
Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings and Clases

BIL104E: Introduction to Scientific and
Engineering Computing

Lecture 7

vManipulating Strings
vScope and Storage Classes in C

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

• Declaring a string
• The length of a string
• Copying strings
• Reading strings with scanf(
• The gets() and puts() functions

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

What Is a String?

As introduced in Lecture 6, "Storing Similar Data Items," a string is a character
array terminated by a null character (\0).

For instance, a character array, array_ch, declared in the following statement, is
considered a character string:

char array_ch[7] = {`H', `e', `l', `l', `o', `!', \̀0'};

A series of characters enclosed in double quotes ("") is called a string constant.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

Declaring and Initializing Strings

a character array can be declared and initialized like this:

char arr_str[6] = {`H', `e', `l', `l', `o', `!'};

Here the array arr_str is treated as a character array. However,if you add a null
character (\0) into the array, you can have the following statement:

char arr_str[7] = {`H', `e', `l', `l', `o', `!', \̀0'};

You can also initialize a character array with a string constant. For example, the
following statement initializes a character array, str, with a string constant,
"Hello!":

char str[7] = "Hello!";

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

Declaring and Initializing Strings

You can declare an unsized character array if you want the compiler to calculate
the total number of elements in the array. For instance, the following statement;

char str[] = "I like C.";

If you like, you can also declare a char pointer and then initialize the pointer with a
string constant. The following statement is an example:

char *ptr_str = "I teach myself C.";

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

WARNING

Don't specify the size of a character array as too small. Otherwise, it cannot hold a
string constant plus an extra null character. For instance, the following
declaration is considered illegal:

char str[4] = "text";

The following statement is a correct one: because it is big enough to hold the string
constant plus an extra null character ‘\0’:

char str[5] = "text";

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

String Constants Versus Character Constants What Is a String?

When a character variable ch and a character array str are initialized with the same
character, x, such as the following,

char ch = `x';

char str[] = "x";

1 byte is required to hold char but 2 bytes are required to hold
string.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

Another important thing is that a string is interpreted as a char pointer. Therefore,
you can assign a character string to a pointer variable directly, like this:

char *ptr_str; ptr_str = "A character string.";

However, you can not assign a character constant to the pointer variable, as shown
in the following:

ptr_str = `x'; /* It's wrong. */

When a character variable ch and a character array str are initialized with the same
character, x, such as the following,

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

It's legal to assign a character constant to a dereferenced char pointer like this:

char *ptr_str;

*ptr_str = `x';

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

1: /* Initializing strings */
2: #include <stdio.h>
3:
4: main()
5: {
6: char str1[] = {`A', ` `,
7: `s', `t', `r', `i', `n', `g', ` `,
8: `c', `o', `n', `s', `t', `a', `n', `t', `\0'};
9: char str2[] = "Another string constant";
10: char *ptr_str;
11: int i;
12:
13: /* print out str2 */
14: for (i=0; str1[i]; i++)
15: printf("%c", str1[i]);
16: printf("\n");
17: /* print out str2 */
18: for (i=0; str2[i]; i++)
19: printf("%c", str2[i]);
20: printf("\n");
21: /* assign a string to a pointer */
22: ptr_str = "Assign a string to a pointer.";
23: for (i=0; *ptr_str; i++)
24: printf("%c", *ptr_str++);
25: return 0;

26: }

A string constant
Another string constant
Assign a string to a pointer.

Strings

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

How Long Is a String?

Sometimes, you need to know how many bytes are taken by a string. In C, you can
use a function called strlen() to measure the length of a string.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

1: /* Measuring string length */
2: #include <stdio.h>
3: #include <string.h>
4:
5: main()
6: {
7: char str1[] = {`A', ` `,
8: `s', `t', `r', `i', `n', `g', ` `,
9: `c', `o', `n', `s', `t', `a', `n', `t', \̀0'};
10: char str2[] = "Another string constant";
11: char *ptr_str = "Assign a string to a pointer.";
12:
13: printf("The length of str1 is: %d bytes\n", strlen(str1));
14: printf("The length of str2 is: %d bytes\n", strlen(str2));
15: printf("The length of the string assigned to ptr_str is: %d bytes\n",
16: strlen(ptr_str));
17: return 0;
18: } The length of str1 is: 17 bytes

The length of str2 is: 23 bytes
The length of the string assigned to ptr_str is: 29 bytes

Strings

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

Copying Strings with strcpy()

When a character variable ch and a character array str are initialized with the same
character, x, such as the following,

The syntax for the strcpy() function is

#include <string.h>

char *strcpy(char *dest, const char *src);

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

1: /* Copying strings */
2: #include <stdio.h>
3: #include <string.h>
4:
5: main()
6: {
7: char str1[] = "Copy a string.";
8: char str2[15];
9: char str3[15]; 1
0: int i;
11:
12: /* with strcpy() */
13: strcpy(str2, str1);
14: /* without strcpy() */
15: for (i=0; str1[i]; i++)
16: str3[i] = str1[i];
17: str3[i] = \̀0';
18: /* display str2 and str3 */
19: printf("The content of str2: %s\n", str2);
20: printf("The content of str3: %s\n", str3);
21: return 0;
22: }

The content of str2: Copy a string.
The content of str3: Copy a string.

Strings

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

Reading and Writing Strings - The gets() and puts() Functions

The gets() function can be used to read characters from the standard input stream.
The syntax for the gets() function is
#include <stdio.h>

char *gets(char *s);

The puts() function can be used to write characters to the standard output stream
(that is, stdout).

The syntax for the puts() function is

#include <stdio.h>
int puts(const char *s);

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

1: /* Using gets() and puts() */
2: #include <stdio.h>
3:
4: main()
5: {
6: char str[80];
7: int i, delt = `a' - `A';
8:
9: printf("Enter a string less than 80 characters:\n");
10: gets(str);
11: i = 0;
12: while (str[i]){
13: if ((str[i] >= `a') && (str[i] <= `z'))
14: str[i] -= delt; /* convert to upper case */
15: ++i;
16: }
17: printf("The entered string is (in uppercase):\n");
18: puts(str);
19: return 0;
20: }

Enter a string less than 80 characters:
This is a test.
The entered string is (in uppercase):
THIS IS A TEST.

Strings

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Strings

Using %s with the printf() Function

See previous example.

The scanf() Function

The syntax for the scanf() function is

#include <stdio.h> int

scanf(const char *format, …);

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

1: /* 13L05.c: Using scanf() */
2: #include <stdio.h>
3:
4: main()
5: {
6: char str[80];
7: int x, y;
8: float z;
9:
10: printf("Enter two integers separated by a space:\n");
11: scanf("%d %d", &x, &y);
12: printf("Enter a floating-point number:\n");
13: scanf("%f", &z);
14: printf("Enter a string:\n");
15: scanf("%s", str);
16: printf("Here are what you've entered:\n");
17: printf("%d %d\n%f\n%s\n", x, y, z, str);
18: return 0;
19: }

Enter two integers separated by a space:
10 12345
Enter a floating-point number: 1.234567
Enter a string:
Test Here are what you've entered:
10 12345
1.234567
Test

Strings

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

Block Scope
In this section, a block refers to any sets of statements enclosed in braces ({ and

}). A variable declared within a block has block scope. Thus, the variable is
active and accessible from its declaration point to the end of the block.
Sometimes, block scope is also called local scope.

For example, the variable i declared within the block of the following main function
has block scope:

int main()
{

int i; /* block scope */
. . .
return 0;

}

Usually, a variable with block scope is called a local variable.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

Nested Block Scope

You can also declare variables within a nested block. If a variable declared in the
outer block shares the same name with one of the variables in the inner block,
the variable within the outer block is hidden by the one within the inner block for
the scope of the inner block.

int main()
{

if(expression){
if(expression){
. . .

}
}

return 0;
}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C
1: /* 14L01.c: Scopes in nested block */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i = 32; /* block scope 1*/
7:
8: printf("Within the outer block: i=%d\n", i);
9:
10: { /* the beginning of the inner block */
11: int i, j; /* block scope 2, int i hides the outer int i*/
12:
13: printf("Within the inner block:\n");
14: for (i=0, j=10; i<=10; i++, j--)
15: printf("i=%2d, j=%2d\n", i, j);
16: } /* the end of the inner block */
17: printf("Within the outer block: i=%d\n", i);
18: return 0; 19: }

Within the outer block: i=32
Within the inner block:
i= 0, j=10
i= 1, j= 9
i= 2, j= 8
i= 3, j= 7
i= 4, j= 6
i= 5, j= 5
i= 6, j= 4
i= 7, j= 3
i= 8, j= 2
i= 9, j= 1
i=10, j= 0
Within the outer block: i=32

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

Function Scope

Function scope indicates that a variable is active and visible from the beginning to
the end of a function.

In C, only the goto label has function scope. For example, the goto label, start,
shown in the following code portion has function scope:

int main()
{

int i; /* block scope */
. . .
start: /* A goto label has function scope */
. . .
goto start; /* the goto statement */
. . .
return 0;

}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

Program Scope

A variable is said to have program scope when it is declared outside a function. For
instance, look at the following code:

int x = 0; /* program scope */
float y = 0.0; /* program scope */
int main()
{

int i; /* block scope */
. . .
return 0;

}

Here the int variable x and the float variable y have program scope.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

The Storage Class Specifiers -The auto Specifier

The auto specifier indicates that the memory location of a variable is temporary. In
other words, a variable's reserved space in the memory can be erased or
relocated when the variable is out of its scope.

Only variables with block scope can be declared with the auto specifier. The auto
keyword is rarely used, however, because the duration of a variable with block
scope is temporary by default.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

The Storage Class Specifiers -The static Specifier
The static specifier can be applied to variables with either block scope or program

scope. When a variable within a function is declared with the static specifier, the
variable has a permanent duration. In other words, the memory storage
allocated for the variable is not destroyed when the scope of the variable is
exited, the value of the variable is maintained outside the scope, and if
execution ever returns to the scope of the variable, the last value stored in the
variable is still there.

For instance, in the following code portion:
int main()
{

int i; /* block scope and temporary duration */
static int j; /* block scope and permanent duration */
.
.
return 0;

}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

File Scope and the Hierarchy of Scopes
In C, a global variable declared with the static specifier is said to have file scope. A

variable with file scope is visible from its declaration point to the end of the file.
Here the file refers to the program file that contains the source code. Most large
programs consist of several program files.

The following portion of source code shows variables with file scope:
int x = 0; /* program scope */
static int y = 0; /* file scope */
static float z = 0.0; /* file scope */
int main() {

int i; /* block scope */
.
.
.
return 0;

}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

The extern Specifier
As stated in the section titled "Program Scope," a variable withprogram scope is

visible through all source files that make up an executable program. A variable

with program scope is also called a global variable.

For instance, suppose you have two global int variables, y and z, that are defined in
one file, and then, in another file, you may have the following declarations:

int x = 0; /* a global variable */
extern int y; /* an allusion to a global variable y */
int main() {
extern int z; /* an allusion to a global variable z */
int i; /* a local variable */
. . .
return 0;
}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

The Storage Class Modifiers - The const Modifier
If you declare a variable with the const modifier, the content of the variable cannot

be changed after it is initialized.

const double circle_ratio = 3.141593;
const char str[] = "A string constant";

In addition, you can declare a pointer variable with the const modifier so that an
object pointed to by the pointer cannot be changed. For example,consider the
following pointer declaration with the const modifier:

char const *ptr_str = "A string constant";

After the initialization, you cannot change the content of the string pointed to by the
pointer ptr_str. For instance, the following statement is not allowed:

ptr_str = `a'; / It's not allowed here. */

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Scope and Storage Classes in C

The Storage Class Modifiers - The volatile Modifier
Sometimes, you want to declare a variable whose value can be changed without

any explicit assignment statement in your program. For instance,you might
declare a global variable that contains characters entered by the user. The
address of the variable is passed to a device register that accepts characters
from the keyboard. However, when the C compiler optimizes your program
automatically, it intends to not update the value held by the variable unless the
variable is on the left side of an assignment operator (=). In other words, the
value of the variable is likely not changed even though the user is typing in
characters from the keyboard:

void read_keyboard()
{

volatile char keyboard_ch; /* a volatile variable */
.
.
.

}

