
Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Readin from and Writint to Standart I/O

BIL104E: Introduction to Scientific and
Engineering Computing

Lecture 4

vDoing the same thing over and over
vMore operators

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Introduction

One of the very important feature of the C language: looping.

Three statements in C are designed for looping:
(repetition control statements)

• The for statement
• The while statement
• The do-while statement

The following sections explore these statements.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The Essentials of Repetition

continue statement
• Used for skipping the remainder of the body of a repetition structure

and proceeding with the next iteration of the loop.

Loop
– Group of instructions computer executes repeatedly while some condition

remains true
• Counter-controlled repetition
– Definite repetition: know how many times loop will execute
– Control variable used to count repetitions
• Sentinel-controlled repetition
– Indefinite repetition
– Used when number of repetitions not known
– Sentinel value indicates "end of data"

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Essentials of Counter-Controlled Repetition

Counter-controlled repetition requires

– The name of a control variable (or loop counter)
– The initial value of the control variable
– A condition that tests for the final value of the control variable (i.e.,

whether looping should continue)
– An increment (or decrement) by which the control variable is

modified each time through the loop

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The for Repetition Structure

The general form of the for statement is

for (expression1; expression2; expression3)
{
statement1;
statement2;
. . .
}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The for Repetition Structure

Example:
for(int counter = 1; counter <= 10; counter++)
printf("%d\n", counter);

Another example:
for (int i = 0, j = 0; j + i <= 10; j++, i++)
printf("%d\n", j + i);

More example:
Int i;
for (i; i <= 10; i++)

printf("%d\n", i);

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The for Repetition Structure
1: /* Converting 0 through 15 to hex numbers */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i;
7:
8: printf("Hex(uppercase) Hex(lowercase) Decimal\n");
9: for (i=0; i<16; i++){
10: printf("%X %x %d\n", i, i, i);
11: }
12: return 0;
13:}

Hex(uppercase) Hex(lowercase) Decimal
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 1 7
8 2 8
9 3 9
A a 10
B b 11
C c 12
. . .

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The for Repetition Structure – more info

•Arithmetic expressions in for statement :

– Initialization, loop-continuation, and increment can contain arithmetic
expressions. If x equals 2 and y equals 10

for (j = x; j <= 4 * x * y; j += y / x)
is equivalent to

for (j = 2; j <= 80; j += 5)

•Notes about the for structure:

– "Increment" may be negative (decrement)
– If the loop continuation condition is initially false

• The body of the for structure is not performed
• Control proceeds with the next statement after the for structure

– Control variable
• Often printed or used inside for body, but not necessary

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The while Repetition Structure

while loop (Repeat statements as long as condition is true)

initialization;
while (loopContinuationTest) {
statement(s);
increment;
}

– Example: (printing numbers from 0 to 10

i = 0;
while(i<=10){
printf("%d\n",i);
i++;
}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The while Repetition Structure

while loop (Repeat statements as long as condition is true)

initialization;
while (loopContinuationTest) {
statement(s);
increment;
}

– Example: (printing numbers from 0 to 10

i = 0;
while(i<=10){
printf("%d\n",i);
i++;
}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The while Repetition Structure

The while statement is also used for looping. Unlike the situation with
the for statement, there is only one expression field in the while
statement.

The general form of the while statement is:

while (expression) {
statement1;
statement2;
. . .

}

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The while Repetition Structure
1: /* Using a while loop */
2: #include <stdio.h>
3:
4: main()
5: {
6: int c;
7:
8: c = ` `;
9: printf("Enter a character:\n(enter x to exit)\n");
10: while (c != `x') {
11: c = getc(stdin);
12: putchar(c);
13: }
14: printf("\nOut of the while loop. Bye!\n");
15: return 0;
16: }

Enter a character:

(enter x to exit)
H
H
i
i
x
x
Out of the while loop. Bye!

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The do / whileRepetition Structure

Another statement used for looping, do-while, which puts the
expressions at the bottom of the loop :

do {
statement1;
statement2;
. . .

} while (expression);

– Similar to the while structure
– Condition for repetition tested after the body of the loop is

performed

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The do / whileRepetition Structure

1: /* Using a do-while loop */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i;
7:
8: i = 65;
9: do {
10: printf("The numeric value of %c is %d.\n", i, i);
11: i++;
12: } while (i<72);
13: return 0;
14: }

The numeric value of A is 65.
The numeric value of B is 66.
The numeric value of C is 67.
The numeric value of D is 68.
The numeric value of E is 69.
The numeric value of F is 70.
The numeric value of G is 71.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

•You can put a loop inside another one to make nested loops.

•The computer will run the inner loop first before it resumes the
looping for the outer loop.

The Repetition Structure - Nested Loops

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The break and continue Statements

break
– Causes immediate exit from a while, for, do/while or

switch structure

– Program execution continues with the first statement after the
structure

– Common uses of the break statement
• Escape early from a loop

• Skip the remainder of a switch structure

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The break and continue Statements

Continue

– Skips the remaining statements in the body of a while,

for or do/while structure
• Proceeds with the next iteration of the loop

– while and do/while
• Loop-continuation test is evaluated immediately after the
continue statement is executed

– for
• Increment expression is executed, then the loop-continuation test is

evaluated.

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The break and continue Statements

Statement(s)
...
While (condition)
{

Statement(s)
....
continue;
...
Statement(s)
...
break
...
Statement(s)
...

}
Statement(s)
...

or for (ex1;ex2,ex3)

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The break and continue Statements
1 /* Using the continue statement in a for structure */
2
3 #include <stdio.h>
4
5 int main()
6 {
7 int x;
8
9 for (x = 1; x <= 10; x++) {
10
11 if (x == 5)
12 continue; /* skip remaining code in loop only if x == 5 */
13
14 printf("%d ", x);
15 }
16
17 printf("\nUsed continue to skip printing the value : 5\n");
18 return 0;
19 }

Program output:
Used continue to skip printing the value : 5

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The break and continue Statements
1 /* Using the continue statement in a for structure */
2
3 #include <stdio.h>
4
5 int main()
6 {
7 int x;
8
9 for (x = 1; x <= 10; x++) {
10
11 if (x == 5)
12 continue; /* skip remaining code in loop only if x == 5 */
13
14 printf("%d ", x);
15 }
16
17 printf("\nUsed continue to skip printing the value : 5\n");
18 return 0;
19 }

Program output:
Used continue to skip printing the value : 5

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

1: /* Using the sizeof operator */
2: #include <stdio.h>
3:
4: main()
5: {
6: char ch = ` `;
7: int int_num = 0;
8: float flt_num = 0.0f;
9: double dbl_num = 0.0;
10:
11: printf("The size of char is: %d-byte\n", sizeof(char));
12: printf("The size of ch is: %d-byte\n", sizeof ch);
13: printf("The size of int is: %d-byte\n", sizeof(int));
14: printf("The size of int_num is: %d-byte\n", sizeof int_num);
15: printf("The size of float is: %d-byte\n", sizeof(float));
16: printf("The size of flt_num is: %d-byte\n", sizeof flt_num);
17: printf("The size of double is: %d-byte\n", sizeof(double));
18: printf("The size of dbl_num is: %d-byte\n", sizeof dbl_num);
19: return 0;
20: }

Measuring Data Sizes
you can measure the data type size by using the sizeof operator :

Program Output:

The size of char is: 1-byte
The size of ch is: 1-byte
The size of int is: 2-byte
The size of int_num is: 2-byte
The size of float is: 4-byte
The size of flt_num is: 4-byte
The size of double is: 8-byte
The size of dbl_num is: 8-byte

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Operators
The assignment, Mathematical, Relational, Logical operators

Logical Operators ?

True 1
False 0

Operator Symbol Example

AND && exp1 && exp2

OR || exp1 || exp2

NOT ! !exp1

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Operators – AND / OR / NOT
• && (logical AND)

– Returns true if both conditions are true

• || (logical OR)
– Returns true if either of its conditions are true

• ! (logical NOT, logical negation)
– Reverses the truth/falsity of its condition
– Unary operator, has one operand

• Useful as conditions in loops
Expression Result
true && false false
true || false true
!false true

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Operators – AND / OR / NOT
More example

Expression What It Evaluates To

(exp1 && exp2) True (1) only if both exp1 and exp2 are true; false (0) otherwise

(exp1 || exp2) True (1) if either exp1 or exp2 is true; false (0) only if both are false

(!exp1) False (0) if exp1 is true; true (1) if exp1 is false

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Operators
The assignment, Mathematical, Relational, Logical operators

Relational Operators ?
==, <, >, >=, <=, !=

True 1
False 0

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Equality (==) and Assignment (=) Operators

== Eoperator is an equality operator but = is an assignment
operator.

y = 5 + 3 ;

y == 5 + 3;

Example using == :
if (payCode == 4)

printf("You get a bonus!\n");
• Checks paycode, if it is 4 then a bonus is awarded

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

Equality (==) and Assignment (=) Operators

Example, replacing == with =:

if (payCode = 4)
printf("You get a bonus!\n");

• This sets paycode to 4
• 4 is nonzero, so expression is true, and bonus awarded no matter what the
paycode was

– Logic error, not a syntax error

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The other Operators
C's relational operators are used to compare expressions, asking

questions such as, "Is x greater than 100?" or "Is y equal to 0?"
An expression containing a relational operator evaluates to either
true (1) or false (0). C's six relational operators are listed in
Table:

Operator Symbol Question Asked Example

Equal == Is operand 1 equal to operand 2? x == y

Greater than > Is operand 1 greater than operand 2? x > y

Less than < Is operand 1 less than operand 2? x < y

Greater than or equal to >= Is operand 1 greater than or equal to operand 2? x >= y

Less than or equal to <= Is operand 1 less than or equal to operand 2? x <= y

Not equal != Is operand 1 not equal to operand 2? x != y

Bil 104 Intiroduction To Scientific And Engineering Computing Compiled by M. Zeki COSKUN

The other Operators
Examples:

Expression How It Reads What It Evaluates To

5 == 1 Is 5 equal to 1? 0 (false)

5 > 1 Is 5 greater than 1? 1 (true)

5 != 1 Is 5 not equal to 1? 1 (true)

(5 + 10) == (3 * 5) Is (5 + 10) equal to (3 * 5)? 1 (true)

