporates limits to growth and shows how 
a population may stabilize at a maximum size, 
the carrying capacity. 



Figure 9.17  An S-shaped Growth Curve in a Natural Population 



Logistic Growth 

The growth rate decreases as the 
population size nears carrying capacity 
because resources such as food, water, 
or space begin to run short. 

At carrying capacity, the growth rate is 
zero, so population size does not 
change. 



Logistic Growth 

In the exponential growth equation 
(dN/dt = rN), r is assumed to be constant. 

To make it more 
realistic, we 
assume that r 
declines in a 
straight line as 
density (N) 
increases. 



Logistic Growth 

This results in the logistic equation: 

  N = population density 
  r = per capita growth rate 
  K = carrying capacity 



Figure 9.18  Logistic and Exponential Growth Compared 



Logistic Growth 

When densities are low, logistic growth is 
similar to exponential growth. 

When N is small, (1 – N/K) is close to 1, 
and a population with logistic growth 
increases at a rate close to r. 

As density increases, growth rate 
approaches zero. 



Logistic Growth 

Pearl and Reed (1920) derived the 
logistic equation and used it to predict a 
carrying capacity for the U.S. 
population, using census data. 

The logistic curve fit the U.S. data well, 
through 1950. After that, however, the 
actual population size differed 
considerably from the predicted curve. 



Figure 9.19  Fitting a Logistic Curve to the U.S. Population Size 



Logistic Growth 

Pearl and Reed recognized that if 
conditions changed—for example, if 
agricultural productivity increased—the 
population could increase beyond the 
predicted carrying capacity. 

Some ecologists have shifted to the 
concept of the ecological footprint: The 
total area required to support a human 
population. 



Case Study Revisited: Human Population Growth 

If a population is growing exponentially, 
plotting the natural log of population 
size versus time will result in a straight 
line. 

When the natural log of human 
population size is plotted, the line 
deviates considerably.  

Human population has increased faster 
than exponential growth. 



Figure 9.20  Faster than Exponential (Part 1) 



Figure 9.20  Faster than Exponential (Part 2) 



Case Study Revisited: Human Population Growth 

In a population that grows exponentially, 
the doubling time remains constant.  

Our population’s doubling time dropped 
from roughly 1,400 years in 5000 B.C. 
to a mere 45 years in 1930, which also 
shows that it is growing more rapidly 
than exponential growth. 



Case Study Revisited : Human Population Growth 

United Nations projections indicate that 
population growth rates are likely to 
continue to fall, leading to a predicted 
population size of 8.9 billion in 2050. 

Extending that curve to 2080 suggests 
that there will be roughly 9–10 billion.  

Is 10 billion above the carrying capacity 
of the human population? 



Figure 9.21  United Nations Projections of Human Population Size 



Case Study Revisited : Human Population Growth 

Many people have tried to estimate 
human carrying capacity. 

The researchers must make assumptions 
about how people would live and how 
technology would influence our future. 

Estimates range from fewer than 1 billion 
to more than 1,000 billion. 



Figure 9.22  The Human Carrying Capacity 



Case Study Revisited : Human Population Growth 

Using the ecological footprint approach, 
we see that the carrying capacity 
depends on the amount of resources 
used by each person. 



Case Study Revisited : Human Population Growth 

If everyone used the amount of 
resources used by people in the U.S. in 
1999, the world could support only 1.2 
billion people. 

If everyone used the amount of 
resources used by people in India in 
1999, the world could support over 14 
billion people. 



Connection in Nature: Your Ecological Footprint 

The environmental impact of a population 
is called its ecological footprint. 

Ultimately, every aspect of our economy 
depends on the ecosystems of Earth. 



Connection in Nature: Your Ecological Footprint 

Ecological footprints are calculated from 
national statistics on agricultural 
productivity, production of goods, 
resource use, population size, and 
pollution.  

The area required to support these 
activities is then estimated. 



Connection in Nature: Your Ecological Footprint 

In the U.S. the average ecological 
footprint was 9.7 hectares per person in 
1999 and there were 1,800 million 
hectares of productive land available. 

This suggests that the carrying capacity 
of the U.S. in 1999 was 186 million; the 
actual population was 279 million, a 
50% overshoot. 



Connection in Nature: Your Ecological Footprint 

The ecological footprint approach 
highlights the fact that all of our actions 
depend on and affect the natural world. 


