
Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C and Applying Pointers

BIL104E: Introduction to Scientific and
Engineering Computing

Lecture 8

Functions in C
Applying Pointers

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

• Function declarations
• Prototyping
• Values returned from functions
• Arguments to functions
• Structured programming

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

What Is a Function?

First the definition: A function is a named, independent section of C code that
performs a specific task and optionally returns a value to the calling program.
Now let's look at the parts of this definition:

Function Prototype:

return_type function_name(arg-type name-1,...,arg-type name-n);

Function Body:

return_type function_name(arg-type name-1,...,arg-type name-n)
{

statement(s);
}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

What Is a Function?

• A function is named: Each function has a unique name. By using that name in
another part of the program, you can execute the statements contained in the
function. This is known as calling the function. A function can be called from
within another function.

• A function is independent: A function can perform its task without interference
from or interfering with other parts of the program.

• A function performs a specific task: This is the easy part of the definition. A task
is a discrete job that your program must perform as part of its overall operation,
such as sending a line of text to a printer, sorting an array into numerical order,
or calculating a cube root.

• A function can return a value to the calling program: When your program calls a
function, the statements it contains are executed. If you want them to, these
statements can pass information back to the calling program.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

1: /* Demonstrates a simple function */
2: #include <stdio.h>
3:
4: long cube(long x);
5:
6: long input, answer;
7:
8: main()
9: {
10: printf("Enter an integer value: ");
11: scanf("%d", &input);
12: answer = cube(input);
13: /* Note: %ld is the conversion specifier for */
14: /* a long integer */
15: printf("\nThe cube of %ld is %ld.\n", input, answer);
16: 17: return 0;
18: }
19:
20: /* Function: cube() - Calculates the cubed value of a variable */
21: long cube(long x)
22: {
23: long x_cubed;
24:
25: x_cubed = x * x * x;
26: return x_cubed;
27: }

Functions in C

Function

Declaration of a function

Function call

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

1: /* Making function calls */
2: #include <stdio.h>
3: 4: int function_1(int x, int y);
5: double function_2(double x, double y)
6: {
7: printf("Within function_2.\n");
8: return (x - y);
9: }
10:
11: main()
12: {
13: int x1 = 80;
14: int y1 = 10;
15: double x2 = 100.123456;
16: double y2 = 10.123456;
17:
18: printf("Pass function_1 %d and %d.\n", x1, y1);
19: printf("function_1 returns %d.\n", function_1(x1, y1));
20: printf("Pass function_2 %f and %f.\n", x2, y2);
21: printf("function_2 returns %f.\n", function_2(x2, y2));
22: return 0;
23: }
24: /* function_1() definition */
25: int function_1(int x, int y)
26: {
27: printf("Within function_1.\n");
28: return (x + y);
29: }

Functions in C

Pass function_1 80 and 10.
Within function_1.
function_1 returns 90.
Pass function_2 100.123456. and 10.123456.
Within function_2.
function_2 returns 90.000000.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

Functions with No Arguments :

The first case is a function that takes no argument. For instance, the C library
function getchar() does not need any arguments. It can be used in a program
like this:

int c;

c = getchar();

As you can see, the second statement is left blank between the parentheses ((
and)) when the function is called.

In C, the declaration of the getchar() function can be something like this:

int getchar(void);

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

Local Variables:
You can declare variables within the body of a function. The term local means that

the variables are private to that particular function and are distinct from other
variables of the same name declared elsewhere in the program.

A local variable is declared like any other variable, using the same variable types
and rules for names that you learned on Day 3. Local variables can also be
initialized when they are declared. You can declare any of C's variable types in a
function. Here is an example of four local variables being declared within a
function:

int func1(int y)
{
int a, b = 10;
float rate;
double cost = 12.55;
/* function code goes here... */

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

• 1: /* 15L02.c: Functions with no arguments */
• 2: #include <stdio.h>
• 3: #include <time.h>
• 4:
• 5: void GetDateTime(void);
• 6:
• 7: main()
• 8: {
• 9: printf("Before the GetDateTime() function is called.\n");
• 10: GetDateTime();
• 11: printf("After the GetDateTime() function is called.\n");
• 12: return 0; 13: }
• 14: /* GetDateTime() definition */
• 15: void GetDateTime(void)
• 16: {
• 17: time_t now;
• 18:
• 19: printf("Within GetDateTime().\n");
• 20: time(&now);
• 21: printf("Current date and time is: %s\n",
• 22: asctime(localtime(&now)));
• 23: }

Functions in C

Before the GetDateTime() function is called.
Within GetDateTime().
Current date and time is: Sat Apr 05 11:50:10 1997
After the GetDateTime() function is called.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

The Advantages of Structured Programming

• A related advantage of structured programming is the time you can save.

• If you write a function to perform a certain task in one program, you can quickly
and easily use it in another program that needs to execute the same task.

• Even if the new program needs to accomplish a slightly different task, you'll
often find that modifying a function you created earlier is easier than writing a
new one from scratch.

• If your functions have been created to perform a single task, using them in other
programs is much easier.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

Making Function Calls

• When a function call is made, the program execution jumps to the function and
finishes the task assigned to the function. Then the program execution resumes
after the called function returns.

• A function call is an expression that can be used as a single statement or within
other statements.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C
2: #include <stdio.h>
3:
4: int function_1(int x, int y);
5: double function_2(double x, double y){
7: printf("Within function_2.\n");
8: return (x - y);
9: }
10:
11: main(){
13: int x1 = 80;
14: int y1 = 10;
15: double x2 = 100.123456;
16: double y2 = 10.123456;
18: printf("Pass function_1 %d and %d.\n", x1, y1);
19: printf("function_1 returns %d.\n", function_1(x1, y1));
20: printf("Pass function_2 %f and %f.\n", x2, y2);
21: printf("function_2 returns %f.\n", function_2(x2, y2));
22: return 0;
23: }
24: /* function_1() definition */
25: int function_1(int x, int y)
26: {
27: printf("Within function_1.\n");
28: return (x + y);
29: }

Pass function_1 80 and 10.
Within function_1.
function_1 returns 90.
Pass function_2 100.123456. and 10.123456.
Within function_2.
function_2 returns 90.000000.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

Returning a Value

To return a value from a function, you use the return keyword, followed by a C
expression. When execution reaches a return statement, the expression is
evaluated, and execution passes the value back to the calling program. The
return value of the function is the value of the expression. Consider this function:

int func1(int var)
{
int x;
/* Function code goes here... */
return x;
}

When this function is called, the statements in the function body execute up to the
return statement. The return terminates the function and returns the value of x to
the calling program. The expression that follows the return keyword can be any
valid C expression.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C
/* Demonstrates using multiple return statements in a function. */
#include <stdio.h>
int x, y, z;
int larger_of(int , int);
main()
{

puts("Enter two different integer values: ");
scanf("%d%d", &x, &y);
z = larger_of(x,y);
printf("\nThe larger value is %d.", z);
return 0;

}

int larger_of(int a, int b)
{
if (a > b) return a; else
return b;
}

Enter two different integer
values:
200 300
The larger value is 300.
Enter two different integer
values:
300
200
The larger value is 300.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

Passing Arrays to Functions

• The special relationship that exists in C between pointers and arrays has
been discussed. This relationship comes into play when you need to pass an
array as an argument to a function. The only way you can pass an array to a
function is by means of a pointer.

• An argument is a value that the calling program passes to a function. It can be
an int, a float, or any other simple data type, but it must be a single numerical
value. It can be a single array element, but it can't be an entire array.

• What if you need to pass an entire array to a function? Well, you can have a
pointer to an array, and that pointer is a single numeric value (the address of the
array's first element). If you pass that value to a function, the function knows the
address of the array and can access the array elements using pointer notation.
Consider another problem. If you write a function that takes an array as
an argument, you want a function that can handle arrays of different
sizes. For example, you could write a function that finds the largest element
in an integer array. The function wouldn't be much use if it were limited to
dealing with arrays of one fixed size.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C
1: /* Passing an array to a function. */
2:
3: #include <stdio.h>
4:
5: #define MAX 10
6:
7: int array[MAX], count;
8:
9: int largest(int x[], int y);
10:
11: main()
12: {
13: /* Input MAX values from the keyboard. */
14:
15: for (count = 0; count < MAX; count++)
16: {
17: printf("Enter an integer value: ");
18: scanf("%d", &array[count]);
19: }
20:
21: /* Call the function and display the return value. */
22: printf("\n\nLargest value = %d\n", largest(array, MAX));
23:
24: return 0;
25: }

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C
26: /* Function largest() returns the largest value */
27: /* in an integer array */
28:
29: int largest(int x[], int y)
30: {
31: int count, biggest = -12000;
32:
33: for (count = 0; count < y; count++)
34: {
35: if (x[count] > biggest)
36: biggest = x[count];
37: }
38:
39: return biggest;
40: }

Enter an integer value: 1
Enter an integer value: 2
Enter an integer value: 3
Enter an integer value: 4
Enter an integer value: 5
Enter an integer value: 10
Enter an integer value: 9
Enter an integer value: 8
Enter an integer value: 7
Enter an integer value: 6
Largest value = 10

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Functions in C

The syntax for the time() function is

#include <time.h>
time_t time(time_t *timer);

The syntax for the localtime() function is

#include <time.h>
struct tm *localtime(const time_t *timer);

The syntax for the asctime() function is

#include <time.h>
char *asctime(const struct tm *timeptr);

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

Pointer Arithmetic

In C, you can move the position of a pointer by adding or subtracting integers to or
from the pointer. For example, given a character pointer variable ptr_str, the
following expression

ptr_str + 1

indicates to the compiler to move to the memory location that is one byte away
from the current position of ptr_str.

Note that for pointers of different data types, the integers added to or subtracted
from the pointers have different scalar sizes. In other words, adding 1 to (or
subtracting 1 from) a pointer is not instructing the compiler to add (or subtract)
one byte to the address, but to adjust the address so that it skips over one
element of the type of the pointer. You'll see more details in the following
sections.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

The Scalar Size of Pointers
The general format to change the position of a pointer is

pointer_name + n

Here n is an integer whose value can be either positive or negative. pointer_name
is the name of a pointer variable that has the following declaration:

data_type_specifier *pointer_name;
When the C compiler reads the pointer_name + n expression, it interprets the

expression as
pointer_name + n * sizeof(data_type_specifier)

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

The Scalar Size of Pointers

Note that the sizeof operator is used to obtain the number of bytes that a specified
data type can have. Therefore, for the char pointer variable ptr_str, the
ptr_str + 1 expression actually means

ptr_str + 1 * sizeof(char).

Because the size of a character is one byte long, ptr_str + 1 tells the compiler to
move to the memory location that is 1 byte after the current location referenced
by the pointer.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers
1: /* Pointer arithmetic - Moving pointers of different data types */
2: #include <stdio.h>
3:
4: main()
5: {
6: char *ptr_ch;
7: int *ptr_int;
8: double *ptr_db;
9: /* char pointer ptr_ch */ 10: printf("Current position of ptr_ch: 0x%p\n", ptr_ch);
11: printf("The position after ptr_ch + 1: 0x%p\n", ptr_ch + 1);
12: printf("The position after ptr_ch + 2: 0x%p\n", ptr_ch + 2);
13: printf("The position after ptr_ch - 1: 0x%p\n", ptr_ch - 1);
14: printf("The position after ptr_ch - 2: 0x%p\n", ptr_ch - 2);
15: /* int pointer ptr_int */
16: printf("Current position of ptr_int: 0x%p\n", ptr_int);
17: printf("The position after ptr_int + 1: 0x%p\n", ptr_int + 1);
18: printf("The position after ptr_int + 2: 0x%p\n", ptr_int + 2);
19: printf("The position after ptr_int - 1: 0x%p\n", ptr_int - 1);
20: printf("The position after ptr_int - 2: 0x%p\n", ptr_int - 2);
21: /* double pointer ptr_ch */
22: printf("Current position of ptr_db: 0x%p\n", ptr_db);
23: printf("The position after ptr_db + 1: 0x%p\n", ptr_db + 1);
24: printf("The position after ptr_db + 2: 0x%p\n", ptr_db + 2);
25: printf("The position after ptr_db - 1: 0x%p\n", ptr_db - 1);
26: printf("The position after ptr_db - 2: 0x%p\n", ptr_db - 2);
27:
28: return 0;
29: }

Current position of ptr_ch: 0x000B
The position after ptr_ch + 1: 0x000C
The position after ptr_ch + 2: 0x000D
The position after ptr_ch - 1: 0x000A
The position after ptr_ch - 2: 0x0009
Current position of ptr_int: 0x028B
The position after ptr_int + 1: 0x028D
The position after ptr_int + 2: 0x028F
The position after ptr_int - 1: 0x0289
The position after ptr_int - 2: 0x0287
Current position of ptr_db: 0x0128
The position after ptr_db + 1: 0x0130
The position after ptr_db + 2: 0x0138
The position after ptr_db - 1: 0x0120
The position after ptr_db - 2: 0x0118

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

Pointer Subtraction

For two pointers of the same type, you can subtract one pointer value from the
other. For instance, given two char pointer variables, ptr_str1 and ptr_str2, you
can calculate the offset between the two memory locations pointed to by the two
pointers like this:

ptr_str2 - ptr_str1;

However, it's illegal in C to subtract one pointer value from another if they do not
share the same data type.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers
1: /* Pointer subtraction - Performing subtraction on pointers */
2: #include <stdio.h>
3:
4: main()
5: {
6: int *ptr_int1, *ptr_int2;
7:
8: printf("The position of ptr_int1: 0x%p\n", ptr_int1);
9: ptr_int2 = ptr_int1 + 5;
10: printf("The position of ptr_int2 = ptr_int1 + 5: 0x%p\n", ptr_int2);
11: printf("The subtraction of ptr_int2 - ptr_int1: %d\n", ptr_int2 - Âptr_int1);
12: ptr_int2 = ptr_int1 - 5;
13: printf("The position of ptr_int2 = ptr_int1 - 5: 0x%p\n", ptr_int2);
14: printf("The subtraction of ptr_int2 - ptr_int1: %d\n", ptr_int2 - Âptr_int1);
15:
16: return 0;
17: }

The position of ptr_int1: 0x0128
The position of ptr_int2 = ptr_int1 + 5: 0x0132
The subtraction of ptr_int2 - ptr_int1: 5
The position of ptr_int2 = ptr_int1 - 5: 0x011E
The subtraction of ptr_int2 - ptr_int1: -5

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

Pointers and Arrays

As indicated in previous lessons, pointers and arrays have a close relationship. You
can access an array through a pointer that contains the start address of the
array. The following subsection introduces how to access array elements
through pointers.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

Accessing Arrays via Pointers

Because an array name that is not followed by a subscript is interpreted as a
pointer to the first element of the array, you can assign the start address of the
array to a pointer of the same data type; then you can access any element in the
array by adding a proper integer to the pointer. The value of the integer is the
same as the subscript value of the element that you want to access.

In other words, given an array, array, and a pointer, ptr_array, if array and ptr_array
are of the same data type, and ptr_array contains the start address of the array,
that is

ptr_array = array;

then the expression array[n] is equivalent to the expression

*(ptr_array + n)

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers
1: /* Accessing arrays via pointers - Accessing arrays by using pointers */
2: #include <stdio.h>
3:
4: main() 5: {
6: char str[] = "It's a string!";
7: char *ptr_str;
8: int list[] = {1, 2, 3, 4, 5};
9: int *ptr_int;
10:
11: /* access char array */
12: ptr_str = str;
13: printf("Before the change, str contains: %s\n", str);
14: printf("Before the change, str[5] contains: %c\n", str[5]);
15: *(ptr_str + 5) = `A';
16: printf("After the change, str[5] contains: %c\n", str[5]);
17: printf("After the change, str contains: %s\n", str); 18: /* access int array */
19: ptr_int = list;
20: printf("Before the change, list[2] contains: %d\n", list[2]);
21: *(ptr_int + 2) = -3;
22: printf("After the change, list[2] contains: %d\n", list[2]);
23:
24: return 0;
25: }

Before the change, str contains: It's a string!
Before the change, str[5] contains: a
After the change, str[5] contains: A
After the change, str contains: It's A string!
Before the change, list[2] contains: 3
After the change, list[2] contains: -3

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

Pointers and Functions

Before I talk about passing pointers to functions, let's first have a look at how to
pass arrays to functions.

Passing Arrays to Functions

In practice, it's usually awkward if you pass more than five or six arguments to a
function. One way to save the number of arguments passed to a function is to
use arrays. You can put all variables of the same type into an array, and then
pass the array as a single argument.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers
1: /* 16L04.c: Passing arrays to functions - Passing arrays to functions */
2: #include <stdio.h>
3:
4: int AddThree(int list[]);
5:
6: main()
7: {
8: int sum, list[3];
9:
10: printf("Enter three integers separated by spaces:\n");
11: scanf("%d%d%d", &list[0], &list[1], &list[2]);
12: sum = AddThree(list);
13: printf("The sum of the three integers is: %d\n", sum);
14:
15: return 0;
16: }
17:
18: int AddThree(int list[])
19: {
20: int i;
21: int result = 0;
22:
23: for (i=0; i<3; i++)
24: result += list[i];
25: return result;
26: }

Enter three integers separated by spaces:
10 20 30
The sum of the three integers is: 60

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

Passing Pointers to Functions

As you know, an array name that is not followed by a subscript is interpreted as a
pointer to the first element of the array. In fact, the address of the first element in
an array is the start address of the array.

Therefore, you can assign the start address of an array to a pointer, and then pass
the pointer name, instead of the unsized array, to a function.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers
1: /* Passing pointers to functions */
2: #include <stdio.h>
3:
4: void ChPrint(char *ch);
5: int DataAdd(int *list, int max);
6: main()
7: {
8: char str[] = "It's a string!";
9: char *ptr_str;
10: int list[5] = {1, 2, 3, 4, 5};
11: int *ptr_int;
12:
13: /* assign address to pointer */
14: ptr_str = str;
15: ChPrint(ptr_str);
16: ChPrint(str);
17:
18: /* assign address to pointer */
19: ptr_int = list;
20: printf("The sum returned by DataAdd(): %d\n",
21: DataAdd(ptr_int, 5));
22: printf("The sum returned by DataAdd(): %d\n",
23: DataAdd(list, 5));
24: return 0;
25: }

Enter three integers separated by spaces:
10 20 30
The sum of the three integers is: 60

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers
26: /* function definition */
27: void ChPrint(char *ch)
28: {
29: printf("%s\n", ch);
30: }
31: /* function definition */
32: int DataAdd(int *list, int max)
33: {
34: int i;
35: int sum = 0;
36:
37: for (i=0; i<max; i++)
38: sum += list[i];
39: return sum;
40: }

It's a string!
It's a string!
The sum returned by DataAdd(): 15
The sum returned by DataAdd(): 15

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

Passing Multidimensional Arrays as Arguments

"Storing Similar Data Items," you learned about multidimensional arrays. In this
section, you're going to see how to pass multidimensional arrays to functions.

As you might have guessed, passing a multidimensional array to a function is
similar to passing a one-dimensional array to a function.

You can either pass the unsized format of a multidimensional array or a pointer that
contains the start address of the multidimensional array to a function.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers
1: /* Passing multidimensional arrays to functions */
2: #include <stdio.h>
3: /* function declarations */
4: int DataAdd1(int list[][5], int max1, int max2);
5: int DataAdd2(int *list, int max1, int max2);
6: /* main() function */
7: main()
8: {
9: int list[2][5] = {1, 2, 3, 4, 5,
10: 5, 4, 3, 2, 1};
11: int *ptr_int;
12:
13: printf("The sum returned by DataAdd1(): %d\n",
14: DataAdd1(list, 2, 5));
15: ptr_int = &list[0][0];
16: printf("The sum returned by DataAdd2(): %d\n",
17: DataAdd2(ptr_int, 2, 5));
18:
19: return 0;
20: }
21: /* function definition */
22: int DataAdd1(int list[][5], int max1, int max2)
23: {
24: int i, j;
25: int sum = 0;
26:

It's a string!
It's a string!
The sum returned by DataAdd(): 15
The sum returned by DataAdd(): 15

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers
27: for (i=0; i<max1; i++)
28: for (j=0; j<max2; j++)
29: sum += list[i][j];
30: return sum;
31: }
32: /* function definition */
33: int DataAdd2(int *list, int max1, int max2)
34: {
35: int i, j; 36: int sum = 0;
37:
38: for (i=0; i<max1; i++)
39: for (j=0; j<max2; j++)
40: sum += *(list + i*max2 + j);
41: return sum;
42: }

The sum returned by DataAdd1(): 30
The sum returned by DataAdd2(): 30

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

Arrays of Pointers

In many cases, it's useful to declare an array of pointers and access the contents
pointed to by the array by dereferencing each pointer. For instance, the
following declaration declares an int array of pointers:

int *ptr_int[3];

In other words, the variable ptr_int is a three-element array of pointers to integers.
In addition, you can initialize the array of pointers. For example:

int x1 = 10;
int x2 = 100;
int x3 = 1000;
ptr_int[0] = &x1;
ptr_int[1] = &x2;
ptr_int[2] = &x3;

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COŞKUN

Applying Pointers

Passing Multidimensional Arrays as Arguments

"Storing Similar Data Items," you learned about multidimensional arrays. In this
section, you're going to see how to pass multidimensional arrays to functions.

As you might have guessed, passing a multidimensional array to a function is
similar to passing a one-dimensional array to a function.

You can either pass the unsized format of a multidimensional array or a pointer that
contains the start address of the multidimensional array to a function.

